
Generating Subfields

Mark van Hoeij

June 15, 2017

Mark van Hoeij Generating Subfields

Overview

Papers:

1 Generating Subfields (vH, Klüners, Novocin) ISSAC’2011.

2 The Complexity of Computing all Subfields of an Algebraic
Number Field (Szutkoski, vH), Submitted to JSC.

3 Functional Decomposition using Principal Subfields
(Allem, Capaverde, vH, Szutkoski) ISSAC’2017.

Implementations:

(1): Nicole Sutherland, in Magma.

(2),(3): Jonas Szutkoski, www.math.fsu.edu/∼jszutkos

Planning to add to Magma.

Mark van Hoeij Generating Subfields

Applications of subfields

Example 1. Use a CAS to solve this system of equations:

a2 − 2ab + b2 − 8 = 0, a2b2 − (a2 + 2a + 5)b + a3 − 3a + 3 = 0

Result: a = α, b =

−17α7

1809
+

61α6

3618
+

371α5

1809
−1757α4

3618
−563α3

603
+

6013α2

3618
+

3184α

1809
+

7175

3618

where α denotes a root of

x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x − 191 = 0.

Example 1 has a simpler solution:

a =
√

3 +
4
√

2−
√

2, b =
√

3 +
4
√

2 +
√

2 (1)

To find it we first need subfields of Q(α).

Mark van Hoeij Generating Subfields

Applications of subfields

Bostan and Kauers [Proc AMS 2010] gave an algebraic expression
for the generating function for Gessel walks, using two minpoly’s
with a combined size of 172 Kb. By computing subfields, this
expression could be reduced to just 300 bytes, a 99.8% reduction.

Why did computing subfields reduce the expression size?

When char(k) = 0, then a tower of algebraic extensions

k ⊆ k(α1) ⊆ k(α2) ⊆ k(α3) = K

can be given by a single extension K = k(α).

The primitive element theorem produces such α with a minpoly
that is usually large.
So we can expect the reverse process (computing subfields) to
reduce expression sizes.

Mark van Hoeij Generating Subfields

Notations.

Let K = k(α) be a separable field extension of k of degree n with
minpoly f .

Goal: Find all subfields of K/k, hopefully efficient in practice as
well as in theory.

Theoretical issue: There is no polynomial time algorithm because
there could be more than polynomially many subfields.

Can compute in polynomial time: a generating set {L1, . . . , Lr}

{subfields of K/k} = {intersections of L1, . . . , Lr}

Mark van Hoeij Generating Subfields

The Subfield Polynomial

Let k ⊆ k(α) = K be an algebraic extension with minpoly f . Let
k ⊆ L ⊆ K be a subfield. Let g ∈ L[x] be the minpoly of α over L.

Definition: We call this g the subfield polynomial of L.

g L (can find L from g)

To be precise: L is generated by the coefficients of g .

Note: A subfield polynomial is a factor of f in K [x].

So we could find all subfields by trying every factor of f in K [x].

Mark van Hoeij Generating Subfields

Factors of f

Let f = f1 · · · fr be the factorization of f in K [x]. We can assume
that f1 = x − α.

Finding Subfields, Exponential Complexity:
For each of the 2r monic factors of f in K [x], compute the field
generated by the coefficients of that factor.

Finding Subfields, Polynomial Complexity:
Perform a computation for each polynomial f2, f3, . . ., fr .

Problems:

1 These f2, f3, . . . are not subfield-polynomials;
their coefficients do not lead to proper subfields.

2 And even if they did, we wouldn’t get every subfield.

Mark van Hoeij Generating Subfields

Finding subfields

Let f = f1 · · · fr be the factorization of f in K [x], with f1 = x − α.

Define the i ’th principal subfield

Li = {h(α) | h(x) ∈ k[x]<n and h(x) ≡ h(α) mod fi}.

The condition
h(x) ≡ h(α) mod fi

translates into k-linear equations for the coefficients of h.
So

h(α) ∈ Li ⇐⇒ linear equations for coeffs(h).

Mark van Hoeij Generating Subfields

A generating set

A set S of subfields of K/k is a generating set if every subfield of
K/k is an intersection of members of S .

Theorem: The principal subfields L2, . . . , Lr from the previous
slide form a generating set.

Theorem: If k = Q then a generating set can be computed in
polynomial time.

After that we find all subfields by computing intersections.
The cost depends linearly on m, the number of subfields.

(m can be more than polynomial in n).

Mark van Hoeij Generating Subfields

Finding all subfields

Phase 1: Find a generating set.

Phase 2: Compute intersections to find all subfields.

Notation: m is the number of subfields.

Practical performance: Phase 1 usually dominates the CPU time
unless m is large.

Theoretical complexity: Phase 2 dominates the theoretical
complexity because Phase 1 is polynomial time, but m is not
polynomially bounded.

Mark van Hoeij Generating Subfields

Finding all subfields

Phase 1: Find a generating set.

Phase 2: Compute intersections to find all subfields.

ISSAC’2011 introduced “principal subfields” / “generating set”
and algorithms to compute them.

To optimize theoretical complexity one needs optimize Phase 2.
This was done in recent joint work with Jonas Szutkoski.

Result: better complexity, and better CPU times if m is large.

Tricky part: Do not want to be slower for small m.

 The data used to speed up Phase 2 must be computed quickly.

Mark van Hoeij Generating Subfields

Fast intersections

ISSAC’2011:

Each subfield L of K/k is a k-vector space. So any two
subfields L1, L2 can be intersected with k-linear algebra.

So after Phase 1 (computing principal subfields)
all other subfields can be computed with linear algebra.

If m is large, then there are many intersections to compute.

New idea: Represent a subfield L with some data PL such that:

1 L PL is fast (for principal subfields)

2 PL is small (for any L)

3 (PL1 ,PL2) PL1
⋂

L2
is fast. (for any L1, L2)

4 PL L is fast (for any L)

Fast intersections: Use (3) instead of linear algebra.

Mark van Hoeij Generating Subfields

Fast intersections, first try

Factor f = f1 · · · fr ∈ K [x] where K = k(α).
If L is a subfield of K/k , then its subfield polynomial g ∈ L[x]
(the minpoly of α over L) is a factor of f . So

g =
∏
i∈SL

fi for some SL ⊆ {1, . . . , r}.

SL encodes the subfield polynomial.
Does that meet the requirements?

1 L SL is fast (nontrivial)

2 SL is small (definitely!) (only r bits)

3 (SL1 ,SL2) SL1
⋂

L2
is fast (not enough data in SL1 , SL2)

4 SL L is fast (SL g generators of L)

To intersect quickly, we need slightly more data than SL.

Mark van Hoeij Generating Subfields

Fast intersections, second try

Factor f = f1 · · · fr ∈ K [x] where K = k(α).

If L is a subfield of K/k , then the factorization of f over L defines
a partition PL of {1, . . . , r}.

Here i , j are in the same part if fi , fj divide the same irreducible
factor of f in L[x].

PL encodes the factorization of f over L. Meets requirements?

1 L PL is fast (nontrivial)

2 PL is small (only r · log(r) bits)

3 (PL1 ,PL2) PL1
⋂

L2
is fast

4 PL L is fast

After computing PL for each generating subfield, the entire subfield
lattice can be found quickly (item 3) where each subfield is
represented in a convenient way (items 2 and 4).

Mark van Hoeij Generating Subfields

Partition PL example

Let K = k(α), minpoly f ∈ k[x], and factor f = f1 · · · fr ∈ K [x].
May assume f1 = x − α.

Let L be a subfield of K/k . The factorization of f in L[x] is:
f = g1 · · · gd for some 1 ≤ d ≤ r .
Since L ⊆ K , each gi is a product of some fj ’s.

Example:
Suppose r = 9 and g1 = f1f2f9, g2 = f3f4, and g3 = f5f6f7f8.
Then the partition PL is:

PL = {{1, 2, 9}, {3, 4}, {5, 6, 7, 8}}

PL “the part with 1” = {1, 2, 9} f1f2f9 = g1 L

because g1 = subfield polynomial, so L = k(coeffs(g1)).

Mark van Hoeij Generating Subfields

Partition PL example (diagram)

K f = f1f2f3f4f5f6f7f8f9 PK = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

L f = (f1f2f9) · (f3f4) · (f5f6f7f8) PL = {{1, 2, 9}, {3, 4}, {5, 6, 7, 8}}

k f = (f1f2f3f4f5f6f7f8f9) Pk = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}

Notation: Partition P is a refinement of Q

Q ≤ P

if each part of Q is a union of parts of P.

Note:
L1 ⊆ L2 ⇐⇒ PL1 ≤ PL2

Mark van Hoeij Generating Subfields

Partition PL example (vectors)

We can encode a partition

PL = {{1, 2, 9}, {3, 4}, {5, 6, 7, 8}}

as {0, 1}-vectors:

u1 = (1, 1, 0, 0, 0, 0, 0, 0, 1)
u2 = (0, 0, 1, 1, 0, 0, 0, 0, 0)
u3 = (0, 0, 0, 0, 1, 1, 1, 1, 0)

Finding PL ⇐⇒ Finding U := SPAN(u1, u2, u3)

(v1 . . . v9) ∈ U ⇐⇒ f v1
1 · · · f

v9
9 is defined over L

Mark van Hoeij Generating Subfields

L PL overview

Let K = k(α), let f be the minpoly of α, and f = f1 · · · fr ∈ K [x].
Let L be a subfield of K/k .

How to find: (v1, . . . , vr) ∈ {0, 1}r with
∏

f vi
i ∈ L[x]?

Previous slide: Basis of such vectors Partition PL

Issue 1:
∏

f vi
i is not linear in the unknowns v1, . . . , vr

Solution: use the logarithmic derivative.

Issue 2: Let h1, h2, . . . be coefficients or values of these
logarithmic derivatives. We need linear equations for v1, . . . , vr
that correspond to h1, h2, . . . ∈ L.
Solution: Use the definition of the i ’th principal subfield.

Main issue: efficiency (don’t make CPU time worse for small m)
Solution: Two complementary mod p methods.

Mark van Hoeij Generating Subfields

L PL overview of efficiency issue

Efficiency issue: The previous slide produces (details later) a
large number of equations, with large coefficients in k .

However: The number of unknowns, as well as their values, are
very small (remember we search for v1, . . . , vr ∈ {0, 1} !)

Idea: Use only a small subset of the equations, and only compute
their images over a finite field.

 O(r) equations over a finite field fast running time.

Question: What about correctness?

Mark van Hoeij Generating Subfields

Fast probabilistic computation, basic principle

Let M be a 200 by 10 matrix over k = Q(t1, t2,
√

t3
1 + 7).

Can compute rank(M) with row-reduction. But that is very slow.

Solution:

1 Take a 20 by 10 submatrix (take 20 random rows).

2 Replace t1, t2 by random integers.

3 Work mod prime ideal small matrix Mp over a finite field.

We can quickly compute rank(Mp). It probably equals rank(M)
but the only thing we know for sure is:

rank(Mp) 6 rank(M).

Mark van Hoeij Generating Subfields

Fast computation of PL

We have additional methods to determine PL. Tricks (1),(2),(3)
from the previous slide make these methods fast and probabilistic.

But not in the same direction!

With one method we quickly find a partition P and with another1

method, we quickly find Q in such a way that

P ≥ PL ≥ Q is provably true

where ≥ means refinement of partitions.

If P = Q then we are done.
If not, add more equations (or use another prime ideal).

1This explanation omits a third method that is usually faster, but has a
more technical proof (Thm. 30 in arXiv:1606.01140)

Mark van Hoeij Generating Subfields

L PL details

Let f = f1 · · · fr ∈ K [x]. The i ’th principal subfield is:

Li = {h(α) | h(x) ∈ k[x]<n and h(x) ≡ h(α) mod fi}.

We want its partition PLi . Let

g =
∏

f vi
i and G = g ′/g (logarithmic derivative)

Take a value of G : h(α) := G |x=c for some c ∈ k . Then

h(α) ∈ Li ⇐⇒ h(x) ≡ h(α) mod fi

 k−linear equations for v1, . . . , vr

Do this for 2n values of G necessary + sufficient equations.

Solve them basis of {0, 1}-vectors partition PLi

Mark van Hoeij Generating Subfields

L PL details, continued

Our algorithm uses � 2n values of G .

And: it does not fully compute values + resulting equations,
it only computes their images over a finite field.

 necessary (but not always sufficient) equations.
 a partition Q ≥ PLi

Then do another fast (over a finite field) computation,
which need not give PLi either, but it can only fail in the
opposite direction (≤ instead of ≥)

If both agree, then we provably have PLi (Las Vegas algorithm)

 Quickly find + prove the partition for each principal subfield.

Mark van Hoeij Generating Subfields

Fast intersections

Recall that L1 ⊆ L2 if and only if PL2 is a refinement of PL1 .

The partition of L1
⋂

L2 is the join of partitions PL1 and PL2 ,
i.e. the finest partition that is refined by both.

Our partitions are only r · log(r) bits each.
The join of two partitions can be computed quickly [Freese, 1997].

So after computing the partition of each principal subfield, the
entire subfield lattice (in terms of partitions) can be computed
very quickly, using only r · log(r) bits of storage per subfield.

Mark van Hoeij Generating Subfields

Generators of each subfield PL L

Partitions are probably the best way to represent each entry of the
subfield lattice. But to compare CPU timings “apples to apples”
we also give generators of each subfield.

For each PL we have to find generators for L.

f = f1 · · · fr ∈ K [x]

The partition PL encodes which {f1, . . . , fr}-products are in L[x].
Take values or coefficients of these products elements of L.

Question: if h1, h2, . . . ∈ L, is there a fast proof they generate L?

Answer: Check if for each principal subfields Li with L 6⊆ Li there
is some hj 6∈ Li .

That means hj(x) 6≡ hj(α) mod fi give fast proof mod p.

Mark van Hoeij Generating Subfields

n r m m/r Magma v2.21-3 Subfields

32 32 374 11.68 11.42s 1.15s
36 16 24 1.50 5.14s 3.84s
50 11 12 1.09 26.06s 24.16s
56 6 6 1.00 52.29s 50.31s
60 18 19 1.05 112.90s 107.53s
60 32 59 1.84 205.46s 118.50s
64 30 93 3.10 167.13s 122.24s
64 64 2,825 44.14 1,084.91s 43.62s
72 24 42 1.75 219.30s 176.65s
75 6 6 1.00 516.45s 542.60
80 27 57 2.11 1,021.22s 685.65s
81 28 56 2.00 715.70s 681.35s
90 7 7 1.00 923.74s 921.77s
96 32 134 4.18 1,159.04s 558.96s
96 56 208 3.71 4,026.65s 2,239.54s

100 57 100 1.75 7,902.09s 4,250.39s
128 128 29,211 228.21 306,591.68s 5,164.75s

Mark van Hoeij Generating Subfields

Computing decompositions (ISSAC’2017)

Let f (t) ∈ k(t) be a univariate rational function.

Goal: find complete decompositions of f :
indecomposable rational functions g1, . . . , gm such that

f = g1 ◦ · · · ◦ gm.

Since: decompositions of f ←→ subfields of k(t)/k(f (t))
and: complete decomp. of f ←→ max. chains of subfields

we can use these ingredients:

1 Factor the numerator of f (t)− f (x) as f1 · · · fr ∈ k[t, x].

2 Principal subfields (vH, Klüners, Novocin) (ISSAC’2011)

3 Fast intersection (Szutkoski, vH) (submitted JSC)

4 Remaining ingredients (ISSAC’2017).

Mark van Hoeij Generating Subfields

Timings (ISSAC’2017)

k n r #dec Decompose Ayad & Fleischmann ’08
F11 12 7 3 0.01s 0.03s
Q 24 8 6 0.02s 0.09s
Q 144 10 6 1.82s 101.08s
F11 24 10 8 0.02s 0.20s
F3 18 12 12 0.05s 0.81s
F11 24 14 12 0.07s 10.57s
F3 60 17 5 0.18s 981.43s
Q 60 17 5 0.77s 4,338.47s
F17 96 26 44 0.42s > 12h
F11 60 60 111 1.91s n.a.
F11 120 61 111 2.36s n.a.
F13 169 91 14 3.41s n.a.
F5 120 120 587 18.59s n.a.
F7 168 168 680 50.53s n.a.

Mark van Hoeij Generating Subfields

