
Functional Decomposition Using Principal Subfields
Luiz E. Allem

Univ. Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500

Porto Alegre, RS 91509-900

emilio.allem@ufrgs.br

Juliane G. Capaverde

Univ. Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500

Porto Alegre, RS 91509-900

juliane.capaverde@ufrgs.br

Mark van Hoeij

Florida State University

211 Love Building

Tallahassee, FL 32306

hoeij@math.fsu.edu

Jonas Szutkoski

Univ. Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500

Porto Alegre, RS 91509-900

jonas.szutkoski@ufrgs.br

ABSTRACT
Let f ∈ K(t) be a univariate rational function. It is well known

that any non-trivial decomposition д ◦ h, with д,h ∈ K(t), cor-
responds to a non-trivial subfield K(f (t)) ⊊ L ⊊ K(t) and vice-

versa. In this paper we use the idea of principal subfields and fast

subfield-intersection techniques to compute the subfield lattice of

K(t)/K(f (t)). This yields a Las Vegas type algorithmwith improved

complexity and better run times for finding all non-equivalent com-

plete decompositions of f .

KEYWORDS
Rational Function Decomposition; Subfield Lattice; Partitions;

ACKNOWLEDGMENTS
This work is part of the doctoral studies of Jonas Szutkoski, who

acknowledges the support of CAPES.Mark vanHoeij was supported

by the National Science Foundation under Grant No.:1618657.

1 INTRODUCTION
The problem of finding a decomposition of a rational function

f ∈ K(t) has been studied by several authors. We highlight the

work of [23], who gave the first polynomial time algorithm that

finds (if it exists) a single decomposition of f . In [2], an exponential

time algorithm was given that computes all decompositions of f by

generalizing the ideas of [4] for the polynomial case. More recently,

[3] have presented improvements on the work of [2], though the

complexity is still exponential on the degree of f .
The particular case of polynomial decomposition has long been

studied. As far as the authors’ knowledge goes, the first work on

polynomial decomposition is from [15], which presented a strong

structural property of polynomial decompositions over complex

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSAC ’17, July 25-28, 2017, Kaiserslautern, Germany
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5064-8/17/07. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3087604.3087608

numbers. In [4], two (exponential time) algorithms are presented

for finding the decompositions of a polynomial over a field of char-

acteristic zero. Some simplifications are suggested in [1, 2]. In [13],

the first polynomial time algorithm is given, which works over

any commutative ring containing an inverse of deg(д). Further im-

provements are presented in [20, 21]. More recently, [7] presented

a polynomial time algorithm that finds all minimal decompositions
of f , with no restrictions on deg(д) or the characteristic of the field.

Univariate Functional Decomposition (either rational function or

polynomial) is closely related to the subfield lattice of the field exten-

sionK(t)/K(f (t)) (see Theorem 2.3 below). However, in general, the

number of subfields is not polynomially bounded and algorithms

for finding all complete decompositions can suffer a combinatorial

explosion. In this work, we try to improve the non-polynomial part

of the complexity. In order to achieve this, we make use of the

so-called principal subfields, as defined in [19].

Let f (t) = p(t)/q(t) ∈ K(t), n = max{deg(p), deg(q)} and ∇f :=

p(x)q(t) − p(t)q(x) ∈ K[x , t]. Assuming we are given the factoriza-

tion of ∇f , using fast arithmetic and fast subfield intersection tech-

niques (see [17]), we can compute the subfield lattice ofK(t)/K(f (t))
with an expected number of

˜O(rn2) field operations plus
˜O(mr2) CPU operations,

wherem is the number of subfields of K(t)/K(f (t)) and r ≤ n is

the number of irreducible factors of ∇f (see Corollary 4.16). This

approach has the following improvements:

• Better complexity: our algorithm does not depend exponen-

tially on r as previous methods (e.g., [3]), only on the num-

berm (usuallym ≪ 2
r
). Furthermore, the non-polynomial

part of the complexity is reduced to CPU operations.

• Better run times: an implementation in Magma shows the

efficiency of our algorithm when compared to [3].

• Better complexity for polynomial decomposition (espe-

cially in the wild case): given f (t) ∈ Fq [t], we can find

all minimal decompositions of f with an expected num-

ber of
˜O(rn2) operations in Fq plus the cost of factoring

∇f = f (x) − f (t) ∈ Fq [x , t], where r is the number of

irreducible factors of ∇f . See Remark 7.

As previous methods, our algorithm requires the factorization

of a bivariate polynomial over K of total degree at most 2n, where
n is the degree of f .

https://doi.org/http://dx.doi.org/10.1145/3087604.3087608

1.1 Roadmap
In Section 2, we recall some basic definitions and results about

rational function decomposition. Let K be a field and let f ∈ K(t)
be a rational function. In Section 3, we give a description of the

principal subfields of the extension K(t)/K(f). Every subfield of a

finite separable field extension corresponds to a unique partition

on the set of irreducible factors of the minimal polynomial of this

extension. In Section 4, we show how one can compute this partition

for every principal subfield. This allows us to compute the subfield

lattice of K(t)/K(f (t)) efficiently. Finally, in Section 5, we show

how one can use these partitions to compute all decompositions of

f . Some timings comparing our algorithm with [3] are also given.

1.2 Complexity model
Throughout this paper, field operations (+,−,×,÷) and the equal-

ity test are assumed to have a constant cost. Given polynomials

f ,д ∈ K[x] of degree at most n, we can compute their product (and

the remainder of f divided by д) with O(M(n)) field operations.

We recall that M is super-additive: M(n1) + M(n2) ≤ M(n1 + n2)
(see [22], Chapter 8.3). If f ∈ K[x] is irreducible with degree n,
then arithmetic in K[x]/(f) costs O(M(n)) operations in K (see

[22], Chapter 9). Furthermore, the greatest common divisor of two

polynomials f ,д of degree ≤ n costs O(M(n) logn) field operations
(see [22], Chapter 11). Finally, given a linear system S, withm equa-

tions in r variables, we can compute a basis of solutions of S with

O(mrω−1) field operations (see [5], Chapter 2), where 2 < ω ≤ 3 is

a feasible matrix multiplication exponent (see [22], Chapter 12) .

2 BASIC DEFINITIONS
Let K be an arbitrary field and let K(t) be the function field over

K . Let S = K(t)\K be the set of non-constant rational functions

and let f = fn/fd ∈ S be a rational function with fn , fd ∈ K[t]
coprime. The degree of f is defined as max{deg(fn), deg(fd)} and
denoted by deg(f). The set S is equipped with a structure of a

monoid under composition. The K-automorphisms of K(t) are the
fractional transformationsu = (ax+b)/(cx+d) such that ad−bc , 0.

The group of automorphisms is isomorphic to PGL2(K) and also to

the group of units of S under composition.

An element f ∈ K(t) is indecomposable if f is not a unit and

f = д ◦ h implies д or h is a unit. Otherwise, f is called decom-
posable. If f is decomposable with f = д ◦ h, then h (resp. д) is
called the right (resp. left) component of the decomposition д ◦ h.
Furthermore, a decomposition f = д ◦h is minimal if h is indecom-

posable and a decomposition f = дm ◦ · · · ◦ д1 is complete if all дi
are indecomposable.

It is well known by Lüroth’s Theorem that if K ⊊ L ⊆ K(t), then
there exists h ∈ S such that L = K(h) (a proof can be found in [18]).

The rational function h is not unique however, K(h) = K(h′), if and
only if, there exists a unit u ∈ S such that h′ = u ◦ h. As in [3], we

define the normal form of a rational function f ∈ S.

Definition 2.1. A rational function f = p/q ∈ S is in normal
form or normalized if p,q ∈ K[t] are monic, coprime, p(0) = 0

and either deд(p) > deg(q) or m := deg(p) < deg(q) =: n and

q = tn + qn−1t
n−1 + · · · + q0, with qm = 0.

Given f ∈ S, there exists a unique normalized
ˆf ∈ S such that

K(f) = K(ˆf) ([3], Proposition 2.1). Hence, if NK is the set of all

normalized rational functions over K , then there exists a bijection

between NK and the set of fields L such that K ⊊ L ⊆ K(t). In
particular, there is a bijection between normalized rational functions

h ∈ S such that f = д ◦ h, for some д ∈ S, and the fields L = K(h)
such that K(f) ⊆ L ⊆ K(t).

Definition 2.2. For a rational function д = дn/дd ∈ S, with
дn ,дd ∈ K[t] coprime, define ∇д(x , t) := дn (x)дd (t) −дn (t)дd (x) ∈
K[x , t] and Φд(x) := дn (x) − д(t)дd (x) ∈ K(д)[x]. A bivariate poly-

nomial a(x , t) ∈ K[x , t] is called near-separate if a(x , t) = ∇д(x , t),
for some д ∈ K(t).

In this work, we assume that f is such that Φf is monic. If this

is not the case, we can find a unit u ∈ K(t) such that
˜f := u ◦ f and

Φ
˜f is monic. Decomposing f is equivalent to decomposing

˜f .

Remark 1. Let f ∈ K(t) of degree n and let G1, . . . ,Gr be the
irreducible factors of ∇f ∈ K[x , t]. Let m1, . . . ,mr ∈ K[t] be the
leading coefficients of G1, . . . ,Gr w.r.t. x . Then m1 · · ·mr = fd (t)
and Fi := Gi/mi ∈ K(t)[x] are monic, irreducible and ∇f /fd (t) =
Φf (x) = F1 · · · Fr . In particular, if the exponents of t in Gi are
bounded by di , then

∑
di = n.

The following theorem is the key result behind all near-separate
based rational function decomposition algorithms, such as [2] and

[3] (see also [4] for the polynomial case).

Theorem 2.3 ([2], Proposition 3.1). Let f ,h ∈ S be rational
functions. The following are equivalent:

a) K(f) ⊆ K(h) ⊆ K(t).
b) f = д ◦ h, for some д ∈ S.
c) ∇h (x , t) divides ∇f (x , t) in K[x , t].
d) Φh (x) divides Φf (x) in K(t)[x].

If G1, . . . ,Gr are the irreducible factors of ∇f over K[x , t], then
the product of any subset of {G1, . . . ,Gr }, which is a near-separate

multiple of x − t , yields a right component h and hence, a decom-

position f = д ◦ h. Many authors use this approach to compute

all decompositions of f : factor ∇f and search for near-separate

factors (see [2–4]). However, this approach leads to exponential

time algorithms due to the number of factors we have to consider.

3 PRINCIPAL SUBFIELDS
In this section we use the idea of principal subfields to compute

the subfield lattice of K(t)/K(f). By Theorem 2.3, this gives us all

complete decompositions of f . Principal subfields and fast field

intersection techniques (see [17]) allow us to improve the non-

polynomial part of the complexity.

3.1 Main Theorem
Let K/k be a separable field extension of finite degree n. A field L is

said to be a subfield of K/k if k ⊆ L ⊆ K . It is well known that the

number of subfields of K/k is not polynomially bounded in general.

However, we have the following remarkable result from [19]:

Theorem 3.1. Given a separable field extension K/k of finite
degree n, there exists a set {L1, . . . ,Lr }, with r ≤ n, of subfields

of K/k such that, for any subfield L of K/k , there exists a subset
IL ⊆ {1, . . . , r } with

L =
⋂
i ∈IL

Li .

The subfields L1, . . . ,Lr are called principal subfields of the ex-
tension K/k and can be obtained as the kernel of some application

(see [19]). Instead of directly searching for all subfields of a field

extension, which leads to an exponential time complexity, principal

subfields allow us to search for a specific set of r ≤ n subfields, a

polynomial time task.

By Theorem 3.1, the non-polynomial part of the complexity of

computing the subfield lattice is then transfered to computing all

intersections of the principal subfields. However, according to [17],

each subfield of K/k can be uniquely represented by a partition

of {1, . . . , r }. Computing intersections of principal subfields can

now be done by simply joining the corresponding partitions of

{1, . . . , r }, which in practice can be done very quickly and hence,

corresponds to a very small percentage of the total CPU time.

In the remaining of this section we give a description of the

principal subfields of K(t)/K(f (t)) and in the next section we show

how one can compute the partitions associated to every principal

subfield of K(t)/K(f (t)).

3.2 Principal Subfields of K(t)/K(f)
In this section we describe the principal subfields of the field exten-

sion K(t)/K(f). We follow [19], making the necessary changes to

our specific case.

Remark 2. If char(K) = 0, thenΦf is separable. If char(K) = p > 0

andΦf is not separable, then f = ˜f ◦tp
s
, for some s ≥ 1 and ˜f ∈ K(t)

with Φ
˜f separable. For this reason, we assume that Φf is separable.

Definition 3.2. Let F1, . . . , Fr be the monic irreducible factors of

Φf over K(t). For j = 1, . . . , r , define the set

Lj :=
{
д(t) ∈ K(t) : Fj | Φд

}
. (1)

If we assume that F1 = x − t , then L1 = K(t). Furthermore

Theorem 3.3. Let F1, . . . , Fr be the irreducible factors of Φf over
K(t). Then L1, . . . ,Lr are subfields of K(t)/K(f).

Proof. We show that Lj is closed under multiplication and tak-

ing inverse. The remaining properties can be shown in the same

fashion. Let д(t) = дn (t)/дd (t) and h(t) = hn (t)/hd (t) be elements

of Lj . By definition,

Fj | Φд and Fj | Φh . (2)

Nowд(t)h(t) ∈ Lj if and only if, Fj | Φдh . By a simple manipulation,

one can show that

Φдh = дn (x)Φh + h(t)hd (x)Φд . (3)

Therefore, by Equation (2), it follows that Fj | Φдh and hence,

д(t)h(t) ∈ Lj . To show that the inverse of д(t) is in Lj , notice that

Fj | Φд if and only if Fj | Φ1/д , (4)

since Φд = −д(t)Φ
1/д in K(t)[x]. Therefore, 1/д(t) ∈ Lj . □

Finally, we show that the subfields L1, . . . ,Lr are the principal
subfields of K(t)/K(f).

Theorem 3.4. The subfields L1, . . . ,Lr of K(t)/K(f (t)), where Lj
is defined as in (1), for j = 1, . . . , r , are the principal subfields of the
extension K(t)/K(f (t)).

Proof. Given a subfield L ofK(t)/K(f (t)), by Lüroth’s Theorem,

there exists a rational function h(t) ∈ K(t) such that L = K(h(t))
and therefore, f = д ◦ h, for some д ∈ K(t). By Theorem 2.3 it

follows that Φh | Φf . Therefore, there exists a set IL ⊆ {1, . . . , r }
such that Φh =

∏
i ∈IL Fi . We shall prove that

L = {д(t) ∈ K(t) : Φh | Φд} =
⋂
i ∈IL

Li . (5)

Let д(t) ∈ K(t). Then д(t) ∈ L = K(h) if and only if д(t) = д̃◦h(t),
for some д̃(t) ∈ K(t), if and only if Φh | Φд , by Theorem 2.3. For

the second equality, suppose that д(t) ∈ ∩i ∈ILLi . Then Fi | Φд , for
every i ∈ IL . Since we are assuming Φf to be separable (see Remark

2), it follows that Φh =
∏

i ∈IL Fi | Φд . Conversely, if Φh | Φд , then
Fi | Φд , for every i ∈ IL , that is, д(t) ∈ Li , for every i ∈ IL and

hence, д(t) ∈ ∩i ∈ILLi . □

4 PARTITION OF PRINCIPAL SUBFIELDS
Let K(t)/K(f) be a separable field extension of finite degree n and

let Φf (x) be the minimal polynomial of t over K(f). Let F1, . . . , Fr
be the irreducible factors of Φf over K(t) and let L1, . . . ,Lr be the
corresponding principal subfields of K(t)/K(f).

Definition 4.1. A partition of S = {1, . . . , r } is a set {P (1), . . . , P (s)}

such that P (i) ⊆ S , P (i) ∩ P (j) = ∅, for every i , j and ∪P (i) = S .

Definition 4.2. Let P and Q be partitions of {1, . . . , r }. We say

that P refines Q if every part of P is contained in some part of Q .

Recall that F1 = x − t . We number the parts of a partition P =

{P (1), . . . , P (s)} in such a way that 1 ∈ P (1). Let P be a partition

of {1, . . . , r }. We say that P is the finest partition satisfying some

property X if P satisfies X and if Q also satisfies X then P refines

Q . Moreover, the join of two partition P and Q is denoted by P ∨Q
and is the finest partition that is refined by both P and Q .

Definition 4.3. Let F1, . . . , Fr be the irreducible factors ofΦf over

K(t). Given a partition P = {P (1), . . . , P (s)} of {1, . . . , r }, define the
polynomials (so called P-products)

дi :=
∏
j ∈P (i)

Fj ∈ K(t)[x], i = 1, . . . , s .

Theorem 4.4 ([17], Section 2). Let f ∈ K(t) and let F1, . . . , Fr be
the irreducible factors ofΦf overK(t). Given a subfieldL ofK(t)/K(f),
there exists a unique partition PL = {P (1), . . . , P (s)} of {1, . . . , r },
called the partition of L, such that s is maximal with the property
that the PL-products are polynomials in L[x]. Furthermore, PL∩L′ =
PL ∨ PL′ , that is, the partition of L ∩ L′ is the join of the partitions
PL and PL′ of L and L′, respectively.

Since F1, . . . , Fr are the irreducible factors of Φf over K(t), PL
represents the factorization of Φf over L. Algorithms for computing

the join of two partitions can be found in [10, 17] (see also [11]).

Since 1 ∈ P
(1)

L , the first PL-product is the minimal polynomial

of t over L. As in [17], we give two algorithms for computing the

partition of the principal subfield Li : one deterministic and one

probabilistic, with better performance.

4.1 A Deterministic Algorithm
In this section we present a deterministic algorithm that computes,

by solving a linear system, the partitions P1, . . . , Pr of the principal
subfields L1, . . . ,Lr . We recall (see [17], Section 3) that to find the

partition of Li it is enough to find a basis of the vectors (e1, . . . , er) ∈

{0, 1}r such that

∏r
j=1 F

ej
j ∈ Li [x].

Theorem 4.5 ([17], Lemmas 31 and 32). Let c1, . . . , c2n ∈ K(f)
be distinct elements and let hj,k (t) := F ′j (ck)/Fj (ck) ∈ K(t). If
(e1, . . . , er) ∈ {0, 1}r is such that

∑r
j=1 ejhj,k (t) ∈ Li , for k =

1, . . . , 2n, then
∏r

j=1 F
ej
j ∈ Li [x].

Let us consider e1, . . . , er as variables. To show that

∑
ejhj,k (t) ∈

Li we need an expression of the form a(t)/b(t), where a,b ∈ K[t].
Assume hj,k (t) = nj,k (t)/dj,k (t), where nj,k (t),dj,k (t) ∈ K[t] are
coprime. Hence

r∑
j=1

ej
F ′j (ck)

Fj (ck)
=

r∑
j=1

ejhj,k (t) =
r∑
j=1

ej
nj,k (t)

dj,k (t)
.

Furthermore, let lk (t) ∈ K[t] be the least common multiple of

d
1,k (t), . . . ,dr,k (t) ∈ K[t]. Hence

r∑
j=1

ejhj,k (t) =
r∑
j=1

ej
nj,k (t)

dj,k (t)
=

∑r
j=1 ejpj,k (t)

lk (t)
, (6)

where pj,k (t) := lk (t)
nj,k (t)
dj,k (t)

∈ K[t]. Hence,
∑r
j=1 ejhj,k (t) ∈ Li if,

and only if (see Definition 3.2)
r∑
j=1

ejpj,k (x) −

∑r
j=1 ejpj,k (t)

lk (t)
lk (x)

 mod Fi = 0, (7)

where a mod b is the remainder of division of a by b. By manipu-

lating Equation (7) we have

r∑
j=1

ej
[(
pj,k (x) − hj,k (t)lk (x)

)
mod Fi

]
= 0. (8)

Hence, if (e1, . . . , er) ∈ {0, 1}r is a solution of (8), for k =

1, . . . , 2n, then Theorem 4.5 tells us that

∏r
j=1 F

ej
j ∈ Li [x].

We will now explicitly present the system given by Equation (8).

Let

qj,k (x) := pj,k (x) − hj,k (t)lk (x) ∈ K(t)[x].

Notice that degx (qj,k) ≤ dn, where d = degt (ck). Furthermore, let

ri, j,k (x) := qj,k (x) mod Fi ∈ K(t)[x]. (9)

Letmj (t) ∈ K[t] be the monic lowest degree polynomial such that

mj (t)ri, j,k ∈ K[t][x] and let l ∈ K[t] be the least common multiple

ofm1(t), . . . ,mr (t). Hence

l
r∑
j=1

ejri, j,k =
r∑
j=1

ej r̂i, j,k ∈ K[t][x],

where r̂i, j,k = l · ri, j,k ∈ K[t][x]. Notice that Equation (8) holds if

and only if,

∑r
j=1 ej r̂i, j,k = 0. Next, let us write

r̂i, j,k =

di−1∑
d=0

S∑
s=0

c j (s,d,k)t
sxd , where c j (s,d,k) ∈ K ,

wheredi is the degree of Fi and S ≥ 0 is a bound for the t-exponents.
Therefore,

r∑
j=1

ej r̂i, j,k =

di−1∑
d=0

S∑
s=0

©­«
r∑
j=1

ejc j (s,d,k)
ª®¬ tsxd

and hence, the system in e1, . . . , er from Equation (8) is given by

Si :=


r∑
j=1

ejc j (s,d,k) = 0,

d = 0, . . . ,di − 1,

s = 0, . . . , S,
k = 1, . . . , 2n.

(10)

Definition 4.6. A basis of solutions s1, . . . , sd of a linear system

with r variables is called a {0, 1}-echelon basis if
(1) si = (si,1, . . . , si,r) ∈ {0, 1}r , 1 ≤ i ≤ d , and
(2) For each j = 1, . . . , r , there is a unique i , 1 ≤ i ≤ d such

that si, j = 1.

For instance, S = {(1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} is a basis of

solutions in {0, 1}-echelon form. If a linear system admits a {0, 1}-

echelon basis then this basis coincides with the (unique) reduced

echelon basis of this system.

Definition 4.7. Let S be a linear system with {0, 1}-echelon basis

{s1, . . . , sd }. The partition defined by this basis is the partition P =

{P (1), . . . , P (d)} where P (j) = {i : sj,i = 1}, for j = 1, . . . ,d .

For instance, PS = {{1, 2}, {3}, {4}} is the partition defined by

S given above. Therefore, by computing the {0, 1}-echelon basis

of the system Si given in (10) (notice that Si admits such basis),

the partition defined by this basis is the partition of Li . This is
summarized in the next algorithm.

Algorithm 1 Partition-D (Deterministic)

Input: The irreducible factors F1, . . . , Fr of Φf (x) over K(t) and
an index 1 ≤ i ≤ r .
Output: The partition Pi of Li .

1. Compute the system Si as in (10).

2. Compute the {0, 1}-echelon basis of Si .

3. Let Pi be the partition defined by this basis.

4. return Pi .

However, algorithm Partition-D is not efficient in practice due

to the (costly) 2nr polynomial divisions in K(t)[x]. We shall present

a probabilistic version of this algorithm in Section 4.3, which allows

us to compute Pi much faster.

4.2 Valuation rings of K(t)/K
In this section we briefly recall the definition and some properties

of valuation rings of a rational function field. We will use valuation

rings to simplify and speed up the computation of the partition Pi
of Li . The results presented in this subsection can be found in [16].

Definition 4.8. A valuation ring of K(t)/K is a ring O ⊆ K(t)
with the following properties:

(1) K ⊊ O ⊊ K(t), and
(2) for every д ∈ K(t) we have д ∈ O or 1/д ∈ O.

Valuation rings are local rings, that is, if O is a valuation ring,

then there exists a unique maximal ideal P ⊆ O.

Lemma 4.9. Let p ∈ K[x] be an irreducible polynomial. Let

Op :=

{
дn (t)

дd (t)
∈ K(t) : p(x) ∤ дd (x)

}
and

Pp :=

{
дn (t)

дn (t)
∈ K(t) : p(x) ∤ дd (x) and p(x) | дn (x)

}
.

Then Op is a valuation ring with maximal ideal Pp .

Furthermore, every valuation ring O of K(t)/K is of the form

Op , for some irreducible polynomial p(x) ∈ K[x], or is the place

at infinity of K(t)/K , that is, O = {
дn (t)
дd (t)

∈ K(t) : deg(дn (x)) ≤

deg(дd (x))}.

Lemma 4.10. LetOp be a valuation ring ofK(t)/K , wherep ∈ K[x]
is an irreducible polynomial, and let Pp be its maximal ideal. Let Fp
be the residue class field Op/Pp . Then Fp � K[x]/⟨p(x)⟩ .

4.3 A Las Vegas Type Algorithm
In this section we present a probabilistic version of Algorithm

Partition-D. We begin by noticing, as in [17], that fewer points

are enough to find the partition Pi (usually much less than 2n).
Furthermore, the equations of the system Si come from the com-

putation of ri, j,k ∈ K(t)[x] in (9), which involves a polynomial

division over K(t). Let us define a good ideal Pp :

Definition 4.11. Let f ∈ K(t) and let F1, . . . , Fr be the monic

irreducible factors of Φf over K(t). Let Op ⊂ K(t) be a valuation
ring with maximal ideal Pp , where p = p(x) ∈ K[x] is irreducible.
Let Fp be its residue field. We say that Pp is a good K(t)-ideal (with
respect to f) if

1) Fi ∈ Op [x], i = 1, . . . , r .
2) The image of f in Fp is not zero.

3) The image of Φf (x) in Fp [x] is separable.

To avoid the expensive computations of ri, j,k ∈ K(t)[x], we only
compute their image modulo a goodK(t)-ideal Pp (i.e., by mapping

t → α , where α is a root of p(x)). These reductions will simplify

our computations and we will still be able to construct a system S̃i
which is likely to give us the partition Pi .

Remark 3. Condition 1) in Definition 4.11 is equivalent to p(x) ∤
fd (x) (recall Remark 1) and condition 2) is equivalent to p(x) ∤ fn (x).
The image of Φf in Fp [x] is separable if p(t) does not divide R :=

resultant(∇f ,∇
′
f ,x) ∈ K[t]. The degree of R is bounded by (2n− 1)n.

Instead of mapping t → α , we could map t to any element in Fp =
K[x]/⟨p(x)⟩. Hence, if size(K)dp > (2n − 1)n, where dp = deg(p(x)),
then we are guaranteed to find a good evaluation point in Fp which
satisfies the conditions in Definition 4.11. Hence, dp ∈ O(logn). For
best performance, we look for p(x) of smallest degree possible and use
the mapping t → α . Notice that if char(K) = 0, we can always choose
p(x) linear.

4.3.1 Simplified System. Let Pp be a good K(t)-ideal, where
p = p(x) ∈ K[x] is irreducible. Let Op be its valuation ring and Fp
be its residue class field. Let c ∈ K(f) be such that

hj,c (t) := F ′j (c)/Fj (c) ∈ Op ⊆ K(t),

for j = 1, . . . , r , and let pj,c (t), lc (t) ∈ K[t] be as in Equation (6).

Let F̃i be the image of Fi in Fp [x] and let
˜hj,c be the image of hj,c

in Fp . Let

q̃j,c (x) := pj,c (x) − ˜hj,c lc (x) ∈ Fp [x] (11)

and let r̃i, j,c := q̃j,c (x) mod F̃i ∈ Fp [x]. Let dp be the degree of

p(x) ∈ K[x] and let α be one of its roots. By Lemma 4.10 we have

Fp � K[α] and hence

r̃i, j,c =

di−1∑
d=0

dp−1∑
s=0

Cj (s,d)α
sxd , where Cj (s,d) ∈ K . (12)

Consider the system
˜Si,c given by

˜Si,c :=

{ r∑
j=1

ejCj (s,d) = 0,
d = 0, . . . ,di − 1,

s = 0, . . . ,dp − 1. (13)

where Cj (s,d) ∈ K is as in Equation 12. If (e1, . . . , er) ∈ {0, 1}r is a

solution of Si , then (e1, . . . , er) must also satisfy the system
˜Si,c .

The converse, however, need not be true. A basis of solutions of

˜Si,c is not necessarily a basis of solutions of Si . In fact, a basis of

solutions of
˜Si,c might not even be a {0, 1}-echelon basis. If this

happens we need to consider more equations by taking c ′ ∈ K(f)

such that hj,c ′(t) ∈ Op , for j = 1, . . . , r , and solving S̃i := ˜Si,c ∪
˜Si,c ′ , and so on. In subsection 4.3.2 we give a halting condition that

tells us when to stop adding more equations to the system S̃i .

Remark 4. Advantages of considering ˜Si over Si :

(1) Smaller number of polynomial divisions to define ˜Si .
(2) The polynomial divisions are overK[x]/⟨p(x)⟩, where p(x) ∈

K[x] is the polynomial defining the ideal P.
(3) Smaller system: ˜Si has at most ddidp equations, where d is

the number of c’s used to construct S̃i , while Si has at most
2ndiS equations in r ≤ n variables.

Although in practice we need very few elements c ∈ K(f) to
find Pi (see Table 1), we were not able to show that 2n elements are

sufficient to compute Pi .

4.3.2 Halting Condition. Let S̃i = ∪S̃i,c be a system constructed

from several c ∈ K(f), where S̃i,c is as in (13). We will give a halting

condition that tells us when to stop adding more equations. If S̃i
does not have a {0, 1}-echelon basis then we clearly need more

equations. Now let us suppose that S̃i has a {0, 1}-echelon basis.

Then the partition P̃i corresponding to this basis (see Definition

4.7) might still be a proper refinement of Pi (the correct partition).
To show that P̃i = Pi it suffices to show that the P̃i -products are
polynomials in Li [x]. To do so, we use the following lemma.

Lemma 4.12 ([17], Lemma 37). Let K be a field and F ∈ K[x]
monic and separable. Let O ⊆ K be a ring such that F = д1 · · ·дs =
h1 · · ·hs , where дj ,hj ∈ O[x] are monic (not necessarily irreducible).
Let P ⊆ O be a maximal ideal such that the image of F over the
residue class field is separable. If дj ≡ hj mod P, 1 ≤ j ≤ s , then
дj = hj , 1 ≤ j ≤ s .

In order to apply this lemma, consider the following map

Ψi : K(t) → K(t ,x)

д(t) 7→
дn (x) mod Fi
дd (x) mod Fi

.

Hence, д(t) ∈ Li if, and only if, Ψi (д) = д (see Definition 3.2) and

therefore, we can rewrite Li = {д(t) ∈ K(t) : Ψi (д(t)) = д(t)}.

Theorem 4.13. Let Pi be the partition of Li and let P̃i be a refine-
ment of Pi . Let Pp be a good K(t)-ideal. If д̃1, . . . , д̃s ∈ K(t)[x] are
the P̃i -products and if Ψi (д̃j) ≡ д̃j mod Pp , j = 1, . . . , s, where Ψi
acts on д̃j coefficient-wise, then P̃i = Pi .

Proof. Since P̃i is a refinement of Pi , it suffices to show that the

P̃i -products д̃1 . . . , д̃s are polynomials in Li [x]. That is, we have to
show that Ψi (д̃j) = д̃j , for j = 1, . . . , s . Since

д̃1 · · · д̃s = Φf (x) = Ψi (Φf (x)) = Ψi (д̃1) · · ·Ψi (д̃s)

and Ψi (д̃j) = д̃j mod Pp , for 1 ≤ j ≤ s , then Lemma 4.12 implies

that Ψi (д̃j) = д̃j . Thus д̃j ∈ Li [x], for j = 1, . . . , s , and P̃i = Pi . □

This gives us a procedure to determine if the solutions of a system

give the partition Pi of the principal subfield Li .

Algorithm 2 Check

Input: A linear system S in e1, . . . , er and an index i .
Output: The partition Pi of Li or false.

1. Compute a basis of solutions of S.

2. if this basis is not a {0, 1}-echelon basis then
3. return false *Need more equations.
4. Let P̃i be the partition defined by this basis.

5. Let F̃i be the image of Fi in Fp [x].
6. Let д̃1, . . . , д̃d be the P̃i -products.

7. for every coefficient c = cn (t)
cd (t)

∈ K(t) of д̃1, . . . , д̃d do
8. Let c̃ be the image of c in Fp .
9. if cn (x) mod F̃i , c̃ · (cd (x) mod F̃i) then
10. return false *Need more equations.
11. return P̃i

The correctness of the algorithm follows from Theorem 4.13. We

end this section by computing the complexity of Algorithm Check.

Theorem 4.14. One call of Algorithm Check can be performed
with O(ner

ω−1 +M(n2) + nM(n)M(dp)) field operations, where dp
is the degree of the polynomial defining Pp , ne is the number of
equations in S and ω is a feasible matrix multiplication exponent.

Proof. A basis of solutions of S is computed with O(ner
ω−1)

field operations. If this basis is not a {0, 1}-echelon basis, then

the algorithm returns false. The computation of the polynomials

д̃1, . . . , д̃d in Step 6 can be done with r − d bivariate polynomial

multiplications. By Remark 1,

∑
degt Gi =

∑
degx Gi = n and

hence, we can compute д̃1, . . . , д̃d with O(M(n2)) field operations

(recall thatM(·) is super-additive). For each coefficient of д̃1, . . . , д̃d ,
we have to verify the condition in Step 9, which can be performed

with a reduction modulo Pp (to compute c̃) and two polynomial

divisions over Fp . Therefore, for each c , we can perform Steps 8 and

9 with O(M(n)M(dp)) field operations. Since
∑
deg д̃i = n, we have

a total cost of O(nM(n)M(dp)) field operations for Steps 7-10. □

4.3.3 Algorithm Partitions. The following is a Las Vegas type
algorithm that computes the partitions P1, . . . , Pr of L1, . . . ,Lr .

Algorithm 3 Partitions

Input: The irreducible factors F1, . . . , Fr of Φf and a good K(t)-
ideal Pp (see Definition 4.11)

Output: The partitions P1, . . . , Pr of L1, . . . ,Lr .

1. Let
˜Si = { }, i = 1, . . . , r .

2. I := {1, . . . , r }.

3. while I , ∅ do
4. Let c ∈ K(f) such that hj,c (t) ∈ Op , j = 1, . . . , r .
5. Compute q̃j,c (x) ∈ Fp [x] as in Equation 11.

6. for i ∈ I do
7. Compute the system

˜Si,c (see Equation (13)).

8. Let
˜Si := ˜Si ∪ ˜Si,c .

9. if Check(S̃i , i) , false then
10. Remove(I , i).
11. Let Pi be the output of Check(S̃i , i).
12. return P1, . . . , Pr .

Remark 5. In general, the elements in Step 4 can be taken insideK .
This will work except, possibly, when K has very few elements, which
might not be enough to find Pi . If this happens we have two choices:

1) Choose c ∈ K(f)\K or
2) Extend the base fieldK and compute/solve the system ˜Si over

this extension.
We choose the latter. Recall that the solutions we are looking for are
composed of 0’s and 1’s and hence can be computed over any extension
of K . Furthermore, extending the base field K does not create new
solutions since the partitions are determined by the factorization of
Φf (x) computed over K(t), where K is the original field.

In what follows we determine the complexity of computing

P1, . . . , Pr . We assume, based on our experiments (see Table 1), that

the algorithm finishes using O(1) elements c ∈ K (or in a finite

extension of K) to generate a system
˜Si whose solution gives Pi .

Theorem 4.15. Assuming that Algorithm Partitions finishes
using O(1) elements inside K in Step 4, the partitions P1, . . . , Pr ,
corresponding to the principal subfields L1, . . . ,Lr of the field ex-
tension K(t)/K(f (t)), can be computed with an expected number of
O(r (rM(n)M(dp) +M(n2))) field operations, where dp is the degree
of the polynomial defining Pp .

Proof. Given д =
дn (t)
дd (t)

∈ Op , we can compute its image in Fp
withO(M(deд(д))+M(dp)) field operations. Hence, we can compute

the images of the polynomials F1, . . . , Fr in Fp with O(n(M(n) +
M(dp))) field operations.

Let c ∈ K . We first compute hj,c := F ′j (c)/Fj (c) = G
′
j (c)/G j (c) ∈

Op , j = 1, . . . , r (see Remark 1). Evaluating G j ∈ K[x , t] at x = c

costs O(ndxj), where d
x
j = degx (G j). If d

t
j = degt (G j), simplify-

ing the rational function G ′
j (c)/G j (c) to its minimal form costs

O(M(dtj) logd
t
j). Keeping in mind that

∑
dtj =

∑
dxj = n, one can

computehj,c , j = 1, . . . , r , with O(n2+M(n) logn) field operations.

Since c ∈ K , degt (hj,c) ≤ dtj and we can compute the image

˜hj,c of hj,c , j = 1, . . . , r , in Fp with O(M(n) + rM(dp)) field op-

erations. Let us write hj,c = nj,c/dj,c , where nj,c ,dj,c ∈ K[t]
are coprime. We can compute lc = lcm(d1,c , . . . ,dr,c) with r lcm
computations, with a total cost of O(rM(n) logn) field operations.

Next, we define q̃j,c = pj,c (x) − ˜hj,c (t)lc (x), j = 1, . . . , r , where

pj,c (x) := lc (x)
nj,c (x)
dj,c (x)

∈ K[x]. The cost of this step is negligible.

For each i = 1, . . . , r , to compute the partition Pi we have to
compute the system S̃i,c , which involves the division of q̃j,c by

F̃i , for j = 1, . . . , r . Since deg(q̃j,c (x)) ≤ n, each of these divisions

cost O(M(n)M(dp)) field operations and hence, we can compute the

system S̃i,c with O(rM(n)M(dp)) field operations. This system has

at most didp equations and hence, one call of algorithm Check costs

O(didpr
ω−1 +M(n2) +M(n)M(dp)). The result follows by adding

the complexities and simplifying. □

Remark 6. If Algorithm Partitions needs s elements c ∈ K to
compute all partitions P1, . . . , Pr , then the total cost is bounded by s
times the cost given in Theorem 4.15.

Corollary 4.16. Let f ∈ K(t) of degree n and let F1, . . . , Fr be
the irreducible factors of Φf (x) ∈ K(t)[x]. Letm be the number of
subfields of K(t)/K(f (t)). One can compute, using fast arithmetic,
the subfield lattice of K(t)/K(f (t)) with ˜O(rn2) field operations plus
˜O(mr2) CPU operations.

Proof. Using fast arithmetic, we can compute the partitions of

the principal subfields with
˜O(rn2dp) field operations, by Theorem

4.15. By Remark 3, dp ∈ O(logn). The complete subfield lattice can

be computed with
˜O(mr2) CPU operations (see [17]). □

5 GENERAL ALGORITHM AND TIMINGS
In this section we outline an algorithm for computing all complete

decompositions of f and give an example. Some timings, comparing

our algorithm with [3], are also given.

5.1 General Algorithm
Let f ∈ K(t) and let F1, . . . , Fr be the monic irreducible factors of

Φf . By Theorem 2.3, each complete decomposition corresponds

to a maximal chain of subfields of K(t)/K(f (t)) and vice-versa.

Using the algorithms in Section 4 and fast subfield intersection

techniques from [17], we can (quickly) compute the subfield lattice

of K(t)/K(f (t)), where each subfield is represented by a partition.

To actually compute the decompositions of f , we need to find a

Lüroth generator for each subfield. That is, given a partition PL
of {1, . . . , r } representing a subfield L, we want to find a rational

function h ∈ K(t) such that L = K(h).

Theorem 5.1. Let f ∈ K(t) and let F1, . . . , Fr be the monic irre-
ducible factors of Φf ∈ K(t)[x]. Let L be a subfield of K(t)/K(f) and
P = {P (1), . . . , P (s)} be the partition of L. Let д :=

∏
i ∈P (1) Fi ∈ L[x].

If c ∈ K(t) is any coefficient of д not in K , then L = K(c).

Proof. By Luröth’s Theorem, there exists a rational function

h(t) ∈ K(t) such that L = K(h(t)). Let Φh ∈ L[x]. We may suppose

that Φh ∈ L[x] is the minimal polynomial of t over L. Let д =∏
i ∈P (1) Fi ∈ L[x]. Since 1 ∈ P (1) (recall that F1 = x − t), it follows

that д(t) = 0 and hence, Φh | д. However, Φh and д are monic

irreducible polynomials (over L) and hence, д = Φh . Therefore,
д = hn (x) − h(t)hd (x). Let ci be the coefficient of x i of д, then

ci = hni − h(t)hd,i = (−hd,i t + hn,i) ◦ h(t),

where hn,i and hd,i are the coefficients of x i in hn (x) and hd (x),
respectively. If hd,i , 0, then −hd,i t + hn,i is a unit and hence,

L = K(h(t)) = K(ci). □

Finally, given f ,h ∈ K(t), we want to find д ∈ K(t) such that f =
д◦h. It is known that д is unique (see [2]) and several methods exist

for finding д. The most straightforward method is to solve a linear

system in the coefficients ofд (see [9] for details). Another approach
can be found in [12] and uses O(nM(n) logn) field operations.

Remark 7. Our algorithm also works when f ∈ K[t] is a poly-
nomial if we normalize the generator of each subfield. This follows
from Corollary 2.3 of [3]. If f = д ◦ h is a minimal decomposition,
then K(h) is a principal subfield and its partition is not refined by
any other except P1. Thus, given P1, . . . , Pr , it is very easy to verify
which of these partitions represents a minimal decomposition. For a
principal subfield, a Lüroth generator can be obtained as a byproduct
of Algorithm Check. Hence, given P1, . . . , Pr , to compute all mini-
mal decompositions of f we only need to compute at most r − 1 left
components. When char(K) > 0, the factorization of f (x) − f (t) can
be computed with ˜O(nω+1) field operations, where 2 < ω ≤ 3 is a
matrix multiplication exponent (see [8] and [14]). An algorithm in
[7] also computes all minimal decompositions, and take ˜O(n6) field
operations (for finite fields). For more details, see [6, Theorem 3.23].

5.2 An Example
Let f := (t24 − 2t12 + 1)/(t16 + 2t12 + t8) and consider the extension
Q(t)/Q(f). The irreducible factors of Φf (x) are F1 = x − t , F2 =

x + t , F3 = x + 1/t , F4 = x − 1/t , F5 = x2 + t2, F6 = x2 + 1/t2, F7 =
x8 + (α/t4β)x4 + 1/t4 and F8 = x8 + (α/β)x4 + t4, where α = t8 + 1
and β = t4 + 1.

Using Algorithm Partitions we get the following partitions of

the principal subfields L1, . . . ,L8:

P1 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}

P2 = {{1, 2}, {3, 4}, {5}, {6}, {7}, {8}}

P3 = {{1, 3}, {2, 4}, {5, 6}, {7, 8}}

P4 = {{1, 4}, {2, 3}, {5, 6}, {7, 8}}

P5 = {{1, 2, 5}, {3, 4, 6}, {7}, {8}}

P6 = {{1, 2, 6}, {3, 4, 5}, {7, 8}}

P7 = {{1, 2, 5, 7}, {3, 4, 6, 8}}

P8 = {{1, 2, 3, 4, 5, 6, 7, 8}}.

By joining the partitions of all subsets of {P1, . . . , P8}, we get
the following new partitions:

P9 = P2 ∨ P4 = {{1, 2, 3, 4}, {5, 6}, {7, 8}}

P10 = P3 ∨ P6 = {{1, 2, 3, 4, 5, 6}, {7, 8}}.

Hence, P1, . . . , P10 are the partitions of every subfield ofQ(t)/Q(f (t)).
Next we compute all maximal chains of subfields. Recall that the

subfield relation translates as refinement of partitions, for instance,

L5 ⊆ L2, since P2 refines P5. Therefore, by looking at the partitions

P1, . . . , P10, we see that one maximal chain of subfields is

Q(f) = L8 ⊆ L7 ⊆ L5 ⊆ L2 ⊆ L1 = Q(t).

Now, let us find generators for these fields. As an example, let

us find a generator for L7. Following Theorem 5.1, let

д =
∏

i ∈P (1)

7

Fi = F1F2F5F7 = x12 − cx8 − cx4 − 1,

where c = (t12 − 1)/(t8 + t4). Since c ∈ K(t)\K , it follows that
L7 = Q (c). This yields the maximal chain of subfields:

Q(f) ⊆ Q (c) ⊆ Q(t4) ⊆ Q(t2) ⊆ Q(t).

Finally, we compute the corresponding complete decomposition of

f by computing left components. For instance, Q(f) ⊆ Q
(
t 12−1
t 8+t 4

)
implies that there exists д ∈ K(t) such that f = д ◦ t 12−1

t 8+t 4 . In this

case we have д = t2 and hence

f = t2 ◦
t12 − 1

t8 + t4
.

Now Q(t
12−1
t 8+t 4) ⊆ Q(t

4) and we can write
t 12−1
t 8+t 4 =

t 3−1
t 2+t ◦ t4, and so

on. This yields the following complete decomposition:

f = t2 ◦
t3 − 1

t2 + t
◦ t2 ◦ t2.

Doing this for every maximal chain of subfields yields all non-

equivalent complete decompositions of f .

5.3 Timings
Finally, we compare our algorithm Decompose, which returns all

non-equivalent complete decompositions of f , with the algorithms

full_decomp and all_decomps from [3], which returns a single

complete decomposition and all complete decompositions, respec-

tively. All timings presented below also include the factorization

time for Φf ∈ K(t)[x].
In the table below, n is the degree of f ∈ K(t) and r is the

number of irreducible factors of Φf . We also list dp , the degree of
the polynomial defining the good K(t)-ideal and #c , the number

of elements in K (or an extension of K , see Remark 5) used to

determine the partitions P1, . . . , Pr .
Our algorithm better compares to all_decomps, since both al-

gorithms return all non-equivalent complete decompositions of

f . According to our experiments, for small values of r , the time

spent by algorithm Decompose to compute all non-equivalent com-

plete decompositions is similar to the time spent by full_decomp
to compute a single decomposition. However, as r increases, we
see a noticeable improvement compared to full_decomp and more

so to all_decomps. More examples and details about these tim-

ings can be found at www.math.fsu.edu/~jszutkos/timings and the

implementation at www.math.fsu.edu/~jszutkos/Decompose.

Table 1: Timings (in seconds)

n r dp, #c Decompose
Ayad & Fleischmann (2008) [3]

full_decomp all_decomps

12 7 3,1 0.01 0.02 0.03

24 8 1,4 0.02 0.00 0.09

144 10 1,4 1.82 1.88 101.08

24 10 3,1 0.02 0.01 0.20

18 12 4,1 0.05 0.06 0.81

24 14 4,1 0.07 0.51 10.57

60 17 5,1 0.18 91.68 981.43

60 17 1,8 0.77 485.19 4,338.47

96 26 2,4 0.42 211.30 > 12h

60 60 3,5 1.91 > 12h n.a.

120 61 3,5 2.36 n.a. n.a.

169 91 3,7 3.41 n.a. n.a.

120 120 5,4 18.59 n.a. n.a.

168 168 4,9 50.53 n.a. n.a.

n.a.: not attempted.

REFERENCES
[1] V. S. Alagar and Mai Thanh. 1985. Fast polynomial decomposition algorithms.

Springer Berlin Heidelberg, Berlin, Heidelberg, 150–153.

[2] Cesar Alonso, Jaime Gutierrez, and Tomas Recio. 1995. A Rational Function

Decomposition Algorithm by Near-separated Polynomials. Journal of Symbolic
Computation 19, 6 (1995), 527 – 544.

[3] Mohamed Ayad and Peter Fleischmann. 2008. On the decomposition of rational

functions. Journal of Symbolic Computation 43, 4 (2008), 259 – 274.

[4] David R. Barton and Richard Zippel. 1985. Polynomial decomposition algorithms.

Journal of Symbolic Computation 1, 2 (1985), 159 – 168.

[5] Dario Bini and Victor Y. Pan. 1994. Polynomial and Matrix Computations (Vol. 1):
Fundamental Algorithms. Birkhauser Verlag, Basel, Switzerland, Switzerland.

[6] Raoul Blankertz. 2011. Decomposition of Polynomials. Master’s thesis. Bonn,

Germany. arXiv:1107.0687

[7] Raoul Blankertz. 2014. A Polynomial Time Algorithm for Computing All Minimal

Decompositions of a Polynomial. ACM 48, 1/2 (2014), 13–23.

[8] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. 2004. Complexity Issues

in Bivariate Polynomial Factorization. In ISSAC ’04. ACM, New York, NY, USA,

42–49.

[9] Matthew Thomas Dickerson. 1989. The Functional Decomposition of Polynomials.
Ph.D. Dissertation. Ithaca, NY, USA.

[10] Ralph Freese. 1997. Partition Algorithms (unpublished). Available at http://math.

hawaii.edu/~ralph/Notes (1997).

[11] Ralph Freese. 2008. Computing congruences efficiently. Algebra universalis 59, 3
(2008), 337–343.

[12] Mark William Giesbrecht. 1988. Some Results on the Functional Decomposition of
Polynomials. Master’s thesis. Toronto, Ontario, Canada.

[13] Dexter Kozen and Susan Landau. 1989. Polynomial decomposition algorithms.

Journal of Symbolic Computation 7, 5 (1989), 445 – 456.

[14] Grégoire Lecerf. 2007. Improved dense multivariate polynomial factorization

algorithms. Journal of Symbolic Computation 42, 4 (2007), 477 – 494.

[15] J. F. Ritt. 1922. Prime and Composite Polynomials. Trans. Amer. Math. Soc. 23, 1
(1922), 51–66.

[16] Henning Stichtenoth. 2008. Algebraic Function Fields and Codes (2nd ed.). Springer
Publishing Company.

[17] Jonas Szutkoski and Mark van Hoeij. 2016. The Complexity of Computing all

Subfields of an Algebraic Number Field. (2016). arXiv:1606.01140

[18] B. L. van Der Waerden. 1964. Modern Algebra. New York.

[19] Mark van Hoeij, Jurgen Klueners, and Andrew Novocin. 2013. Generating

subfields. Journal of Symbolic Computation 52 (2013), 17 – 34.

[20] Joachim von zur Gathen. 1990. Functional decomposition of polynomials: the

tame case. Journal of Symbolic Computation 9, 3 (1990), 281 – 299.

[21] Joachim von zur Gathen. 1990. Functional decomposition of polynomials: the

wild case. Journal of Symbolic Computation 10, 5 (1990), 437 – 452.

[22] Joachim von zur Gathen and Jurgen Gerhard. 2003. Modern Computer Algebra
(2nd ed.). Cambridge University Press, NY, USA.

[23] Richard Zippel. 1991. Rational Function Decomposition. In ISSAC ’91. ACM, New

York, NY, USA, 1–6.

www.math.fsu.edu/~jszutkos/timings
www.math.fsu.edu/~jszutkos/Decompose
http://arxiv.org/abs/1107.0687
http://math.hawaii.edu/~ralph/Notes
http://math.hawaii.edu/~ralph/Notes
http://arxiv.org/abs/1606.01140

	Abstract
	1 Introduction
	1.1 Roadmap
	1.2 Complexity model

	2 Basic Definitions
	3 Principal Subfields
	3.1 Main Theorem
	3.2 Principal Subfields of K(t)/K(f)

	4 Partition of Principal Subfields
	4.1 A Deterministic Algorithm
	4.2 Valuation rings of K(t)/K
	4.3 A Las Vegas Type Algorithm

	5 General algorithm and Timings
	5.1 General Algorithm
	5.2 An Example
	5.3 Timings

	Acknowledgments
	References

