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Aerofoil tones at moderate Reynolds number
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It is known experimentally that an aerofoil immersed in a uniform stream at a
moderate Reynolds number emits tones. However, there have been major differences in
the experimental observations in the past. Some experiments reported the observation
of multiple tones, with strong evidence that these tones are most probably generated
by a feedback loop. There is also an experiment reporting the observation of a single
tone with no tonal jump or other features associated with feedback. In spite of the
obvious differences in the experimental observations published in the literature, it is
noted that all the dominant tone frequencies measured in all the investigations are in
agreement with an empirically derived Paterson formula. The objective of the present
study is to perform a direct numerical simulation (DNS) of the flow and acoustic
phenomenon to investigate the tone generation mechanism. When comparing with
experimental studies, numerical simulations appear to have two important advantages.
The first is that there is no background wind tunnel noise in numerical simulation.
This avoids the signal-to-noise ratio problem inherent in wind tunnel experiments.
In other words, it is possible to study tones emitted by a truly isolated aerofoil
computationally. The second advantage is that DNS produces a full set of space–time
data, which can be very useful in determining the tone generation processes. The
present effort concentrates on the tones emitted by three NACA0012 aerofoils with a
slightly rounded trailing edge but with different trailing edge thickness at zero degree
angle of attack. At zero degree angle of attack, in the Reynolds number range of
2 × 105 to 5 × 105, the boundary layer flow is attached nearly all the way to the
trailing edge of the aerofoil. Unlike an aerofoil at an angle of attack, there is no
separation bubble, no open flow separation. All the flow separation features tend to
increase the complexity of the tone generation processes. The present goal is limited
to finding the basic tone generation mechanism in the simplest flow configuration. Our
DNS results show that, for the flow configuration under study, the aerofoil emits only
a single tone. This is true for all three aerofoils over the entire Reynolds number range
of the present study. In the literature, it is known that Kelvin–Helmholtz instabilities
of free shear layers generally have a much higher spatial growth rate than that of
the Tollmien–Schlichting boundary layer instabilities. A near-wake non-parallel flow
instability analysis is performed. It is found that the tone frequencies are the same as
the most amplified Kelvin–Helmholtz instability at the location where the wake has
a minimum half-width. This suggests that near-wake instability is the energy source
of aerofoil tones. However, flow instabilities at low subsonic Mach numbers generally
do not cause strong tones. An investigation of how near-wake instability generates
tones is carried out using the space–time data provided by numerical simulations. Our
observations indicate that the dominant tone generation process is the interaction of the
oscillatory motion of the near wake, driven by flow instability, with the trailing edge
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of the aerofoil. Secondary mechanisms involving unsteady near-wake motion and the
formation of discrete vortices in regions further downstream are also observed.

Key words: aeroacoustics

1. Introduction
Small wind turbines are generally operated at moderate Reynolds numbers. It

is known experimentally that an aerofoil with profiles designed for wind turbine
application in the Reynolds number range of 5× 104 to 6× 105 generates distinct tones
(see Oerlemans 2003). The first systematic study of aerofoil tones was carried out by
Paterson et al. (1973). Since this pioneering work, there have been many experimental
investigations of the aerofoil tone phenomenon. Surprisingly, there are significant
differences in the experimental results. Furthermore, there is no clear consensus on
the tone generation mechanism even to this day.

Paterson et al. (1973) performed their aerofoil tone experiment in an open wind
tunnel using primarily a NASA0012 aerofoil. Figure 1 is one of their principal results.
In this figure the tone frequencies are plotted against the flow velocity. One of the
salient features of this set of data is the ladder-like structure. The data points in
figure 1 are from measurements at 4–10 degrees angle of attack. But they also reported
that tones were observed even at zero degree angle of attack and for a NACA0018
aerofoil. Because the ladder-like structure is formed by data at different angles of
attack, it appears that the tone frequency versus flow velocity pattern is somewhat
insensitive to the angle of attack. The ladder-like structure was soon recognized by
Tam (1974) as an indication that the observed tones were related to a feedback loop.
Based on the data of Paterson et al. (1973), Tam found that the data pattern at
6◦ angle of attack fitted the formula

f = 6.85nU0.8, (1.1)

where f is the tone frequency in hertz, U is the flow velocity in feet per second
and n is an integer. A feedback loop must satisfy an integral-wavenumber constraint.
The different steps of the ladder structure are a consequence of a change in the
quantization number n of (1.1). An increase in n by one corresponds to an increase
of one wave in the loop and the move to the next step in figure 1. At certain flow
velocities, two tones were measured simultaneously, e.g. at AB of figure 1. If the
velocity increases slightly beyond the velocity at A, the dominant tone frequency
jumps to the next ladder step as indicated by A to B. This is usually referred to
as staging. Further increase in velocity causes the subdominant tone to vanish. By
analysing their data carefully, Paterson et al. (1973) found that the dominant frequency
followed a U1.5 power law, as indicated by the full line in figure 1. Based on their
extensive measurements, they proposed the following formula for the dominant tone
frequency, f :

f = 0.011U1.5

(Cυ)1/2
, (1.2)

where C is the chord width and υ is the kinematic viscosity. Equation (1.2) has since
been referred to as the Paterson formula. As a part of their investigation, Paterson
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FIGURE 1. Relationship between tone frequency and flow velocity for NACA0012 aerofoils
measured by Paterson et al. (1973). The full line is the Paterson formula.

et al. (1973) measured spanwise surface pressure correlations on the aerofoil. They
found strong spanwise correlation over a considerable extent of the aerofoil surface.
Specifically, they reported a normalized cross-correlation of nearly unity for spanwise
separation distance of one chord width (the model in the experiment is only slightly
longer than two chord widths in the spanwise direction). This indicates that the flow
phenomenon associated with aerofoil tones is quite two-dimensional.

Arbey & Bataille (1983) repeated the open wind tunnel aerofoil experiment. They
performed all their NACA0012 measurements at zero degree angle of attack. They
did not observe discrete tones as Paterson et al. (1973). What they observed were
tones superimposed on a broadband spectrum. In fact, there is a multitude of tones; as
many as 12 were measured. Figure 2 shows a typical spectrum of their measurements.
Arbey & Bataille discovered that the frequency of the dominant tone (fs in the centre
of the spectrum of figure 2) was in good agreement with the Paterson formula, (1.2).
Figure 3 shows a replot of their dominant tone data as Strouhal number versus
Reynolds number. The straight line in figure 3 is the Paterson formula. Other than the
agreement in the dominant tone frequencies, the other results of the two experiments
are quite different. First of all, Arbey & Bataille measured many tones but Paterson
et al. had, at most, two tones simultaneously. Moreover, the frequencies of the two
tones in the Paterson et al. experiment are separated by a magnitude of about five
times that of the tones of Arbey & Bataille. When the full set of data are plotted
in the frequency versus velocity diagram, the tones of Arbey & Bataille also form a
ladder-like structure, suggesting again that the tones are related to a feedback loop.
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FIGURE 2. Spectrum of aerofoil tones measured by Arbey & Bataille (1983).

Unlike Paterson et al. (1973) and Arbey & Bataille (1983), Nash, Lowson &
McAlpine (1999) performed their aerofoil experiment inside a wind tunnel. They
quickly realized that the cross-duct modes and the Parker modes of the wind tunnel
could interfere with the aerofoil tone phenomenon. To eliminate this possibility,
they lined the wind tunnel walls with sound-absorbing materials. Under such an
experimental condition, they found for each free stream velocity that there was
a single aerofoil tone and no ladder structure. They suggested that the ladder-
like structure data of Paterson et al. and Arbey & Bataille were influenced by
their experimental facilities. The feedback and ladder-like data structure were not
characteristics of the aerofoil tone phenomenon. The feedback loop apparently was
locked on something in the experimental facility outside the open wind tunnel.
However, at low angle of attack, the tone frequency versus flow velocity relation
measured by Nash et al. is also in good agreement with the Paterson formula (see
figure 4). At higher angle of attack, 4◦ or more, because of the blockage of the wind
tunnel by the model, the measured relationship deviates from the Paterson formula, as
would be expected.

Recently, there have been a number of new aerofoil tone experiments (see e.g.
Nakano, Fujisawa & Lee 2006; Kurotaki et al. 2008; Chong & Joseph 2009). The
experiment of Nakano et al. did not use the NACA0012 aerofoil. Thus their data are
not suitable for comparison with the previously mentioned experiments. The paper by
Kurotaki et al. is primarily a report of their numerical simulation work. However, the
paper does mention briefly the results of an aerofoil tone experiment. The data are
replotted in figure 5. It is clear from this figure that there are multiple tones. The tones
have a ladder-like structure pattern. The pattern resembles the Parker and cross-duct
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FIGURE 3. Relationship between the Strouhal number of the dominant tones and the
Reynolds number measured by Arbey & Bataille (1983). The straight line is the Paterson

formula.

mode observed in the initial experiment (without the installation of sound-absorbing
acoustic liners) of Nash et al. (1999). The straight line in this figure is the Paterson
formula. It correlates well with the dominant tone frequencies over a range of flow
velocities.

It should be clear at this time that there are significant disagreements among the
many aerofoil experiments we have been able to find in the literature. One major issue
is whether the basic tone generation mechanism is related to a feedback loop, which
would generate multiple tones, or whether, as in the observation by Nash et al. (1999),
feedback is spurious and there should only be a single tone. Even among investigators
who have observed multiple feedback tones, the details of the observed phenomenon
are quite different. Therefore, it is fair to say that, at this time, no two experiments
have the same results. On the other hand, regardless of the major differences, almost
all experiments seem to agree that the Paterson formula yields a good prediction of the
dominant tone frequencies. This is true over a wide range of Reynolds number.

What is the mechanism responsible for the generation of aerofoil tones? Beginning
with the work of Paterson et al. (1973), a number of possible tone generation
mechanisms have been proposed. Paterson et al. envisioned that they were vortex
shedding tones similar to those associated with blunt trailing edges. Earlier, Sharland
(1964) had made a similar suggestion. Tam (1974), Fink (1975) and Arbey & Bataille
(1983) proposed that the source of energy responsible for aerofoil tones was the
Tollmien–Schlichting instabilities in the boundary layer of the aerofoil. Nash et al.
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FIGURE 4. Relationship between aerofoil tone frequency and flow velocity measured by
Nash et al. (1999): stars, 2◦ angle of attack; circles, 3◦ angle of attack; straight line, Paterson
formula.

(1999) and later McAlpine, Nash & Lowson (1999) made detailed computations of
the total growth of Tollmien–Schlichting instability waves in the boundary layer of
NACA0012 aerofoils at an angle of attack. They found that the growth rate was small
until the waves reached the separated flow region. They reported that the frequency
of the instability wave with the highest total growth was very close to the tone
frequency. The point of their effort is that the most amplified wave is responsible
for causing tone generation. Recently, this idea was further pursued by Desquesnes,
Terracol & Sagaut (2007), Sandberg, Sandham & Joseph (2007) and Kingan & Pearse
(2009). It is worthwhile to mention that Lowson, Fides & Nash (1994) reported that
they observed Tollmien–Schlichting waves in an aerofoil boundary layer at a lower
Reynolds number than the first appearance of aerofoil tone. They cautioned that
boundary layer instability is not a sufficient condition for aerofoil tone generation. On
the other hand, Nash et al. (1999) reported the observation of separated flow on the
aerofoil but without any tone. They concluded that flow separation is not a sufficient
condition for tone generation.

Tam (1974) was the first to propose that the ladder-like structure of the data of
Paterson et al. (1973) is because the tones were generated by a feedback loop. This
idea was followed by Fink (1975) and expanded by Arbey & Bataille (1983) and
recently by Jones & Sandberg (2010). If feedback is, indeed, a part of the tone
generation mechanism for an isolated aerofoil, there would have to be a feedback point
on the surface of the aerofoil. Arbey & Bataille proposed that the maximum-velocity
point on the surface of the aerofoil is the feedback point. On the other hand, Fink and
Jones & Sandberg appear to regard the aerofoil leading edge as the feedback point.
Physically, the feedback point should be located where the flow is most receptive to
external excitation. Unfortunately, in the absence of a receptivity analysis, it is not
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FIGURE 5. Relationship between tone frequency and flow velocity measured by Kurotaki
et al. (2008): straight line, Paterson formula; crosses, simulation.

clear whether the flow at the aerofoil leading edge or at the maximum-velocity point
is, indeed, most receptive to excitation by upstream-propagating sound waves.

Koch (1985) analysed the instability of the near wake of a cylinder using the
method of Briggs (1964) and Bers (1975). He found that, on assuming locally parallel
flow, the wake was absolutely unstable. On recognizing this, McAlpine et al. (1999)
suggested that it would be useful to consider the possibility of a linkage between
aerofoil tone generation and absolute instability in the wake flow. We would like to
remark that, as a part of the present investigation, we have performed such a study.
In our study, we performed the contour deformation process in the complex Laplace
and Fourier transform planes following the Briggs’ procedure – see Tam & Hu (1989)
for details about implementing the procedure. We searched for the occurrence of
pole-pinching, the criterion for the existence of absolute instability. We were unable to
find pole-pinching after a thorough search. We conclude that there is no evidence of
absolute instability in the wake of a NACA0012 aerofoil at zero angle of attack over
the Reynolds number range of 2× 105 to 5× 105.

Recent advances in computational methodology and the availability of fast
computers with large memories make it feasible to investigate the aerofoil tone
phenomenon by direct numerical simulation (DNS). Almost all the DNS studies
carried out so far are two-dimensional. Desquesnes et al. (2007) were one of the
first to perform such simulations. They considered two cases. The first case involves
a NACA0012 aerofoil placed at 2◦ angle of attack at a Reynolds number of 2 × 105.
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In the second case, the angle of attack is 5◦ and the Reynolds number is 105. Flow
separation is observed in both cases. Desquesnes et al. performed locally parallel
hydrodynamic stability analysis of the separated boundary layer. They found that the
frequency of the most amplified instability wave was very close to the frequency of the
strongest tone.

Kurotaki et al. (2008) carried out a large eddy simulation (LES) of the aerofoil
tone phenomenon. An implicit LES approach was used. In their work, the approximate
deconvolution method originally developed by Stolz, Adams & Kleiser (2001) for
filtering out the high wave components of the solution was adopted. A C-type mesh
was used to form a body-fitted grid around a NACA0015 aerofoil. In their study, the
aerofoil is placed at 5◦ angle of attack. Three cases at Reynolds number of 4 × 105,
6× 105 and 8× 105 are computed. The results are displayed in figure 5. In spite of the
fact that it is a thicker aerofoil, the computed tone frequencies are in good agreement
with the Paterson formula (see figure 5).

More recently, Sandberg et al. (2009) reported the results of their numerical
simulations of aerofoil tones. They confined their work to a NACA0012 aerofoil at
0◦, 5◦ and 7◦ angles of attack. The flow Mach number was 0.4 and the Reynolds
number was 5 × 104. No tone was found at 0◦ angle of attack. At 5◦ angle of attack,
a separation bubble formed on the suction side of the aerofoil. At 7◦ angle of attack,
open separation took place. As a follow-up to the work of Sandberg et al. (2009),
Jones & Sandberg (2010) repeated a similar computation at a slightly higher Reynolds
number of 105. The angles of attack in this work were 0◦, 0.5◦, 1.0◦ and 2.0◦. They
performed instability wave analysis of the aerofoil boundary layer. They reported that
the most amplified convectively unstable instability wave frequency was significantly
higher than the measured tone frequency.

The primary objective of this study is to perform two-dimensional DNS of the
aerofoil tone generation phenomenon using a specially designed body-fitted multi-size
grid, a high-order, high-resolution computational scheme and a set of high-quality
radiation and outflow boundary conditions. The use of two-dimensional simulations
is justified, as the measured fluctuations in the Paterson et al. (1973) experiment
displayed strong spanwise coherence. Also, in all the previous numerical studies of
aerofoil tones cited above, the investigators are unanimously of the opinion that two-
dimensional simulations are good and reasonable approximations. The present effort
concentrates on the simulation of NACA0012 aerofoils with a slightly rounded trailing
edge at zero degree angle of attack. The principal reason for restricting the study to
zero degree angle of attack is to keep the flow configuration as simple as possible.
At zero degree angle of attack, the boundary layer is attached nearly all the way to
the trailing edge. There is no separation bubble, no large-scale open separation. This
eliminates possible acoustic feedback sites on the surface of the aerofoil. Figure 6
shows our computed vorticity distribution in the boundary layer and the near wake
of a NACA0012 aerofoil (2 % truncation) at zero degree angle of attack. There is no
vortex shedding at the trailing edge. The wake simply forms smoothly at the trailing
edge by the merging of the boundary layers on the two sides of the aerofoil. The wake
is unstable and rolls up into discrete vortices some distance downstream of the trailing
edge of the aerofoil. This eliminates vortex shedding as a tone generation mechanism.

The first aim of our simulations is to see if aerofoil tone is a single tone or consists
of multiple tones. Our second aim is to establish a computed relation between tone
frequency and flow velocity. This relation is then used to match the Paterson formula.
A good match not only will serve as a validation of the computational algorithm and
code but also would assure that the simulation contains the essential physics of the
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FIGURE 6. Computed instantaneous vorticity distribution in the boundary layer and the near
wake of a NACA0012 aerofoil (2 % truncation) at zero angle of attack. The Reynolds number
is 2× 105.

tone generation mechanism. Once this is accomplished, our third goal is to use the
computed space–time DNS data to investigate the energy source of the tones and the
processes by which the tones are produced. It is useful to point out that there are
intrinsic advantages in a DNS study. In comparison with experiments, there is no wind
tunnel background noise to mask the aerofoil noise spectrum. Also by using high-
quality computational aeroacoustics methods, there is less possibility of introducing a
facility-associated feedback loop. The aerofoil under study can be made almost totally
isolated. Therefore, by eliminating as many unwarranted sources of noise that could
influence the generation of feedback tones as possible, it is our hope that the basic
tone generation mechanism can be determined to a satisfactory level, although it is
possible that other tone generation mechanisms could become important at non-zero
degree angle of attack.

The rest of the paper is as follows. In § 2, the computational model of the present
study is described. The computational grid and computational algorithm used in all
the simulations are also discussed. To ensure that our simulations have the needed
resolution, we have performed grid refinement analysis. The details are provided at the
end of this section. Section 3 reports the results of tone frequencies measured in our
DNS study. Comparisons with the Paterson formula are made. Good agreements are
found. Section 4 focuses on the energy source of aerofoil tones. We propose that it
is the instabilities of the near-wake flow that drives the aerofoil tones. To support our
proposition, a non-parallel aerofoil wake instability investigation has been performed.
A tone frequency formula as a function of the flow velocity is established through
the results of instability analysis. This formula is in good agreement with DNS tone
frequency measurements. It is known that flow instabilities at low subsonic Mach
number are not an efficient sound generator. For this reason, a study of the processes
by which near-wake instability leads to tone generation is carried out. The results are
reported in § 5. Section 6 concludes and summarizes the main results of the present
investigation.

2. Computational model, grid design, algorithm and grid refinement
This is a computational study of the generation of aerofoil tones. It is known that

the quality of a numerical simulation depends critically on the quality and resolution
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FIGURE 7. Blunt trailing edge aerofoil formed by adding a rounded edge to a truncated
aerofoil.

Aerofoil Truncation (%) Width of chord (cm) Trailing edge thickness (cm)

NACA0012 0 10 0
no. 1 0.5 9.956 0.014
no. 2 2.0 9.82 0.055
no. 3 10.0 9.1 0.248

TABLE 1. Aerofoil dimensions and thicknesses.

of the computational grid and the algorithm used. As the accuracy of our computed
results and hence the conclusions of this investigation rely on our grid design and
chosen computational algorithm, we will provide some of the important details below.

2.1. Computational model
We will consider only NACA0012 aerofoils at zero degree angle of attack, as in the
experiment of Arbey & Bataille (1983). A secondary objective of the present study is
to investigate the effect of blunt trailing edge on the frequencies of aerofoil tones. To
make an aerofoil with blunt trailing edge, we first truncate the sharp trailing edge of
an aerofoil at a prescribed percentage of chord. The truncated aerofoil is then fitted
with a rounded trailing edge as shown in figure 7. Table 1 lists the dimensions of the
three truncated aerofoils used in the present investigation. The trailing edge profiles
of these three aerofoils are shown in figure 8. Here the aerofoil with 0.5 % truncation
is considered practically a sharp trailing edge aerofoil. Its tonal characteristics will be
used to compare with the Paterson formula.

In this study, the original aerofoil chord width is 0.1 m. The aerofoil is placed
in a uniform stream with a velocity U. The Reynolds number range of the present
study is from 2 × 105 to 5 × 105. The corresponding velocity range is 29–72.5 m s−1.
The Mach number range is 0.0853–0.213. For a flat plate with the same length,
the displacement thickness at the trailing edge at a Reynolds number of 2 × 105 is
δ∗ = 1.72 (Cυ/U)1/2 = 3.85 × 10−4 m. Thus, Rδ∗ is equal to 770. For this Reynolds
number, the wake flow is laminar in the absence of high-level ambient turbulence and
sound. In the present numerical simulations, there is a total absence of free stream
turbulence and sound waves (except for the aerofoil tone). As a result, the flow tends
to remain laminar for Reynolds numbers that would be transitional experimentally.
We find that, in our simulations, the boundary layer is laminar even at the highest
Reynolds number of our study.

The governing equations are the dimensionless Navier–Stokes equations in two
dimensions and the energy equation. Here the length scale is C (chord width), velocity
scale is a∞ (ambient sound speed), time scale is C/a∞, density scale is ρ∞ (ambient
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FIGURE 8. Trailing edge profiles of the three NACA0012 aerofoils used in the present study:
(a) 0.5 % truncation; (b) 2 % truncation; (c) 10 % truncation.

gas density), and pressure and stress scales are ρ∞a2
∞. These equations are

∂ρ

∂t
+ ρ ∂uj

∂xj
+ uj

∂ρ

∂xj
= 0, (2.1)
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∂xj
+ γ p

∂uj

∂xj
= 0, (2.3)

where

τij = M

RC

(
∂ui

∂xj
+ ∂uj

∂xi

)
, RC = CU

υ
, M = U

a∞
. (2.4)

U is the free stream velocity, M is the Mach number and RC is the Reynolds number
based on chord width. Both viscous dissipation and heat conduction are neglected in
the energy equation, as the Mach number is small.

2.2. Computational grid
The first requirement of a quality numerical simulation is a well-designed grid. The
grid exerts a significant control over the local and global resolution. For the aerofoil
tone problem, a good resolution of the aerofoil surface boundary layer and the near
wake is of paramount importance. This calls for a body-fitted grid with fine meshes
adjacent to the aerofoil surface and in the wake region.
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FIGURE 9. Source distribution along the camber line, and enforcement points on the aerofoil
surface.

FIGURE 10. Mapping of the aerofoil into a slit in the w plane.

A popular grid design for aerofoil computation is the C-grid. But the C-grid can
lead to singularity and non-smooth grid lines at the C-junction. To ensure that the
grid used is of the highest quality, we use a specially designed grid generated by
conformal mapping. The use of conformal mapping to generate a computational grid is
not new. However, it has seldom been used for aerofoil configuration. For this reason,
we believe it is worthwhile to elaborate on a few of the crucial steps in constructing
the grid.

The method consists of two essential steps, as schematically illustrated in
figures 9–11. The first step is a mapping of the aerofoil in the physical x–y plane
into a slit in the w or the ξ–η plane. This is accomplished by conformal transformation
using a multitude of point sources distributed along the camber line of the aerofoil, as
shown in figure 9. The appropriate form of the conformal transformation is

w= z+
N∑

j=1

Qj log
(

z− zj

z− z0

)
+ iΩ, (2.5)

where w = ξ + iη represents the complex coordinates of a point in the mapped plane,
z = x + iy is a point in the physical plane, Qj, zj (j = 1, 2, . . . ,N) are the source
strengths and locations, and Ω is just a constant. The inclusion of Ω in the mapping
function is important. Its inclusion makes it possible to map the aerofoil onto a slit on
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FIGURE 11. Elliptic coordinates around the slit as body-fitted grid for the aerofoil.

the real axis of the w plane (see figure 10). Finally, z0 is the location of a reference
source. A good location to place z0 is in the middle of the camber line such that all
the lines joining zj to z0 lie within the aerofoil. In this way, the branch cuts associated
with the log functions of (2.5) would not present a problem in the computation.

In implementing the mapping, the coordinates zj (j = 1, 2, 3, . . . ,N) of the source
points are first assigned. A useful rule in assigning the source locations is that the
distance |zj − zj−1| should be proportional in some way to the local thickness of the
aerofoil. That is to say, the sources should be closer together where the aerofoil is
thin. Now the source strengths Qj (j= 1, 2, . . . ,N) are to be chosen to accomplish the
mapping. For this purpose, a set of points zk (k = 1, 2, . . . ,M) around the surface of
the aerofoil are chosen to enforce the mapping; zk are referred to as the enforcement
points, and M should be much larger than N. Imposing the conditions that the surface
of the aerofoil be mapped onto a slit on the real axis of the w plane on (2.5) leads to
the following system of linear equations for Qj and Ω:

yk +
N∑

j=1

Im
[

Qj log
(

zk − zj

zk − z0

)]
+Ω = 0, k = 1, 2, . . . ,M. (2.6)

This system of equations may be written in matrix form as

Ax= b, (2.7)

where x is a column vector of length (2N + 1), with elements

x2j−1 = Re(Qj), x2j = Im(Qj), j= 1, 2, . . . ,N, (2.8a)
x2N+1 =Ω, (2.8b)

A is an M × (2N + 1) matrix, with elements

ai,2j + iai,2j−1 = log
[

zi − zj

zi − z0

]
, (2.9a)

ai,2N+1 = 1, i= 1, 2, . . . ,M, j= 1, 2, 3, . . . ,N, (2.9b)

and b is a column vector of length M, with elements

bk =−yk, k = 1, 2, 3, . . . ,M. (2.10)

With M� 2N+ 1, (2.7) is an over-determined system. A least-squares solution may be
obtained by first premultiplying (2.7) by the transpose of A. This leads to the normal
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FIGURE 12. The various subdomains of a multi-size mesh in the physical space: (a) enlarged
view near the aerofoil; (b) entire elliptic domain.

equation

ATAx= ATb, (2.11)

which can be easily solved by any standard matrix solver.
The second step in developing a body-fitted grid to the aerofoil is to take the

mid-point of the slit in the ξ–η plane as the centre of an elliptic coordinate system.
Let the width of the slit be a and ξ̄ be the x coordinate measured from the mid-point
of the slit. The elliptic coordinates (µ, θ) are related to (ξ̄ , η) by

ξ̄ = a

2
coshµ cos θ, η = a

2
sinhµ sin θ. (2.12)

The elliptic coordinate system is shown in figure 11. The elliptic coordinate system is
orthogonal. The curve µ = 0 is the surface of the aerofoil in the physical plane. The
boundary layer lies in the region µ < ∆ in the µ–θ plane. The wake is in the region
−∆1 < θ < ∆2, where ∆, ∆1 and ∆2 are small quantities. In the present simulations,
these are the regions with the finest meshes.

The problem at hand is a multi-scale problem. The smallest length scale of the
problem that needs to be resolved is in the viscous boundary layer and in the
wake. In this work, a multi-size mesh is used in the time marching computation.
Figure 12 shows the boundaries of the different mesh size blocks in the elliptical
coordinates region of the computation domain. The mesh size increases by a factor
of 2 as one crosses a mesh-size-change boundary going outwards from the aerofoil.
For large µ, the elliptical coordinates become circular. At a radius of about eight chord
widths, the computation switches from the µ–θ coordinates to rectangular Cartesian
coordinates in the physical plane, as shown in figure 13. The Cartesian mesh extends
10 chord lengths upstream and 30 chords downstream from the aerofoil. It is 10
chords wide on both top and bottom sides of the aerofoil. One reason for using
such a large computational domain is to provide sufficient distance for the wake
and shed vortices to develop fully and to decay before exiting the computational
boundary. This minimizes the generation of disturbances that can reflect back into the
computational domain. Another reason for using a wide and large domain is to lessen
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FIGURE 13. The entire computational domain showing the elliptic coordinates region, the
Cartesian coordinates region and the overset grid.

the likelihood of the computational boundary becoming an anchor point of a feedback
loop associated with the flow past the aerofoil.

The total number of mesh points used in the simulation is 1.84 million. In the
boundary layer adjacent to the aerofoil, where the highest resolution is required,
the mesh size ∆n, in the direction normal to the aerofoil surface, is set equal to
∆n/C = 4× 10−4. This gives 21 mesh points in the boundary layer at the trailing edge
region at a Reynolds number of 5 × 105. At a Reynolds number 2 × 105, there are 33
mesh points in the boundary layer. Along the surface of the aerofoil, there are 2500
mesh spacings. This makes the aspect ratio of the mesh in the computational domain
close to unity. In the near wake, the mesh size ∆s in the flow direction (or θ direction)
is ∆s/C = 3.4×10−4. Along the mesh line µ= constant, the mesh has nearly the same
resolution. This is to keep the mesh aspect ratio nearly equal to one. The reason for
keeping the mesh aspect ratio nearly unity is because acoustic waves have no preferred
direction of propagation.

2.3. Computational algorithm
For time marching computation in the elliptic coordinates region of the computational
domain, (2.1)–(2.4) are first rewritten in the µ–θ coordinates. The derivatives are then
discretized according to the seven-point stencil dispersion-relation-preserving (DRP)
scheme of Tam & Webb (1993). At the mesh-size-change boundaries, the multi-size-
mesh, multi-time-step DRP scheme of Tam & Kurbatskii (2003) is implemented. This
scheme allows a smooth connection and transfer of the computed results using two
different size meshes on the two sides of the boundary. Another important feature of
this method is that it also allows a change in the size of the time step. This makes
it possible to maintain numerical stability without being forced to use very small
time steps in subdomains where the mesh size is large. This makes the computation
efficient without loss of accuracy.

In the nearly circular region of the computation domain (see figure 13), the
computation is carried out in the µ–θ plane. Outside this region, a rectangular mesh
is used. The computation is performed in the x–y plane. At the overlapping boundary
of these two regions, the overset grids method of Tam & Hu (2004) is used to transfer
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data from one grid set to the other. The data transfer process is accomplished by
the use of a 16-point optimized interpolation stencil. The interpolation process has a
comparable accuracy to the time marching computation scheme.

Near the aerofoil surface, where backward difference stencils are used, artificial
selective damping (see Tam, Webb & Dong 1993) is introduced to damp out spurious
waves and grid-to-grid oscillations created by the presence of the wall (a discontinuity).
In addition, general background artificial selective damping terms are added to all
discretized governing equations. This ensures the removal of any residual spurious
waves that might exist in the computational domain.

On the left, top and bottom boundaries of the computational domain shown in
figure 13, the radiation boundary conditions developed by Tam & Webb (1993) are
imposed. On the right side of the boundary, outflow boundary conditions given by
them are enforced. On the aerofoil surface, the u = v = 0 no-slip boundary conditions
are imposed. This, however, will create an over-determined system of equations if all
the discretized governing equations are required to be satisfied at the boundary points.
To avoid this problem, the two momentum equations of the Navier–Stokes equations
are not enforced at the wall boundary points. The continuity and energy equations
are, nevertheless, computed to provide the values of density ρ and pressure p at the
aerofoil surface.

To start the computation, the variables are set equal to the values of the uniform
flow, namely, u = M, v = 0, ρ = 1 and p = 1/γ . The solution is then time marched
until it is periodic.

2.4. Grid refinement and code validation
To ensure that the numerical simulations in this study have adequate resolution, grid
refinement has been implemented in two test cases. In this exercise, the mesh size
in the elliptic coordinates region of the computational domain is reduced by half. The
two test cases chosen are for aerofoil no. 3 at Reynolds number 2×105 and 4×105. At
Reynolds number 2×105, the tone frequency found in the simulation remains the same
at 1138 Hz. At Reynolds number 4× 105, the tone frequency computed using a coarse
mesh is 3187 Hz. The tone frequency computed using a finer mesh is 3119 Hz. This
represents a frequency change of 2 %. On assuming that the difference is proportional
to the Reynolds number of the simulation, we estimate that our results should be
accurate to about 3 % at the highest Reynolds number in the present study.

To provide assurance that the resolution of the present computation code is adequate,
the time-averaged pressure coefficient Cp = p/( 1

2ρU2) at Reynolds number 4 × 105 is
computed using our numerical simulation data for comparison with experiment. For
this Reynolds number, Lee & Kang (2000) have earlier published a set of measured
data. The measurements were carried out in a wind tunnel. The data set, corrected for
wall blockage according to Lee & Kang, is shown in figure 14. Shown in this figure
also are the measured Cp values from our numerical simulation. It is clear that there is
good agreement between experimental and numerical simulation results.

To test the adequacy of the present computation code for acoustic computation, we
compare the sound pressure level (SPL) of aerofoil tone measured in our numerical
simulation at Reynolds number of 4×105 with the experimental measurements of Nash
et al. (1999). The data of Nash et al. exhibit considerable scatter of the tone intensity.
The data band has a deviation of ±3.5 dB around the mean value. At a flow velocity
of 58 m s−1, our tone has an SPL of 95.3 dB. The mean value of the experimental
data is 93.9 dB. Thus the SPL of our simulation result lies within the data scattering
band of the experiment.
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FIGURE 14. Comparison between computed pressure coefficient (full line) and experimental
measurements (triangles) of Lee & Kang (2000).

It is our belief that the above tone SPL comparison with experiment, the Cp
distribution comparison with experiment and the grid refinement study when taken
together, indeed, provide confidence that the computer code developed in the present
investigation has the resolution and accuracy for an in-depth aerofoil tone study.

3. Numerical results
In this section, the computed results of our numerical simulations are reported. We

will first report the results of the flow field and then the acoustic results.

3.1. Flow field
At zero degree angle of attack, the computed boundary layer flow on the aerofoil
remains attached almost to the trailing edge. The boundary layer flow is steady,
while the flow in the wake is oscillatory. Figure 6 shows a plot of the computed
instantaneous vorticity field around aerofoil no. 2 at a Reynolds number of 2 × 105.
The leading edge of the aerofoil is placed at x = 0. This is typical of all the cases
investigated. The flow leaves the trailing edge of the aerofoil smoothly. There is no
vortex shedding at the trailing edge, regardless of previous speculation (Paterson et al.
1973). The oscillations in the wake intensify in the downstream direction until it rolls
up to form discrete vortices further downstream.

Figure 15 shows an instantaneous streamline pattern of the wake of aerofoil no. 2 at
a Reynolds number of 4× 105. The wake oscillations are prominent in this figure. The
wavelength of the oscillations appears to be fairly regular. This suggests that there is
instability in the wake.

The mean velocity deficit profile in the wake resembles a Gaussian function. The
half-width of the wake near the aerofoil trailing edge undergoes large variation in
the flow direction. Figure 16 shows the variation of the half-width as a function of
downstream distance for aerofoil no. 2 at a Reynolds number of 2 × 105. The width
of the wake begins to shrink right downstream of the aerofoil trailing edge until
a minimum is reached at b = bmin. It grows rapidly further downstream, reaching a
maximum before decreasing and attaining a nearly asymptotic value.
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FIGURE 15. Instantaneous streamline pattern showing strong oscillations in the wake of the
aerofoil: aerofoil no. 2, Re= 4× 105.
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FIGURE 16. Spatial distribution of the half-width of the wake for Aerofoil no. 2 at
Re= 2× 105.

The velocity deficit profiles of the wake exhibit self-similarity. Figure 17 shows a
collapse of the velocity profiles at minimum half-width over a large range of Reynolds
number. In this figure, the variable (u − Umin)/(U − Umin) is plotted against y/bmin,
where Umin is the minimum velocity of the mean flow profile and b is the half-width.
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FIGURE 17. Similarity of velocity deficit profile at b= bmin in the wake of aerofoil no. 2.
Reynolds number varies from 2× 105 to 5× 105 at 0.5× 105 interval.
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FIGURE 18. Relationship between bmin of the wake and Reynolds number (aerofoil no. 2).

In figure 17, data over Reynolds number from 2× 105 to 5× 105 at 0.5× 105 interval
are included. There is a nearly perfect match of the set of seven profiles.

The similarity property of the wake velocity profiles suggests the possibility of the
existence of a simple correlation of the minimum half-width of the wake with flow
Reynolds number (Re). Figure 18 shows a plot of (bmin/C)Re

1/2 against Re (C is the
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FIGURE 19. Relationship between bmin of the wake and Reynolds number (aerofoil no. 1).

chord width) for aerofoil no. 2. It is seen that the measured values of this quantity
from the numerical simulations are nearly independent of Reynolds number over the
entire range of Reynolds number of the present study. Thus the minimum half-width
of the wake, bmin, of aerofoil no. 2 has the following form of Reynolds number
dependence:

bmin

C
Re1/2 ≈ 8.2 (aerofoil no. 2). (3.1)

A similar analysis has been performed for aerofoil no. 1. Figure 19 shows that the
quantity (bmin/C)Re

1/2 again is approximately a constant. In this case, the value bmin
and Reynolds number are related by

bmin

C
Re1/2 ≈ 7.45 (aerofoil no. 1). (3.2)

There is a slight deviation of the computed data from a constant in figure 19. But the
averaged error in using a constant is only about 3 %.

3.2. Acoustics
In all the simulations we have performed for aerofoils nos. 1–3 (see table 1), only a
single tone is detected. Figure 20 shows a typical aerofoil trailing edge tone that we
have measured. This figure is the noise spectrum (bandwidth = 120 Hz) for aerofoil
no. 1 at a Reynolds number of 4× 105. The measurement point is at (1.08, 0.5). Since
there is only one single tone per computer simulation, it makes our finding the same
as Nash et al. (1999).

Figure 21 shows the computed tone frequencies versus flow velocities for aerofoil
no. 1 according to the results of our numerical simulations. This aerofoil has a 0.5 %
truncation. It is nearly a sharp trailing edge aerofoil. As shown in this figure, all
the data points lie practically on a straight line parallel to the Paterson formula (the
full line). The difference between our simulation results and the Paterson formula is
very small. Based on what is shown in figure 21, we believe that our simulation,
for all intents and purposes, reproduces the Paterson formula. We consider that the
good agreement with the Paterson formula not only is proof of the validity of the
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FIGURE 20. The measured noise spectrum for aerofoil no. 1 at Re= 4× 105.
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FIGURE 21. Measured tone frequencies at different flow velocities for aerofoil no. 1. The
straight line is the Paterson formula.

simulations but also is an assurance that our simulations do contain the essential
physics of aerofoil tone generation.
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FIGURE 22. Dependence of tone Strouhal number on Reynolds number for aerofoils no. 1
(dashed), no. 2 (dotted) and no. 3 (dotted-dashed). The full line is the Paterson formula.

Aerofoil Truncation (%) Value of K

NACA0012 0 0.011 (Paterson formula)
no. 1 0.5 0.00973
no. 2 2.0 0.00835
no. 3 10.0 0.00717

TABLE 2. Values of proportionality constant K.

Figure 22 shows the variations of the Strouhal numbers of the computed tones
for the three aerofoils under consideration with Reynolds number. The data for each
aerofoil lies approximately on a straight line. The straight lines are parallel to each
other and to the Paterson formula (shown as the full line in figure 22). All the four
lines in figure 22 fit a single formula,

fC

U
= KRe1/2, (3.3)

where K is a constant. Equation (3.3) may also be written in a form similar to the
Paterson formula, i.e.

f = K
U3/2

(Cυ)1/2
. (3.4)

The values of the constant K for each aerofoil have been determined by best fitting to
the simulation data. They are given in table 2.

Based on the computed results shown in figure 22, the effect of trailing edge
thickness at a given Reynolds number is to lower the tone frequency. That is, the
thicker the blunt trailing edge, the lower is the tone frequency. This dependence turns
out to be similar to that of vortex shedding tones such as that emitted by a long
circular cylinder in a uniform flow. For the long cylinder vortex shedding problem, the
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FIGURE 23. Comparison between the spatial growth rates of Kelvin–Helmholtz instability
waves at the minimum half-width point in the wake (full curve) and at a point in the fully
developed wake (dotted curve).

tone Strouhal number is approximately equal to 0.2, i.e.

fD

U
≈ 0.2 (3.5)

(D is the diameter). Therefore, the thicker the blunt object or trailing edge thickness,
the lower is the tone frequency. However, it is to be noted that the physics and tone
generation mechanisms are quite different.

4. Energy source of aerofoil tones
A number of investigators (see e.g. Tam 1974; Fink 1975; Arbey & Bataille 1983;

Lowson et al. 1994; Nash et al. 1999; Desquesnes et al. 2007; Sandberg et al. 2007;
Chong & Joseph 2009; Kingan & Pearse 2009) in the past have suggested that
aerofoil tones are driven by instabilities of the boundary layer. Various computations
of Tollmien–Schlichting type instabilities have been performed. The objective is to
show that the frequency of the aerofoil tone is the same as that of the most amplified
instability wave. An examination of the past computation reveals that the spatial
growth rate of a Tollmien–Schlichting wave is very small. Only in the separated flow
region is there a substantial growth rate. In the separated flow region, there is a rapid
change in the mean flow profile. A non-parallel flow instability analysis would seem
to be more appropriate in providing an accurate assessment of the instability wave
characteristics.

In the present study, the NACA0012 aerofoil is set at zero degree angle of attack
on purpose. At zero degree angle of attack, there is practically no flow separation
on the aerofoil until almost the trailing edge. Thus the spatial growth rate of
the Tollmien–Schlichting wave is much smaller than that of the Kelvin–Helmholtz
instability in the wake of the aerofoil. It is known that the growth rate of a
Kelvin–Helmholtz instability is inversely proportional to the half-width of the shear
layer. In other words, a thin wake is more unstable than a thicker wake. That this
is true is shown in figure 23. This figure shows the computed spatial growth rate
(antisymmetric mode) over the distance of a chord for aerofoil no. 1 at different
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FIGURE 24. Comparison between the spatial growth rates of Kelvin–Helmholtz instability
waves at the minimum half-width point using locally parallel (dotted curve) and non-parallel
(full curve) instability theories. Aerofoil no. 2, Re= 3× 105.

instability wave frequencies. The computations are done using the non-parallel flow
instability theory of Saric & Nayfeh (1975). The flow in the calculation has a
Reynolds number of 3 × 105. The solid curve is for the minimum half-width point
of the wake at x/C = 1.088 measured from the leading edge of the aerofoil. The
dotted curve is for a point in the developed wake region (x/C = 1.556). The maximum
growth rate at the thinnest point of the wake is many times larger than that in the
developed wake.

By performing an instability computation, it is easy to establish that the maximum
growth rate occurs in the wake at the location where the wake half-width is minimum.
It is our belief that, because the growth rate is very large, the instability initiated at
this region is ultimately responsible for the generation of aerofoil tones. We will now
provide the necessary computed instability results to support this hypothesis. Because
of the rapid growth of the thickness of the wake at the minimum half-width location,
we use the non-parallel flow instability wave theory of Saric & Nayfeh (1975) in
all our computations. Their method is a perturbation method. The zeroth order is the
locally parallel flow solution. A first-order correction, to account for the spreading
of the mean flow, is then computed. The combined growth rate is taken as the
non-parallel spatial growth rate. Figure 24 shows the difference between parallel and
non-parallel spatial growth rates at the minimum wake half-width point for aerofoil
no. 2 at a Reynolds number of 3 × 105. It is straightforward to see from this figure
that the non-parallel flow growth rate is smaller. Furthermore, the frequencies of the
most amplified wave computed using parallel and non-parallel flow theories are quite
different.

A comment on the appropriateness of the present instability wave analysis is in
order. First of all, a linear theory is employed. This requires that the resulting
motion is relatively small. Simulation data indicate that the maximum fluctuation
velocity in the aerofoil wake is around 0.095 times the free stream velocity. Thus the
dimensionless quadratic term of the perturbation velocity is about 1 %. This may be
small enough to ignore as a first approximation. Another important simplification in
the present instability model is that the wake instability is assumed to be sufficiently
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FIGURE 25. The angular frequency of the most amplified Kelvin–Helmholtz instability wave
at the minimum half-width point of the wake as a function of Reynolds number. Aerofoil
no. 2.

localized that a non-parallel localized analysis is adequate. One justification of this
assumption, although not completely satisfactory, is that the instability is convective.
That is, the instability wave has little upstream influence. In other words, there is little
back-reaction of the Kelvin–Helmholtz instability on the aerofoil trailing edge flow.
The influence is essentially one-way. That is, the flow around the aerofoil develops
into a wake, which supports the instability. Implicitly, it is also assumed in the present
model that the most dominant instability wave develops quickly and dominates (and
prevents other subdominant waves from developing) the motion in the near wake.

Figure 25 shows the angular frequency of the Kelvin–Helmholtz instability wave
with the highest amplification rate at the narrowest point of the wake of aerofoil no. 2
as a function of Reynolds number. When non-dimensionalized by minimum half-width
bmin and free stream velocity U, the quantity ωbmin/U at maximum growth rate is
nearly independent of Reynolds number. A good fit to the data is(

ωbmin

U

)
maximum growth

≈ 0.43 (aerofoil no. 2). (4.1)

Now, for this aerofoil, bmin and Reynolds number are related by (3.1). By eliminating
bmin from (3.1) and (4.1), it is found that

f = 0.008 35 U1.5

(Cυ)1/2
. (4.2)

Equation (4.2) is exactly the same as (3.4) for aerofoil no. 2. The K value obtained
directly from numerical simulations, displayed in table 2, is in agreement with that
from instability consideration.

A similar non-parallel instability analysis for aerofoil no. 1 has also been carried
out. Figure 26 shows the angular frequencies corresponding to that at maximum
growth rate non-dimensionalized by bmin and U as a function of Reynolds number. An
approximate relationship similar to (4.1) is

ωbmin

U
≈ 0.425 (aerofoil no. 1). (4.3)
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FIGURE 26. The angular frequency of the most amplified Kelvin–Helmholtz instability wave
at the minimum half-width point of the wake as a function of Reynolds number. Aerofoil
no. 1.

Thus, by eliminating bmin from (3.2) and (4.3), a tone frequency formula based on
wake instability consideration for this aerofoil is

f = 0.009 10 U1.5

(Cυ)1/2
. (4.4)

The proportionality constant in (4.4) differs only slightly from that found by DNS, as
given in table 2. Figure 27 shows a direct comparison between the tone frequencies
measured directly from numerical simulations (triangles) and the most unstable
frequencies in the wake at minimum half-width (straight line). The agreement is quite
good. We believe that the good agreements for aerofoil nos. 1 and 2 lend support to
the validity of our proposition that the energy source of aerofoil tones at zero degree
angle of attack is near-wake flow instability.

5. Sound generation processes
In the previous section, we have demonstrated that the energy source responsible

for the generation of aerofoil tones is near-wake instability. These are antisymmetric
instabilities. However, the flow is at low subsonic Mach number. It is known that low
subsonic flow instabilities are, by themselves, not strong or efficient noise radiators. In
this section, we report the results of our study of the space–time data of our numerical
simulations. The objective of the study is to identify the tone generation processes. To
facilitate this effort, we compute the fluctuating pressure field p′, defined by

p′ = p− p̄, (5.1)

where p̄ is the time-averaged pressure. Positive p′ indicates compression. Negative p′
corresponds to rarefactions of the acoustic disturbances. Of special interest to us is the
contour p′ = 0. We will use this contour as an indicator of the acoustic wavefront. This
is a good indicator outside the wake flow as the noise sources are localized in the
near-wake and trailing edge region. We track the propagation of this contour from the
aerofoil wake to the far field. The creation and spreading of the wavefront provides the
clues needed for identifying the tone generation processes.
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FIGURE 27. Comparison between DNS tone frequencies (triangles) and most amplified
instability wave frequencies (straight line). Aerofoil no. 1.

Our study reveals that the tone generation processes are rather complex. There is
a dominant mechanism involving the interaction between the near-wake oscillations
driven by wake instability and the aerofoil trailing edge. However, there are also
secondary mechanisms arising from adjustments of flow and vortices in the near wake.
Details of these tone generation processes can be understood by following the motion
of the wavefront contour p′ = 0. Figure 28 illustrates the dominant tone generation
process in space and time. Aerofoil no. 2 (2 % truncation) at Re = 4 × 105 is used in
this simulation. Figure 28(a) may be regarded as the beginning of a tone generation
cycle. The trailing edge of the aerofoil is shown on the left centre of the figure. The
flow is from left to right. Thus the wake, defined by two p′ = 0 contours, lies to
the right of the aerofoil. The near wake is highly unstable. The instability causes the
wake to oscillate, as can easily be seen in this figure. The wake is flanked by two
rows of vortices in a staggered pattern. The spinning motion of the vortices creates
a low-pressure region inside the vortices. Hence all the vortices are located in the
p′ < 0 regions. These regions are labelled (−). Regions with p′ > 0 are labelled (+).
Shown in figure 28(a) are wavefront contours of p′ = 0. The near-wake instability
is antisymmetric with respect to the x axis. This leads to an antisymmetric pressure
field, as shown in all the panels in figure 28. The pressure field shown in figure 28(a)
corresponds to the beginning of the downward motion of the wake in the region
just downstream of the aerofoil trailing edge. Since the aerofoil is stationary, the
downward movement of the near wake leads to the creation of a high-pressure region
on the top side of the aerofoil trailing edge and a corresponding low-pressure region
on the mirror image bottom side. This is shown as two small circular regions right
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FIGURE 28. For caption see next page.

at the trailing edge of the aerofoil in figure 28(b). A small arrow is inserted there
to indicate the direction of motion of the wavefront. The high- and low-pressure
regions grow rapidly in time, as shown in figure 28(c–e). The time difference between
figure 28(a) and (e) is nearly half a cycle. Hence, figure 28(e–h) repeat a similar
sequence of wavefront motion but with positive and negative fluctuating pressure fields
interchanged. Each wavefront contour in each half-cycle shows its creation at the
trailing edge of the aerofoil, its expansion in space and time, and its propagation to the
far field in all directions.
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FIGURE 28. (cntd). Instantaneous positions of contour p′ = 0 in the proximity of the near
wake for aerofoil no. 2 at Re = 4 × 105: (a) t = 36.367T; (b) t = 36.402T; (c) t = 36.526T;
(d) t = 36.69T; (e) t = 36.789T; (f ) t = 36.974T; (g) t = 37.183T; and (h) t = 37.209T;
T = period.

The dominant tone generation process is observed in all the simulations that have
been carried out. In some cases, other less dominant tone generation processes have
been observed. These secondary processes may reinforce the primary process or may
be important only in a certain direction of radiation. By and large, the secondary
mechanisms are related to the adjustment of the flow from boundary layer type to free
shear wake flow and also the realignment of the wake vortices from their creation to a
vortex street.

Figure 29 illustrates a secondary tone generation process. Figure 29(a) may be taken
as the distribution of the wavefront contours at the beginning of a cycle for aerofoil
no. 2 at Reynolds number 2 × 105. At the instant corresponding to figure 29(a), the
near wake begins to move upwards. This creates a high-pressure region on the bottom
side of the aerofoil trailing edge and at the same time a low-pressure region on the
mirror image location on the top side. This is shown in figure 29(b). Figure 29(c)
shows the expansion of the high- (bottom) and low-pressure (top) regions near the
trailing edge. At the same time, this figure also shows the expansion of the next two
loops; negative pressure regions in the top half of the figure and positive pressure
regions in the lower half. The three negative pressure regions that have expanded are
labelled as 1, 2 and 3 in this figure. The locations of loops 2 and 3 coincide with
the region where the wake oscillations are strongest with largest lateral displacements
(see figure 6). However, the wake has not rolled up to form vortices yet. Thus this
secondary tone generation process does not involve the formation of discrete vortices.
Figure 29(d–g) show the merging of the loops and the propagation of the wavefront to
the far field. Therefore, for this case, the adjustment of the near-wake flow assists and
contributes to the generation of the observed aerofoil tone.

For aerofoils with a sharp trailing edge especially when operating at the high end
of the moderate Reynolds number range, the wake rolls up into discrete vortices
very close to the trailing edge (see figure 30). In these cases, the formation of
discrete vortices does contribute to the generation of aerofoil tones. This secondary
tone generation process is illustrated in the motion of the wavefronts in figure 31.
Figure 31(a) may be considered as the beginning of a tone generation cycle. To
observe the secondary tone generation process, attention is directed to the shaded area
of this figure. Figure 31(b) (at a later time) shows the expansion of the shaded region.
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FIGURE 29. For caption see next page.

On comparing with figure 30, it is seen that the location of the expanded shaded
region coincides with the beginning of the wake rolling up into isolated vortices. We
are of the opinion that the formation of the vortices is what drives the expansion of
the shaded region. Figure 31(c–h) track the continued spreading of the sound pulse
after it is generated. It appears that the dominant tone generation mechanism due to
the interaction of near-wake instability and the aerofoil trailing edge is responsible for
radiating sound to the upstream and sideline directions. The secondary tone generation
mechanism due to the formation of discrete vortices is responsible for radiating
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FIGURE 29. (cntd). Motion of wavefronts for aerofoil no. 2 at 2 × 105 Reynolds
number illustrating a secondary tone generation process: (a) t = 23.80T; (b) t = 24.02T;
(c) t = 24.18T; (d) t = 24.201T; (e) t = 24.218T; (f ) t = 24.35T; (g) t = 24.424T; and
(h) t = 24.53T; T = period.
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FIGURE 30. Vorticity contours showing the rolling up of the wake into discrete vortices near
the sharp trailing edge of an aerofoil. Aerofoil no. 1 at Re= 4× 105.

sound to the downstream direction. The two mechanisms are perfectly coordinated
and synchronized.

6. Summary and conclusions
In the past, there have been a number of experimental studies on aerofoil tones

at moderate Reynolds number. Unfortunately, the measured results of the experiments
differ substantially from each other. One of the objectives of the present investigation
is to see if it is possible to provide a resolution to the disagreement by studying the
tone generation phenomenon by a different method, namely, by DNS. An extremely
attractive advantage of DNS is that there is no background wind tunnel (open or
closed) noise or other facility-related noise. Also, by making the computational
domain sufficiently large, it is possible to avoid acoustic feedback anchored to
laboratory equipment or built-in hardware outside the wind tunnel, a possibility that
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FIGURE 31. For caption see next page.

can happen in an experiment. In other words, DNS, when properly carried out, can
simulate a truly isolated aerofoil in a uniform flow. In the present study, numerical
results indicate that there is only one aerofoil tone for each simulation. This is true
in all the simulations performed in the present investigation. Thus the present result
is in agreement with the measurements of Nash et al. (1999). We agree with Nash
et al. that the feedback tones observed by the other experiments are facility-related and
are not genuine tones of isolated aerofoils.

In the present investigation, the tones of three NACA0012 aerofoils with different
trailing edge thickness at zero degree angle of attack are studied. The reason for
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FIGURE 31. (cntd). A secondary tone generation mechanism due to the formation of
discrete vortices in the wake illustrated by the motion of wavefront contours for aerofoil
no. 1 at Re = 4 × 105: (a) t = 50.264T; (b) t = 50.41T; (c) t = 50.51T; (d) t = 50.643T;
(e) t = 50.795T; (f ) t = 51.002T; (g) t = 51.188T; and (h) t = 51.254T; T = period.

restricting the study to aerofoils at zero degree angle of attack is to keep the flow
field around the aerofoil as simple as possible. At an angle of attack, flow separation
may occur, creating a leading edge separation bubble or open separation. Under such
a condition, tones may be generated by means other than the basic tone generation
mechanism. For the aerofoil with the smallest trailing edge thickness, the computed
tone frequency dependence on flow velocity is in good agreement with the Paterson
formula. For an aerofoil with thicker trailing edges, the computed tone frequency
versus flow velocity data are found to fit a formula identical in form to the Paterson
formula but with a different proportionality constant. This set of DNS data suggest that
an aerofoil with a thicker trailing edge would have lower tone frequency at the same
flow velocity. This finding is new. It is consistent with intuitive expectation.

The search for the energy source responsible for the emission of aerofoil tones is
a part of the present investigation. Past experience with wake and boundary layer
instabilities leads to the proposal that it is the near-wake Kelvin–Helmholtz instability
that provides the energy for acoustic radiation. Since the thinner the wake, the larger
is the instability amplification rate, it follows that the frequency of the most amplified
instability wave, including non-parallel flow effect, where the wake is thinnest should
dictate the tone frequency. By following this idea, it is straightforward to derive an
aerofoil tone frequency formula through instability analysis. The formula derived is
found to be in good agreement with the tone frequencies measured from DNS data
over the entire range of moderate Reynolds number. The good agreement lends support
to the proposed near-wake instability mechanism. This also provides a general method
to predict aerofoil tone frequency through instability theory.

The processes by which near-wake instability generates strong tones are investigated
by analysing the space–time data obtained by DNS. By using the zero-fluctuation
pressure contour (p′ = 0) as an indicator of wavefront, it is identified that the principal
tone generation mechanism is the interaction between the near-wake oscillations driven
by flow instability and the trailing edge of the aerofoil. The wake oscillations cause
the formation of transient high- and low-pressure regions on the opposite sides of
the aerofoil trailing edge. The creation and expansion of the high- and low-pressure
regions lead to sound radiation. In addition to the principal mechanism, there are
secondary mechanisms. The secondary mechanisms arise from the adjustment of
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near-wake flow and the formation of discrete vortices in the wake. We would like
to point out again that the present investigation is restricted to aerofoils at zero
degree angle of attack. In this flow configuration, the boundary layer flow is attached
to the aerofoil almost to the trailing edge. For aerofoils at a finite angle of attack,
a separation bubble as well as open separation may form on the suction side of
the aerofoil. Under these circumstances, other noise and tone generation mechanisms
become possible and might even be dominant. To determine these new mechanisms is,
without doubt, a challenging endeavour. Such effort is, however, beyond the scope of
the present investigation.
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