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This paper reviews the short history, motivation, numerical and theoretical issues, and development of
methods for treating a boundary as a reflective/absorptive surface for the time-domain computation
of waves in general and acoustic waves in particular. It begins with the extension and implementation of
the frequency-domain impedance to a time-domain impedance-equivalent boundary condition
(TDIBC), and illustrates how the theoretical, numerical, and implementation issues are addressed and
resolved for acoustic/aeroacoustic applications. Comments are also made on the extendibility and
applicability of the concept and TDIBC to other fields and types of problems.
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INTRODUCTION

The classical approach to the solution of a space–time-

varying problem f ð
Q
x; tÞ is the conversion of the

differential/integral time dependency to a parametric

frequency dependency v through the Fourier transform, or

the assumption of the time harmonic behavior:

f̂ ð
Q
x;vÞ e ivt: This conversion reduces the space–time

initial-boundary value problem to a boundary value

problem with the parametric dependency v. System

linearity is assumed, and the admissible conditions on

some boundary G can be cast as a ratio between a

transformed dependent variable f̂ ð
Q
x;vÞ and its normal

derivative f̂n in the form of an impedance Z (v). For

example, in the transformed frequency-space domain D

the wave equation of wave speed C0 becomes the spatially

second-order Helmholtz equation 72f̂þðv=C0Þ
2f̂¼ 0 of

the elliptic type. To render a solution of this equation on a

domain D, a constraint in the general form af̂þbf̂n ¼ 0

on the contour G bounding D in all directions is necessary.

Here, a and b are complex functions of v, and the

subscript n denotes the spatial derivative normal to G.

Since the kth-order temporal derivative of f is

transformed into ðivÞkf̂; in particular p ¼ 2ft ¼ 2ivf̂

with sound pressure p and sound velocity potential f in

acoustics, this general constraint can be viewed as the ratio

of p̂=f̂n; which in the transformed space is simply

ivb=a ¼ ZðvÞ: The earliest uses of the term impedance

date back to O. Heavyside’s 1886 description in circuit

theory of “the ratio of the impressed force to the current in

a line”, and to A.G. Webster’s 1914 description in

acoustics of the ratio between harmonic components of the

pressure p and fluid velocity un into a porous wall (Pierce,

1991, pp. 107–108). Customarily, impedance is expressed

in the complex form Z ¼ R þ iX of real functions R(G,v)

and X(G,v), respectively the resistance and reactance

(inductance in electromagnetism), where i 2 ¼ 21: In the

literature, where time harmonic behavior e2ivt is assumed

the sign of X in Z is negative ðZ ¼ R 2 iXÞ: Impedance,

often a measured quantity in practice, is a means to

characterize the absorption and reflection of waves at

a surface. It is locally reactive if impedance is just a

property of the surface and independent of incident wave

angle u. The variation of Z(G,v) along the boundary G is

assumed, taking values in the right half complex Z-plane,

R [ ½0;1Þ and X [ ð21;1Þ: Figure 1 shows some

measured resistance and reactance values, normalized by

air impedance r0C0; of a typical perforated treatment

panel for aeroacoustic applications. These values give for

each frequency a simple algebraic closure to the boundary

value problem of the mixed Neumann–Dirichlet type, for

which numerous analytic/numerical solution techniques

have been proposed.

The rapid and successful development of computational

methods since the advent of the modern computer in the

late 1960s has popularized their use as part of the routines
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in design, and spurs further demands for more efficient

algorithms and the inclusion of increasingly more

complex and multidimensional models. These methods

have advanced from simple geometry, single dimension,

linear, time-stationary systems to complex geometry,

multi-dimension, nonlinear, time-progressing systems as

rapidly as the size and speed of the computer allow. The

quest for more efficient algorithms, better discretization of

a given finite or infinite space and faster attainment in real

time of an accurate solution continues, nonetheless.

Higher-order algorithms, in the context of either finite

difference or finite element methods, are still being

pursued and are believed to correspond to smaller CPU

sizes, more accurate solution representation, and faster

solution processes. However, the rapid attainment of a

time-stationary solution, or the accurate prediction of a

time-progressing one, depends on the way these

algorithms are closed and the type of specified value at

domain boundaries. The progression of an initial-

boundary-value problem from one state to another or

eventually to a steady state can be viewed as propagation

of waves, or spreading of locally unsupported non-

uniformity in an equivalent wave-like process. The effect

of a closure, numerical or physical, to the progression of

the wave-like features in a solution towards a boundary

can be viewed as reflection from an impedance surface.

Characterization and design of conditions for closure of a

boundary should be of great interest to the developers of

numerical methods.

In computational aeroacoustics (CAA), time-domain

methods have great advantages over frequency-domain

methods for broadband problems, non-linear interactions

investigation and transient wave simulations. The use of

impedance in the context of a time-domain computation

first appeared separately in electromagnetism and

acoustics communities. Maloney and Smith (1990)

proposed the replacement of the region of lossy dielectric

by the impedance of the interface, so to reduce the size

of the grid in the finite-difference time-domain (FD-TD)

solution of electromagnetic (EM) wave in a free space

bounded by a lossy dielectric half space. The analytic

impedance Z(v) in this case can be expressed and

transformed into the kernel Z̄(t) of a time-convolution

between the tangential components of the electric

field E and curl of the magnetic field H at the interface.

By an application of Prony’s method, the time-decaying

kernel is approximated in a time-exponential series

Z̄ðtÞ <
P

kmke2Vkt to allow the evaluation of the

otherwise time-consuming convolution integral by a

recursive formula. Later, Maloney and Smith (1992)

demonstrated the FD-TD computation of the reflection of

plane wave by a lossy dielectric model of Z(v) and the

confinement of an EM wave in parallel walls with an

impedance discontinuity. Beggs et al. (1992) proposed

for constant surface impedance direct operational

conversion of iv into the time derivative ›/›t, and for

broadband impedance fitted time-exponential series for

efficient recursive integration. They presented the

reflection of a Gaussian pulse in one dimension and

the scattering by a conducting cylinder in two

dimensions. Yee et al. (1992) recognized the requirement

of a positive inductive impedance, XðV0Þ . 0; for

algorithmic stability, and proposed the alternative

conversion of the admittance YðV0Þ ¼ 1=ZðV0Þ ¼ ðR 2

iXÞ=ðR2 þ X 2Þ to FD-TD operators when XðV0Þ , 0:
They demonstrated their surface impedance/admittance

schemes on the FD-TD computation of the scattering of

EM waves by an ellipsoid represented on a rectangular

grid. Lee et al. (1992) proposed a rational expansion in v

of the two-layer-coated-conductor impedance model for

operational conversion into a time-domain impedance

condition. They presented the FD-TD computation of the

reflection of Gaussian pulse in one dimension. Sullivan

(1992) proposed the use of z-transforms for the

development of frequency-dependent FD-TD methods

for complex EM systems. He demonstrated the

computation of plane EM-wave propagation in layered

dielectric media. Oh and Schutt-Aine (1995) proposed an

expansion of the impedance model of a lossy dielectric

in the Laplace-plane by a rational Chebyshev approxi-

mation, which corresponds to a series of time-decaying

exponential functions that can be tabulated and

referenced for FD-TD implementation. Yee and Chen

(1997) extended the method of Yee et al. (1992) to an

unstructured finite-volume time-domain formulation and

demonstrated the scattering of EM waves by spherical

and ellipsoidal objects of constant surface impedance.

Roden and Gedney (1999) pointed out that the manner in

which Prony’s method was employed by Maloney and

Smith (1992) and Beggs et al. (1992) for fitting the

convolution kernel with time-decaying exponential series

might not converge correctly as finer time-steps Dt were

taken, but that polynomial-fitting a specific application

range for partial-fraction representation of Z in the

Laplace plane ðs ¼ ivÞ not only allowed correct

convergence as finer steps Dt were taken, but also

improved the representation of Oh and Schutt-Aine

(1995). They then proposed a way to implement the

impedance boundary condition in generalized curvilinear

coordinates and benchmarked their schemes on parallel

and coaxial wave-guides.

In acoustics, Davis (1991) reported the incorporation of

a low-frequency impedance model of the open pipe end by

FIGURE 1 Normalized resistance R (solid dots) and reactance X
(open dots) of a perforated treatment panel for sound absorption.
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direct operational conversion of powers of iv to time

derivatives of ›/›t. He demonstrated the direct time-

domain computation of multiple reflections of acoustic

impulse in a pipe. Botteldooren (1994) studied the

accuracy of a second-order leapfrog scheme when used

on quasi-uniform rectangular grids closed with a simple

time-equivalent impedance model of the damped harmonic

oscillator. He used the combined scheme to simulate low-

frequency room acoustics (Botteldooren, 1995). Neither

Davis nor Botteldooren offered any detail or discussed any

problem in their implementation of the impedance

boundary conditions. Tam and Auriault (1996) first

addressed the instability problem in the implementation

of TDIBC, and demonstrated the construction of stable

impedance-dependent boundary schemes for reflection of

harmonic waves and banded pulses in one dimension.

Their schemes were recently applied and verified on

multidimensional acoustic problems by Zheng and Zhuang

(2002). Tam and Auriault (1996) also explored the

construction of a convection-modified impedance con-

dition, and proposed the use of impedance measured under

flow condition to avoid instability of the Kelvin–

Helmholtz type found in their analysis. Özyörük and

Long (1997) proposed a rational representation of

measured impedance and conversion of time-domain

impedance operators via the z-transform. They demon-

strated their method on the reflection of Gaussian pulse in

one and two dimensions and on the absorption of waves in

a flow duct with a partially lined impedance wall (Özyörük

et al., 1998, 2000). Fung and TallaPragada (1997) pointed

out an inherent instability in the operational conversion of

an expansion of impedance to time-domain differential

operators and proposed instead the conversion of reflection

coefficient W(v) defined as the bilinear transform

(1 2 Z)/(1 þ Z). Subsequently, Fung et al. (2000)

proposed stable, Ŵ(v)-based, differential and integral

TDIBC formulations and benchmarked their methods on

the reflection of impulses in one dimension and on an

analytically constructed initial-impedance-boundary-

value solution of impulse reflection in two dimensions.

Their methods have since been extended to duct acoustics

in three dimensions by Ju and Fung (2000), acoustics in

partially lined flow ducts in two dimensions (2001), and

reflection of acoustic sources by an impedance plane for

outdoor acoustics (2002).

In the following we will delineate and compare

methods for the construction and implementation of

TDIBC for wave propagation in wall-bounded, stationary

or convective media, and draw on the importance of

causality in bridging frequency- and time-domain

impedance properties.

CAUSAL IMPEDANCE

Some theoretic background is needed to facilitate a better

understanding of the various methods proposed for

TDIBC construction. Let us begin with the familiar

definition of impedance:

p̂ðvÞ ¼ ZðvÞûðvÞ; ð1Þ

where p̂ðvÞ and ûðvÞ are harmonic components with time

factor e ivt, or Fourier-transformed variables, of the

perturbed pressure p(t) and its induced normal velocity

component u(t) into a porous surface G, and assume for

simplicity that Z(v) is locally reactive. Here, circular

frequency v has been normalized by sound speed C0 and

characteristic length L; p̂ by r0C2
0 with mean air density

r0, û by C0, and Z by r0C0. Readers are reminded here of

the equivalence of Laplace and Fourier transforms by the

simple replacement of s ¼ iv: Equation (1) is often

considered a linear system of input ûðvÞ; response

function Z(v) and output p̂ðvÞ. It has the equivalent time

convolution of

pðtÞ ¼

ð1

21

�ZðtÞuðt 2 tÞ dt; ð2Þ

where �ZðtÞ is the inverse Fourier transform of Z(v). By

Cauchy’s theorem, unless all poles lk of Z(v) lie in the

upper complex v-plane, i.e. Img ðlkÞ . 0; the current

value of p(t) would involve future values of u(t) inÐ 0

21
�ZðtÞuðt 2 tÞ dt; which of course is unphysical for the

violation of causality. If causality, a property of the

impedance model Z(v), is violated but somehow

implemented without a deliberated effort, instability

would result. Causality and thus stability depend on how

Z(v), often in practice a measured quantity, is analytically

represented. The use of time-exponential series in the

formulations of Luebbers et al. (1990), Maloney and

Smith (1992), Oh and Schutt-Aine (1995) and Roden and

Gedney (1999) is basically an observation of causality.

Mathematically, Eq. (1) can also be rewritten as:

ûðvÞ ¼ YðvÞp̂ðvÞ: ð3Þ

Here, YðvÞ ¼ 1=ZðvÞ; called the acoustic admittance,

reverses the input and output relation in Eq. (1). Hence, all

poles of Y(v), or zeros of Z(v), must lie in the upper

complex v-plane for Eq. (3) to be causal in time domain.

If Z(v) is expressed in a rational form A(v)/B(v), as

proposed in Oh and Schutt-Aine (1995) and Özyörük and

Long (1997), the zeros of B(v) and A(v) must lie in the

upper v-plane, respectively for Eq. (1) and Eq. (3).

To understand further the time-equivalent process, let us

inspect a simple fixed-point impedance value, i.e.

Z ¼ R0 þ iX1 at v ¼ V0; and a consistent broadband

model: ZðvÞ ¼ R0 þ iX1v=V0: This model has no pole

and only one zero at v ¼ iV0R0=X1: Either V0R0=X1 . 0

or the equivalent time process would violate causality and

lead to unstable schemes, as found in Yee et al. (1992) and

in Tam and Auriault (1996). While positive resistance

ðR0 . 0Þ is a physical mandate, reactance may assume

values of either sign. In this form, only positive X1

corresponds to stable TDIBC. Fortunately, there is
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an alternative to this fixed-point model. Consider instead

ZðvÞ ¼ R0 þ iX1V0=v; which has the same impedance

value at V0, a pole at v ¼ 0 and a zero at

v ¼ 2iX1V0=R0; effectively flipping the zero to the

upper complex v-plane for negative X1. This is the remedy

suggested in Tam and Auriault (1996). The practicality of

finding alternative broadband causal TDIBC models in

such a way is doubtful. As pointed out in Fung et al.

(2000), the use of a higher-order model in v,

e.g. ZðvÞ ¼ R0 þ R2v
2 þ iX1v; would likely lead to

roots of opposite signs, thus always in violation of

causality.

It helps at this point to compare TDIBC implemen-

tations on the simple broadband model:

ZðvÞ ¼ R0 þ iX1v; ð4Þ

which corresponds to:

pðtÞ ¼ R0uðtÞ þ X1

du

dt
ð5aÞ

or

uðtÞ ¼
1

X1

ð1

0

e
2

R0
X1
t
pðt 2 tÞ dt: ð5bÞ

The differential formulation Eq. (5a) when discretized

by two-level finite differences may assume the following

form:

un ¼
½1 2 ð1 2 qÞk�

1 þ qk
un21 þ

Dt

X1ð1 þ qkÞ

� ½qpn þ ð1 2 qÞpn21�: ð6aÞ

Here k ¼ R0Dt=X1; t ¼ nDt; un ¼ uðnDtÞ; ~t ¼ ðn 2

1 þ qÞDt; q [ ½0; 1� is the weighting factor in

the weighted quadrature
Ð t

t2Dt
pðtÞdt < ½qpn þ ð1 2

qÞpn21�Dt; and p(t) as the input is assumed known.

Equation (6a) is recursive in u n with the amplification

factor zD ¼ ½1 2 ð1 2 qÞk�=ð1 þ qkÞ; and conditionally

stable for zDj j , 1; or 0 , k , 2=ð1 2 2qÞ for

q , 1=2 and 0 , k for q . 1=2: Equation (6a)

shows that if causality R0=X1 . 0 is not observed

algorithmic instability results even with the fully implicit

method of q ¼ 1:
By relating u(t), uðt 2 DtÞ and z ¼ e2k; Eq. (5b) can be

approximated recursively as:

un ¼ zun21 þ
1

X1

ðDt

0

e
2

R0
X1
t
pðt 2 tÞdt

< zun21 þ
Dt

X1

½qpn þ ð1 2 qÞzpn21�: ð6bÞ

The advantages of the integral formulation for TDIBC

are seen in Eq. (6b), which is unconditionally stable for all

admissible parametric ranges and second-order accurate in

time when q ¼ 1=2: Whereas the approximation of

z ¼ e2k by various two-level difference operators zD
results in only conditionally stable time-domain formulas

and a poor quadrature for Eq. (5b) for large k, cf. Eqs. (6a)

and (6b). This suggests that unless the poles lk of Z(v) or

Y(v) are identified in the complex frequency plane and

used explicitly for time advancement, an operational

approximation such as the rational form Z ¼ A(zD)/B(zD)

proposed in Özyörük and Long (1997) and Özyörük et al.

(1998) would lead to conditional stable schemes at best.

SPACE–TIME CONTINUATION

So far, we have been working with loosely interchange-

able time sequences of input and output and a sense of

causality given by the response function �ZðtÞ or �YðtÞ: We

now look at a physical system of wave propagation in the

domain x [ ðxa; xbÞ governed by, e.g. the wave equation

›2f=›t 2 2 C2
0›

2f=›x2 ¼ 0: There is no loss of generality

to set from here on the wave speed C0 ¼ 1 or rescale x and

t appropriately to absorb this dimensionality. The general

solution of the rescaled space–time hyperbolic system

comprises a left-running wave u2ðx þ tÞ and a right-

running wave uþðx 2 tÞ along their respective left- and

right-running characteristics x þ t and x 2 t: These waves,

the characteristic variables, are related to the physical

variables, pressure pðx; tÞ ¼ 2›f=›t and particle

velocity uðx; tÞ ¼ ›f=›x; by uþðx 2 tÞ ¼ uðx; tÞ þ pðx; tÞ

and u2ðx þ tÞ ¼ uðx; tÞ2 pðx; tÞ; or conversely,

u ¼ ðuþ þ u2Þ=2 and p ¼ ðuþ 2 u2Þ=2: Both waves

would be independent if it were not for the boundary

conditions to be imposed at xa and xb on u, p, or a general

constraint as Eq. (2). Along its characteristic x 2 t the

right-running wave uþðx; tÞ at a space–time point (x,t) is

related to the value uþðx 2 Dt; t 2 DtÞ at the point x 2 Dt

to the left and the earlier time t 2 Dt. This means that all

values of uþðx; tÞ found at x are related to earlier values at

points to the left of x, values that had existed in the past

and therefore cannot be changed or subjected to any future

constraint. In particular, the rightmost value of the right-

running wave uþðxb; tÞ at the boundary point xb cannot be

specified or constrained, such as Eq. (1), nor can the left

running wave u2ðxa; tÞ at the left boundary point xa.

To satisfy a constraint, e.g. the hard wall condition of

u ¼ ðuþ þ u2Þ=2 ¼ 0; the domain-entering wave

(the reflection) must be determined from the domain-

exiting wave (the incident) so not to violate space–time

causality. Therefore, u2ðxb; tÞ is set to equal 2uþðxb; tÞ to

maintain uðxb; tÞ ¼ 0; and u2ðxa; tÞ equal 2uþðxa; tÞ

to maintain uðxa; tÞ ¼ 0: In other words, the reflection is

the space–time continuation of the incident with reference

to a general wall condition, such as Eq. (2).

The imposition of a constraint on p̂ðx;vÞ or ûðx;vÞ in

the space-frequency plane, in which the corresponding

Helmholtz equation is elliptic, does not need to observe

a similar causality requirement. In fact, no such
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requirement is allowed for elliptic systems. The harmonic

assumption already implies that uðx; tÞ and pðx; tÞ are of

the form e ivt and available for 21 , t , 1: The closure

for p̂ðx;vÞ or ûðx;vÞ in the form of Eq. (1) is fully

admissible without the requirement of a causal Z(v) for

their relation.

The principal difference between a frequency-

domain approach and a time-domain approach is the

need to observe causality, without which a constraint

such as Eq. (2), the time-domain equivalent of Eq. (1), is

simply not enforceable in the time domain. Which

then should be implemented, Eq. (1) or Eq. (3), for a

time-domain solution of the wave equation? Or, what form

of Z(v) should be used for the construction of its time-

domain equivalent?

Suppose Eq. (4) is to be imposed on uðxb; tÞ at xb where

the incident uþðxb; tÞ is known and for which the relation

between u and p in Eq. (5a) is replaced by the relation

between u and uþðxb; tÞ, i.e. pn ¼ uþ 2 un: The

corresponding recursive formula for un has the reduced

stability of 0 , k 0 ¼ ðR0 þ 1ÞDt=X1 , 2=ð1 2 2qÞ for

q , 1=2 and 0 , k 0 for q . 1=2: This reduction of

stability is due to the fact that part of un is already causally

given in the incident wave, uþ ¼ u þ p; and its future

values would be overly predicted if Dt was

not correspondingly reduced. Similar replacement in

Eq. (6b) results in the modified conditional stability of

Dt=X1 , ð1 þ zÞ=½z 2 q ð1 þ zÞ� for q , z=ð1 þ zÞ: Here

the unconditional stability of Eq. (6b) is reduced to a

conditional one for the zero of Z was used to form the

recursive factor z rather than the zero of 1 þ Z in the

modified impedance of uþ ¼ p̂ þ û ¼ ð1 þ ZÞû:
Neither u nor p is characteristically independent of the

incident u þ at xb and a suitable choice for the enforcement

of a time-domain equivalent of Eq. (1) for the wave

equation. It is the left-running wave u2 at a right boundary

that is characteristically independent of the incident

uþðxb; tÞ and, therefore, the most suitable candidate for its

causal space–time continuation. Indeed, such a relation is

given by the reflection coefficient ŴðvÞ;

û2ðvÞ ¼ ŴðvÞûþðvÞ; ð7Þ

where ŴðvÞ ; ð1 2 ZÞ=ð1 þ ZÞ: By its very name the

complex-valued coefficient gives a measure of

the frequency-dependent magnitude and phase angle of

the reflection with respect to the incident. It maps

bilinearly the entire right Z-plane of physically admissible

impedance, Real ðZÞ . 0; into the interior of the unit

circle jŴj , 1 in the Ŵ-plane. Typical values of ŴðvÞ are

0 for no reflection, 21 for total reflection from a hard

surface of u ¼ 0; and þ1 from a pressure surface of p ¼ 0:
It can be succinctly expressed as a measure of wall

softness, ~̂WðvÞ ; 2=ð1 þ ZÞ ¼ 1 þ ŴðvÞ; from the hard

reflection condition of ŴðvÞ ¼ 21: As jŴj , 1 the

amplification of ûþ is bounded by unity. The requirement

that all poles lk of ŴðvÞ; or zeros of 1 þ ZðvÞ; be on the

upper half v-plane further ensures that reflection is

causally convoluted from incident:

u2ðtÞ ¼ 2uþðtÞ þ

ð1

0

~WðtÞuþðt 2 tÞdt: ð8Þ

Here ~WðtÞ ¼HðtÞ
P

kmk e ilkt; mk ¼ i·Residue ½ ~̂WðvÞ;lk�;

and H(t) is the Heavyside’s step function which

switches on the exponentially decaying e ilkt for each of

the causal poles, Img ðlkÞ. 0 of 1 þ Z. Equation (8)

implemented in the same way as Eq. (6b), with

zk ¼ e ilkDt; has the form:

u2ðtÞ ¼2uþðtÞþ
k

X
u2

k ðtÞ; where ð9Þ

u2
k ðtÞ ¼ zku2

k ðt2DtÞþmk

ðDt

0

e ilktuþ
k ðt2 tÞdt:

Stability is assured since each subsystem u2
k ðtÞ is stable

with jzkj , 1:
This is the TDIBC system that Fung et al. (2000)

advocated. It takes into account the space– time

continuation of incident and reflected waves. It is

unconditionally stable when the complex roots of

1 þ ZðvÞ ¼ 0 are known and causal, and is character-

istically proper to render a boundary closure of the

wave equation on a domain bounded by G by the

provision of the domain-entering reflection u2ðG; tÞ:
Equation (9) can be easily approximated by quadratures

of any order, e.g. the first-order backward Euler:

u2
k ðtÞ < zku2

k ðt 2 DtÞ þ Dtmkuþ
k ðtÞ; ð10Þ

or the second-order trapezoidal rule:

u2
k ðtÞ < zku2

k ðt 2 DtÞ þ
1

2
Dtmk uþ

k ðtÞ þ zkuþ
k ðt 2 DtÞ

� �
:

ð11Þ

In most cases, the grid system and time step chosen to

resolve uþðtÞ and u2ðtÞ on Eq. (11) are sufficiently

accurate. For very large jlkj; exact integration of e ilkt

assuming a linearly varying uþðtÞ in Eq. (9) gives a

substantially improved weighted quadrature at no extra

computational cost:

ðDt

0

e ilktuþðt 2 tÞdt < ½wk0uþðtÞ þ wk1uþðt 2 DtÞ�Dt;

ð12Þ

where

wk0 ¼ 2
zk 2 1

l2
kDt 2

2
1

ilkDt

and

wk1 ¼
zk 2 1

l2
kDt 2

þ
zk

ilkDt
:
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TDIBC MODELS

We have come to realize that the construction of TDIBC

hinges on finding the roots of 1 þ ZðvÞ ¼ 0: Unfortu-

nately, the identification of the complex roots when only

discrete values of Z(v) are known or defined on real v is

not routine or even mathematically unique. When the

exact impedance impulse �ZðtÞ is analytically known,

Beggs et al. (1992) and Maloney and Smith (1992)

proposed the use of Prony’s method to obtain

the approximate exponential representation
�ZðtÞ ¼

P
kmk e2Vkt; and thus reduce it to a recursive

formula. Oh and Schutt-Aine (1995) proposed the

tabulation and use of rational Chebyshev polynomials,

instead of Prony’s method, to approximate the purely real

analytic impedance of lossy dielectric interfaces on the

real axis of the Laplace s-plane. Roden and Gedney

(1999), however, pointed out that Prony’s expansion on a

finite time-interval might be inadequate for representing

the decay of long time scales (small Vk) and result in

larger errors as smaller time steps Dt were used. They

suggested using the poles from polynomial-fitting a set of

real Z values on the real s-axis over an adequate

application range.

In practice, only sets of discrete impedance values are

measured and known on the real v-axis. Commercial

software packages (Matlab, Mathematica, etc.) are readily

available for fitting and numerically identifying the

complex zeros, but the zeros so identified may not

necessarily be causal, depending on the range and amount

of data available. The choices of a model would also

depend on the type of application. We now review these

choices.

The most straightforward representation is a poly-

nomial representation of impedance in the form:

ZðvÞ ¼ RðvÞ þ iXðvÞ

¼ R0 þ R2v
2 þ · · · þ iðX1vþ X3v

3 þ · · ·Þ: ð13Þ

This equation must be valid for some non-zero radius

of convergence or its validity to have a corresponding

time-equivalent process is doubtful. The reason for the

even and odd expansions, respectively for R and X, is to

result in purely real time operators, as only even powers

of v and odd powers of iv correspond to real time-

derivatives. As pointed out by Fung et al. (2000),

Taylor’s expansions in v of orders higher than one are

likely to encounter non-causal roots and lead to

algorithmic instability. Therefore, Eq. (13) is limited to

narrow-band applications. The bandwidth of waves

present in a time-domain solution depends not only on

the input signal forced or initiated in space, but also on

the order of schemes and smoothness of solution. High-

order schemes often support high-order spurious waves

and require a high degree of solution smoothness, which

may be difficult to manage in a multi-dimensional

problem. An impedance discontinuity in the boundary

for example often incites the development of spurious

waves, but an accurate enforcement of TDIBC would

leave little room for the design of artificial damping for

the suppression of spurious waves. Once present, the

spurious waves having a much wider spectrum than

the intended input waves would be amplified by the

implemented TDIBC. This amplification would also

extend to any finite Taylor’s expansion of the reflection

coefficient ŴðvÞ; which may not be bounded despite the

absence of poles in the expansion of ŴðvÞ.

Only the integral approach of Eq. (8), which necessitates

the identification of the zeros of 1 þ ZðvÞ ¼ 0; would

provide the broadband boundedness. We should therefore

focus on models of softness coefficient ~̂WðvÞ ¼ 2=ð1 þ ZÞ

in the form N(s)/D(s) where N(s) and D(s) are factored

polynomials, i.e. DðsÞ ¼ ðs 2 l1Þðs 2 l2Þ· · ·ðs 2 lmÞ:
The replacement of iv by s is a preference over the zeros

of D(s) on the real s-axis of the Laplace-plane. Thus, ~̂WðvÞ

may be expanded in the partial-fraction form: ~̂WðvÞ ¼Pm
k¼1

~̂WkðvÞ with ~̂WkðvÞ ¼ Ak=ðs 2 lkÞ and Ak ¼

NðlkÞ=½dDðlkÞ=ds�: Since for real R(v) and X(v),

D(s) has only real coefficients, its zeros lk are either

real or complex conjugate pairs. Real lk corresponds

in the time-domain to a system of overly damped

impulses:

~WkðtÞ ¼

~W
þ

k ðtÞ ¼ AkelktHðtÞ; lk , 0

~W
2

k ðtÞ ¼ 2AkelktHð2tÞ; lk $ 0

8<
: ð14Þ

causal if lk , 0 and non-causal if lk $ 0: For complex

roots lk ¼ 2aþ ib; conjugate pair lkþ1 ¼ 2a2 ib

must exist to form:

~̂Wðk;kþ1ÞðvÞ; ~̂WkðvÞþ ~̂Wkþ1ðvÞ

¼
Ak

s2lk

þ
Akþ1

s2lkþ1

¼
BsþC

ðsþaÞ2 þb2
; ð15Þ

which corresponds to causal or non-causal reflection

impulses depending on the sign of a:

~Wðk;kþ1ÞðtÞ

¼

~W
þ

ðk;kþ1ÞðtÞ¼e2atHðtÞ BcosðbtÞþC2aB
b

sinðbtÞ
h i

; a$0

~W
2

ðk;kþ1ÞðtÞ¼2e2atHð2tÞ BcosðbtÞþC2aB
b

sinðbtÞ
h i

; a,0:

8>><
>>:

ð16Þ

Each pair can be physically regarded as the impedance

Z ¼ R0 þ iðX1v2 X21=vÞ ð17Þ

of a Helmholtz oscillator of resistance R0, acoustic mass

X1, stiffness X21, damping rate a ¼ ð1 þ R0Þ=2X1;
damped and undamped resonant frequencies of

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 2 a2
p

and v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X21=X1

p
; respectively.

The damped-harmonic-oscillator system of Eqs. (15)

and (16) is more common among sound-absorbing
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materials than the purely damped system of Eq. (14). For

harmonic applications, however, non-causal reflection
~W2ðtÞ; can be accommodated by the space – time

equivalence of the incident wave, uþðxb; tÞ ¼ uþðxb 2

cþDt; t 2 DtÞ; and conversion of Eq. (14) or Eq. (16) into

its spatial equivalent:

u2ðxb; tÞ ¼ 2uþðxb; tÞ þ

ð1

0

~WþðtÞuþðxb; t 2 tÞdt

þ

ð0

21

~W2ðtÞuþðxb þ cþt2 cþDt; t 2 DtÞdt;

recognizing that the future incident waves are spatially

coming from upstream. Unconditionally stable

implementation in the form of Eq. (9) can be devised

regardless of temporal causality, and attainment of a

harmonic state depends only on the persistence of the

source and the stability of the implementation (Fung

and Ju (2001)).

The accurate determination of causal, complex roots may

however require better testing procedures than the values

routinely obtained from, e.g. the impedance tube. None-

theless, a conveniently chosen set of basis functions

1=ðs 2 lkÞ of causal lk has proved effective in the

representation of practical impedance data for time-

accurate computation of impulse reflection (Fung and Ju

(2001)).

MEAN FLOW EFFECTS

The principal application of impedance is for the

characterization and prediction of the absorption and

reflection of waves. The surface on which impedance is

defined needs not be the actual material interface for the

immediate interest is not the detailed micro-mechanical

processes but their resultant reflection measured at

distances. The presence of a flow and its boundary layer

over a sound-absorbing surface raises the questions of

whether the acoustic properties are modified by the flow,

and how and where these properties can be measured.

Available techniques for impedance measurement have

been limited to the measurement of acoustic properties

under no flow conditions. We can at this point only address

how the acoustics properties of a material measured under

no flow condition can be used to predict the propagation of

waves in a non-uniformly moving acoustic medium.

Assuming the wall acoustic properties are not modified by

the flow, the presence of a flow over an impedance wall has

the known effects of convection and refraction due to the

variable flow and sound speeds across the boundary layer.

How these effects are accounted for depends on the solution

models used for the prediction. If the prediction is for the

propagation and reflection of acoustic disturbances from a

mean sheared flow with boundary conditions imposed on the

mean no-slip-material-flow interface, then Eq. (1) is locally

applicable and the corresponding TDIBC is straightforward.

The resolution of wave propagation in the steep Mach

number gradient of a turbulent boundary layer may become

the issue to address but is beyond the scope of the present

paper. Goldstein and Rice (1973) attempted the formulation

of an effective impedance to account for the presence of a

thin boundary layer in flow ducts, but the aim and validity of

their approach and the construction of a practical impedance

expression remain questionable.

If the boundary layer is thin compared with the

wavelengths of interest and refraction is negligible, an

incident plane wave of angle u to the wall normal in a

mean free stream of Mach number M0 has the effective

plane-wave impedance Z 0 (Ingard, 1959):

Z 0 ¼ Zð1 þ M0 sin uÞ: ð18Þ

The implementation of Eq. (18) as TDIBC via Eq. (9) is

straightforward and unconditionally stable, but the

identification of the local incident angle u and the choice

of effective M0 would be up to the matching between

measured and predicted results. For unspecific wave

structures, Myers (1980) proposed the convection-

modified impedance (with 2y the normal wall direction

and v̂ the y-velocity component), viz.

v̂ ¼ p̂=Z þ M0ðivZÞ21›p̂=›x; ð19Þ

to account for the local wave angle by taking the partial

x-derivative tangent to wall on p̂: Ju and Fung

(2001) proposed the equivalent reflection-incidence relation�
1 þ M0ŴIIðvÞ

›

›x

�
v̂2 ¼ ŴðvÞ þ M0ŴIIðvÞ

›

›x

� �
v̂þ;

where v̂^ ¼ v̂ ^ p̂ and ŴIIðvÞ ¼ 1=½ivð1 þ ZÞ�: The

corresponding time-domain expression is

v2ðtÞ þ M0

ðþ1

21

W IIðt 2 tÞ
›

›x
v2ðtÞdt

¼

ðþ1

21

Wðt 2 tÞ þ M0W IIðt 2 tÞ
›

›x

� �
vþðtÞdt: ð20Þ

For the impedance model of Eq. (17), W(t) takes the

form of Eq. (16), W IIðtÞ ¼ ðX1bÞ
21sin ðbtÞe2atHðtÞ; and

Eq. (20) assumes the recursive expression:

v2ðtÞ ¼ DtSIðtÞ þ 2M0DtSIIðtÞ2
Dt

X1

þ 1

� �
vþðtÞ ð21Þ

where

SIðtÞ ¼ 2 cos ðbDtÞ e2aDtSIðt 2 DtÞ2 e22aDtSIðt 2 2DtÞ

þ
2

X1

vþðtÞ2 ½cos ðbDtÞ þ a sin ðbDtÞ=b�
�

� e2aDtvþðt 2 DtÞ
�
;
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and

SIIðtÞ ¼ 2 cos ðbDtÞ e2aDtSIIðt 2 DtÞ2 e22aDtSIIðt 2 2DtÞ

þ
1

X1b
sin ðbDtÞe2aDt ›

›x
pðt 2 DtÞ:

Recent application of these methods and comparisons

with experiment has shown that the effective plane-

wave impedance Eq. (18) provides a satisfactory

account of mean flow effects for walls with

high absorption (Ju and Fung, 2001), whereas the

implementation of Eqs. (20) and (21) would encounter

the amplification of spurious waves generated at

impedance discontinuity due to the tangential derivative.

Although this instability can be suppressed by numerical

smoothing, the advantage of the added complexity from

the doubtful plane-wave assumption is difficult to

justify over the much simpler effective plane-wave

impedance. For highly reflective walls in high-speed

flows, refraction effects in a shear layer must be

addressed, schemes with higher resolution employed,

but above all well-designed experiments conducted to

address issues of impedance definition and modeling

under convective environments.

CONCLUSIONS

We have reviewed the progress made in the extension of the

concept of impedance for implementation as TDIBC for

the computation of waves. This extension reveals the

importance of causality in the characterization and

modeling of the reflection and absorption of waves at the

bounding surface of a domain. It suggests the broadband

characterization of an impedance surface by a set of

Helmholtz oscillators, which can be appropriately,

efficiently and causally implemented as a two-level time-

advancement boundary scheme. The boundary thus

treated renders a causal space–time continuation of

the wall-bound and domain-entering waves as they

propagate within the interior domain, rather than as a

mathematical constraint spatially imposed on a physical

or artificial boundary. The widely accepted concept of

impedance for the closure of frequency-space-boundary-

value problems thus extended should be applicable for the

closure of a large class of initial-boundary-value problems

in mechanics.

Perhaps the conventionally characterized, discretely

measured impedance and other impedance-like transfer

functions in the frequency-domain may also benefit from

their re-characterization in the time-domain as a

receptivity to or macro manifestation of the underlying

sub-wave-scale possibly non-linear system dynamics.
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