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ABSTRACT

To solve globally bounded order 3 linear differential equations with rational function coefficients,

this thesis introduces a partial 3F2-solver (Section 3.2) and F1-solver (Chapter 4) where 3F2 is

the hypergeometric function 3F2(a1, a2, a3; b1, b2 |x) and F1 is the Appell’s F1(a, b1, b2, c |x, y). To

investigate the relations among order 3 multivariate hypergeometric functions, this thesis presents

two multivariate tools: compute homomorphisms (Algorithm 5.3.10) of two D-modules where D is

a multivariate differential ring, and compute projective homomorphisms (Algorithm 5.4.5) using the

tensor product module and Algorithm 5.3.10. As an application, all irreducible order 2 subsystems

from reducible order 3 systems turn out to come from Gauss hypergeometric function 2F1(a, b; c |x)

(Chapter 6).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Homogeneous linear differential equations with rational function coefficients are used in many

fields.

Definition 1.1.1 A function y = y(x) is D-finite of order n if it satisfies an order n (an 6= 0)

linear differential equation (1.1):

any
(n) + . . .+ a1y

′ + a0y = 0 with a0, . . . , an ∈ C(x). (1.1)

Let S(x) be a D-finite function. Suppose we want to know if (1.1) can be solved “in terms of”

S. To make this more precise: S-type expressions should allow:

• S

• field operators (+, −, ×, ÷)

• algebraic functions

• exp and log

• composition

• differentiation and integration.

Not all S-type expressions are relevant for solving (1.1). For example, S(exp(x)) is not D-finite

for most D-finite S, which leads to a question: which S-type expressions are D-finite?

D-finite to D-finite operations:

• Operations that do not increase the order (more details in Section 2.1.8):

– (i) S(x) 7→ S(f) for some f ∈ C(x)− C.

– (ii) S 7→ exp(
∫
r) · S with r ∈ C(x).
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– (iii) S 7→ r0S + r1S
′ + . . .+ rn−1S

(n−1) with r0, r1, . . . , rn−1 ∈ C(x).

• Operations that can increase the order:

– (iv) Same as (i)(ii)(iii) but with algebraic functions f, ri, r.

– (v) S1, S2 7→ S1 + S2. From order n1, n2 to order ≤ n1 + n2.

– (vi) S1, S2 7→ S1 · S2. From order n1, n2 to order ≤ n1 · n2.

Order preserving transformations (i)(ii)(iii) are relevant to solving differential equations of any

order, while order increasing transforamtions (iv)(v)(vi) are relevant for solving equations of order

> 2.

Remark 1.1.2 Suppose S is D-finite of order n. The non-zero expression

exp(

∫
rdx)(r0S(f) + r1S(f)′ + . . .+ rn−1S(f)(n−1)) (1.2)

is the most general S-type expression under (i)(ii)(iii). It is D-finite of order ≤ n.

Section 3.3 will give an algorithm to decide if two equations of order 3 are connected under

transformations (ii)+(iii) (there already was an algorithm for order 2). With it, finding a solution

of form (1.2) reduces to finding the parameters in S and the pullback function f. What makes this

task nontrivial is that to solve L we need to compute f by only using data from L invariant under

(ii)+(iii).

Quan Yuan’s thesis [29, 32] did this for n = 2 for many special functions S, such as Bessel,

Airy and Kummer, that satisfy an order 2 equation, with one important exception: the Gauss

hypergeometric 2F1 function.

Definition 1.1.3 The 2F1 function, also called Gauss hypergeometric function, is defined by

2F1(a, b; c |x) :=
∞∑
k=0

(a)k · (b)k
(c)k · k!

xk

where (λ)k denotes the Pochhammer symbol

(λ)k =

{
1 k = 0

λ(λ+ 1) · · · (λ+ k − 1) k 6= 0.
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This 2F1(a, b; c |x) function satisfies the Gauss Hypergeometric Equation (GHE):

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0. (1.3)

We can write (1.3) as L(y) = 0 where L = x(1− x)∂2 + (c− (a+ b+ 1)x)∂ − ab (with ∂ = d
dx) is a

differential operator.

Vijay Kunwar’s [22, 23] and Erdal Imamoglu’s [19–21, 28] developed several algorithms to find

2F1-type solutions (form (1.2) with S(x) = 2F1(a, b; c |x) for some a, b, c) of order 2 differential

equations.

Definition 1.1.4 [11] Let y ∈ C[[x]] − {0}, if y has a positive radius of convergence and there

exist c1, c2 ∈ C − {0} such that c1 · y(c2x) ∈ Z[[x]], then y(x) is called globally bounded. If an

irreducible operator L has a globally bounded solution, then L is called globally bounded.

Globally bounded order 2 equations are very common, and so far they all turn out to have

2F1-type solutions [3, 9, 10,33], which motivates Conjecture 1 below.

Conjecture 1 Let L = a2∂
2 + a1∂+ a0 be a linear differential operator of order 2 with a0, a1, a2 ∈

C(x). If L(y) = 0 and y is globally bounded, then one of these cases holds:

• y is an algebraic function, y ∈ C(x), or,

• y can be written in form (1.2) with n = 2, f, r, r0, r1 ∈ C(x), S(x) being 2F1(a, b; c |x) for

some a, b, c ∈ Q and c ∈ {1, 2, . . .}1.

Conjecture 1 says that closed form solutions should be very common in many applications, so a

good 2F1-solver is useful from a practical point of view. With programs from Imamoglu, Kunwar,

Fang [17, 18] and van Hoeij [27], this conjecture was tested on hundreds of equations from OEIS

(Online Enyclopedia of Integer Sequences [1]).

Example 1.1.5 Consider the differential operator (Example 1.3 in [21])

L = ∂2 − 512x5 + 384x4 − 64x3 − 88x2 − 10x− 1

x(4x− 1)(4x+ 1)(16x3 + 24x2 + 5x+ 1)
∂ +

512x5 + 64x4 − 128x3 − 60x2 − 8x− 1

x2(4x− 1)(4x+ 1)(16x3 + 24x2 + 5x+ 1)
.

The following 2F1-type solution of L is obtained by the algorithms in [21]:

(4x3 + x2 +
x

2
) 2F1(

1

2
,
1

2
; 1 | 16x2) + (32x5 − 2x3) 2F1(

3

2
,
3

2
; 2 | 16x2).

1This condition corresponds to L having at least one logarithmic singularity.
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1.2 Univariate Hypergeometric Functions

Definition 1.2.1 The hypergeometric series pFq defined by

pFq

(
α1 . . . αp
β1 . . . βq

|x
)

:=
∞∑
k=0

(α1)k · (α2)k · · · (αp)k
(β1)k · (β2)k · · · (βq)kk!

xk

is a generalization of the Gauss hypergeometric 2F1 function (Definition 1.1.3). It is also

denoted as pFq(α1, α2, . . . , αp;β1, β2, . . . , βq |x).

The minimal operator of pFq(α1, α2, . . . , αp;β1, β2, . . . , βq |x) in C(x)[∂] is

δ(δ + β1 − 1) · · · (δ + βq − 1)− x(δ + α1) · · · (δ + αp) (1.4)

with δ = x d
dx = x∂. Using ∂ · a = a · ∂ + a′, δδ = x∂x∂ = x(x∂ + 1)∂ = x2∂2 + x∂, one can check

that (1.3) is a special case of (1.4).

Remark 1.2.2 Hypergeometric pFq functions with p+ 1 6= q are not globally bounded.

Globally bounded pFq-type expressions which are D-finite of order 3 are 3F2 and the square of 2F1,

which motivates Question 1, the analogue of Conjecture 1 for univariate operators of order 3.

Question 1 Let L = a3∂
3 + a2∂

2 + a1∂ + a0 be a linear differential operator of order 3 with

a0, a1, a2, a3 ∈ C(x). If L(y) = 0 and y is globally bounded, must one of these cases hold?

• y can be written as in Conjecture 1 or,

• y can be written in form (1.2) with n = 3, f, r, r0, r1, r2 ∈ C(x) and S being a 3F2 function

or the square of a 2F1 function.

Remark 1.2.3 The analogue of Conjecture 1 for order 4 operators is false and there are many

counter examples in the Calabi-Yau database (a large database with hundreds of order 4 equations

[2]). But for order 3, we found no counter example in the literature or in [1].

To test Question 1, we developed a partial 3F2-solver (Chapter 3). Next we constructed a

counter example of Question 1 by substitution in Appell’s F1 function (Chapter 4), a multivariate

hypergeometric function. The resulting globally bounded function is a solution of:

4



Table 1.1: Hypergeometric Functions of Order 2, 3, 4

Order
Univariate

Regular Singular
Multivariate

Regular Singular
Irregular Singular

2 2F1

solvers [17,19,22,27]
Remark 1.3.1

0F1 (Bessel, Airy)

1F1 (Kummer, Whittaker)
solvers [29,32]

3 3F2

solver in Section 3.2
F1, G1, G2, G3, H3, H6

F1-solver in Chapter 4
0F2, 1F2, 2F2, . . .

solvers [30] in progress

4 4F3 F2, F3, F4, . . . 0F3, 1F3, . . .

L = ∂3 +
5891x3 + 9388x2 − 11890x+ 3000

15x(x+ 4)(43x− 20)(2x− 1)
∂2

+
235296x3 + 30775x2 − 191300x+ 36000

900x2(x+ 4)(43x− 20)(2x− 1)
∂

+
3096x2 − 5005x− 1900

900x2(x+ 4)(43x− 20)(2x− 1)
. (1.5)

This operator L is globally bounded but not 3F2-solvable (Appendix). So a 2F1-solver and a

3F2-solver are not enough to solve globally bounded order 3 equations. We need, among other

things, an F1-solver (Chapter 4) as well.

1.3 Multivariate Hypergeometric Functions

In light of Conjecture 1, we could ask if globally bounded equations of higher order are also

solvable in terms of hypergeometric functions. If we aim to solve univariate equations, then it

makes sense to consider univariate hypergeometric functions, leading to Question 1. However,

example (1.5) (for order 3) and examples (for order 4) in Calabi-Yau database show that univariate

hypergeometric functions are not sufficient to solve globally bounded order 3 or 4 equations. But

what about multivariate hypergeometric functions? This leads to Question 2:

Question 2 Are globally bounded operators solvable in terms of A-hypergeometric functions?

There are many generalizations of 2F1 in the literature, see Table 1.1. Fortunately, they can be

classified in one framework called A-hypergeometric functions [4–8]. These functions are classified

by polytopes (Chapter 7).

5



Remark 1.3.1 All multivariate regular singular hypergeometric functions of order 2 we encoun-

tered so far are special cases of 2F1. But for higher order, the number of cases grows quickly.

To test Question 2, we need to develop algorithms to solve univariate equations in terms of

multivariate functions:

• There are many useful tools in [17–23,27–29,32] for univariate order 2 operators including one

which can recover transformations (ii)+(iii) in Section 1.1. We developed Algorithm 5.3.10

to recover transformation (iii) and Algorithm 5.4.5 for (ii)+(iii) for multivariate systems of

any order.

• For transformation (i), one need to recover the pullback function f. There are several pullback

functions instead of one in the multivariate case. So it is not obvious how to generalize the

univariate tool to multivariate.

• There are many hypergeometric functions of order greater than 2, so it will be a lot of work

if we develop a solver for each of them. First, we developed a solver for one case, F1 in

Chapter 4. Next, to reduce the amount of work, we used Algorithms 5.3.10 and 5.4.5 to

investigate the relations among them – to reduce the number of functions for which we need

solvers.

Conjecture 2 Let L be a linear differential operator with rational function coefficients of order 3.

If L(y) = 0 and y is globally bounded, then one of these cases holds:

• L has a solution as in Conjecture 1 or,

• L has a solution that can be written in form (1.2) with n = 3, f, r, r0, r1, r2 ∈ C(x) and S

being a 3F2 function or Appell F1 function (Chapter 4) or Horn G3 function (Section 6.3) or

a square of a 2F1 function.

We could ask if in Question 2 we can restrict to irreducible A-hypergeometric systems, or, if

reducible systems need to be considered as well. This question leads to:

Question 3 Given a reducible A-hypergeometric system with order n (n ≥ 3), say it has a factor

L of order m < n, is L solvable in terms of A-hypergeometric functions of order m?

We verified Question 3 for m = 2 and n = 3 for the regular singular order 3 A-hypergeometric

systems in Table 1.1. To study Question 3 for m = 3 and n = 4, we developed algorithms to

compute solutions in terms of order 3 A-hypergeometric functions (so far 3F2-solver in Chapter 3

and F1-solver in Chapter 4).

6



CHAPTER 2

PRELIMINARIES

This chapter introduces exponents, transformations and relations between them. The reason why

we need (generalized) exponents is as follows:

• We have an algorithm (DEtools[Homomorphisms] in Maple) that can recover transformation

(iii). We need an algorithm that can recover (ii)+(iii). Then we should compute r in (ii)

using only data (“exponents mod Z”) that is invariant under (iii).

• Suppose we have an algorithm for (ii)+(iii) and we want an algorithm for (i)+(ii)+(iii). Then

we should compute f in (i) using only data (“exponent differences mod Z”) invariant under

(ii)+(iii).

This explains why the rather technical (generalized) exponents are important for finding solutions

of form (1.2).

2.1 Differential Operators and Transformations

Definition 2.1.1 Let K be a ring. A derivation of K is a linear map ∂ : K → K such that all

a, b ∈ K satisfy the product rule:

∂(ab) = a · ∂(b) + b · ∂(a).

A ring K with a derivation ∂ is called a differential ring.

Let ∂ = d
dx . Then K = C(x) with ∂ is a differential field.

Definition 2.1.2 Let ai ∈ K and L =
∑n

i=0 ai∂
i. The operator L can be considered as a map

L : K → K. If an 6= 0, then n is the order of L. Composition of operators is multiplication in the

ring K[∂] = {
∑n

i=0 ai∂
i | ai ∈ K}. So if a ∈ K, then ∂ · a = a∂ + a′.

Definition 2.1.3 A universal extension of K = C(x) is a commutative differential ring Ω with:

• K ⊆ Ω.

7



• Ω is a K[∂]-module.

• For any L ∈ K[∂], Ker(L : Ω → Ω) is a C-vector space of dimension order(L). Denote it as

V (L), the solution space of L.

• Every y ∈ Ω is a solution of some nonzero operator L ∈ K[∂].

[25] shows that such universal extension Ω exists for any differential field K with algebraically

closed field of constants, moreover, it is unique up to isomorphism.

Remark 2.1.4 For the ring K[∂], one can perform right division with remainder. As a conse-

quence, every left1 ideal of K[∂] is principal. In fact, K[∂] has all properties of a Euclidean domain

except commutativity.

Definition 2.1.5 The least common left multiple LCLM(L1, L2) is the unique monic generator of

K[∂]L1∩K[∂]L2. The greatest common right divisor GCRD(L1, L2) is the unique monic generator

of K[∂]L1 +K[∂]L2. Their solutions are as follows.

V (LCLM(L1, L2)) = V (L1) + V (L2). (2.1)

V (GCRD(L1, L2)) = V (L1) ∩ V (L2).

Note that (2.1) shows item (v) in Section 1.1 (D-finite plus D-finite is D-finite).

Definition 2.1.6 (Item (ii) in Section 1.1). If L =
∑n

i=0 ai∂
i, then L s©(∂−r) denotes

∑n
i=0 ai(∂−

r)i.

Remark 2.1.7 The map L 7→ L s©(∂ − r) is an automorphism of K[∂]. If y is a solution of L,

then y · exp(
∫
r) is a solution of L s©(∂ − r). In this thesis, exp(

∫
r) denotes a nonzero solution of

∂ − r in Ω.

Suppose L has a non-zero solution y(x) and

y1 = y(x2),

y2 = ex · y,
1We only use left ideals (and right division), but the same is true for right ideals (using left division).

8



y3 = xy′ + (x+ 1)y

are solution of operators L1, L2, L3. If y is a closed form solution of L (Remark 1.1.2), then

y1, y2, y3 are closed form solutions of L1, L2, L3 respectively. Note that y1, y2, y3 are examples for

transformations (i)(ii)(iii) in Section 1.1. Here we give these transformations in more detail:

Definition 2.1.8 Let L =
∑n

i=0 ai∂
i be a differential operator of order n. Consider the following

transformations. Here y = y(x) denotes an arbitrary solution of L.

(i) Change of variables transformation: y(x) 7−→ y(f), or equivalently,

L 7−→
n∑
i=0

ai(f)∂if

where ∂f = d
df = 1

f ′∂. Here f is called the pullback function, and f ′ must be nonzero.

(ii) Exp-product transformation: y 7−→ exp(
∫
r)y, or equivalently,

L 7−→ L s©(∂ − r).

(iii) Gauge transformation: y 7−→ G(y), here G = r0+r1∂+r2∂
2+. . .+rn−1∂

n−1 or equivalently,

L 7−→ L̃, where L̃ ·G = LCLM(L,G).

We only allow G with GCRD(L,G) = 1, which is equivalent to ord(L) = ord(L̃), and G giving a

bijection from V (L) to V (L̃).

Remark 2.1.9 If a combination of (i), (ii), (iii) in Definition 2.1.8 sends operator L1 to L2, then

solutions of L2 can be expressed in form (1.2) with S(x) being solutions of L1.

If L1 ∈ K[∂] and the parameters (f in (i), r in (ii) and G in (iii)) are over K as well, then L2

is also in K[∂]. For the resulting operator L2 ∈ K[∂], use L1
(i), f−−−→L2, L1

(ii), r−−−→L2 and L1
(iii), G−−−−→L2

to denote transformations (i), (ii) and (iii) respectively.

Definition 2.1.10 Let L1, L2 ∈ K[∂].

• L1
(i)−→L2 means ∃ f ∈ K such that L1

(i), f−−−→L2.

9



• L1
(ii)−−→L2 means ∃ r ∈ K such that L1

(ii), r−−−→L2.

• L1
(iii)−−→L2 means ∃G ∈ K such that L1

(iii), G−−−−→L2.

• L1
(ii),(iii)−−−−−→L2 means L1 transforms to L2 under transformations (ii) and (iii).

• L1 −→ L2 means L1 transforms to L2 under transformations (i), (ii), (iii).

Proposition 2.1.11 [14]. The transformations
(ii)−−→ ,

(iii)−−→ and
(ii), (iii)−−−−−→ define equivalence rela-

tion. The following are equivalent and such operators L1, L2 are called projectively equivalent.

• L1
(ii)−−→ (iii)−−→ L2,

• L1
(iii)−−→ (ii)−−→ L2,

• L1
(ii), (iii)−−−−−→ L2.

Proposition 2.1.12 [14, 15]. If L1, L2 ∈ K[∂] and L1 −→ L2, then there exists an operator

M ∈ K[∂] such that L1
(i)−→M

(ii), (iii)−−−−−→L2.

Definition 2.1.13 Let L ∈ C(x)[∂]. Clearing denominators means replacing L by a · L for some

a ∈ C(x) such that a · L ∈ C[x][∂] and the greatest common divisor of all coefficients of a · L in

C[x] is 1. After clearing denominators, if p ∈ C is a root of leading coefficient, then p is called a

singularity of L. If p = 0 is a singularity of L̃ with L
(i), 1

x−−−→ L̃ then p =∞ is a singularity of L. All

other points are called regular points.

Definition 2.1.14 A singularity x = p of L is a non-removable singularity if it remains singular

under any
(ii), (iii)−−−−−→ transformation, otherwise it is a removable singularity. The beginning of this

chapter explains why only non-removable singularities are relevant for finding the pullback function

f – we compute f from data invariant under
(ii), (iii)−−−−−→ transformations.

Example 2.1.15 L = (x2−x)∂2 + x2−5x+2
x−2 ∂+ x+2

(x−2)2 has singularities at x = 0, x = 1, x = 2 and

x =∞. Among them, x = 1 and x = 2 are removable since x = 1 is a regular point of L s©(∂− 1
x−1)

and x = 2 is a regular point of L s©(∂+ 1
x−2). The other singularities are non-removable: they stay

singular under any
(ii), (iii)−−−−−→ transformations.

Definition 2.1.16 A singularity x = p ∈ C of L ∈ K[∂] is called

10



• apparent singular if all solutions of L are analytic at p.

• regular singular if there exists some positive integer N such that (x − p)N · y converges to 0

as x→ p for any y ∈ V (L).

• irregular singular otherwise.

The singularity x = ∞ of L is apparent (regular, irregular) singular if x = 0 is apparent (regular,

irregular) singular of L̃ with L
(i), 1

x−−−→ L̃.

2.2 D-modules

Let K = C(x) and D = K[∂] and let y ∈ Ω (Definition 2.1.3) with y 6= 0. By Remark 2.1.4,

there is a unique monic L ∈ D of minimal order with L(y) = 0 and call L the minimal operator of

y. Let Dy := {L(y) |L ∈ D}. Now Dy ⊆ Ω is a left D-module that is isomorphic to D/DL. We

only consider D-modules that are finitely dimensional K-vector spaces. Any n× n matrix A over

K defines a D-module Kn by letting:

∂

a1...
an

 := A ·

a1...
an

+

∂(a1)
...

∂(an)

 .
Remark 2.2.1 Every D-module M is cyclic (cyclic vector theorem [25]): there exists y ∈M with

y, ∂(y), . . . , ∂n−1(y) a K-basis of M . That means M ∼= D/DL where L is the minimal operator of

y. If L is irreducible, so is M.

Remark 2.2.2 If L = L1L2, then DL2/DL ∼= D/DL1 is a submodule of M and D/DL2 is a

quotient module of M .

Remark 2.2.3 Let L1 ∈ D. The corresponding D-module is M1 := D/DL1. Note that dimK(M1)

is the order of L1. Let M2 be the D-module for L2, then L1
(iii), G−−−−→L2 is equivalent to saying that

M1 and M2 are isomorphic as D-modules. Any gauge transformation G sends the solution of L1,

y, to the solution of L2, G(y), giving an isomorphism from D/DL1 to D/DL2.

Definition 2.2.4 Let M1, M2 be the D-modules of L1 and L2, then M1 and M2 are projectively

equivalent (M1
∼= M2 ⊗ I for a 1-dimensional module I) if L1 and L2 are projectively equivalent.2

2We will generalize this definition to multivariate case in chapter 5.
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2.3 Exponents

Exponents will be needed in 3F2-solver (Chapter 3) and F1-solver (Chapter 4).

Definition 2.3.1 Let L ∈ D := K[∂], then e ∈ C is an exponent of L at x = 0 if and only if there

exists a solution of L at x = 0, say y, such that

y = xe · S, S ∈ R0 := C[[x]][ln(x)] and S 6∈ x ·R0. (2.2)

Definition 2.3.2 Let L ∈ D, p ∈ P1 and

tp =

{
x− p, p ∈ C
1
x , p =∞.

Then e ∈ C is an exponent at x = p if and only if L has a solution of form (2.2) with x replaced

by tp.

Definition 2.3.3 Let L ∈ D and e ∈ C[x−
1
n ] for some n ∈ N. Such e is a generalized exponent of

L at x = 0 if and only if there exists a solution of L at x = 0, say y, such that

y = exp(

∫
e

x
dx) · S, S ∈ R0,n := C[[x

1
n ]][ln(x)] and S 6∈ x

1
n ·R0,n. (2.3)

Remark 2.3.4 Generalized exponents will only be used in Section 3.3.

Definition 2.3.5 As in Definition 2.3.2, Definition 2.3.3 can be extended to x = p (p ∈ P1) in the

case of e ∈ C[t
− 1

n
p ].

Remark 2.3.6 If e ∈ C, then Definition 2.3.1 and 2.3.3 coincide since exp(
∫
e
xdx) is just xe in

that case.

2.3.1 Case of Order 1

In this section, we explain generalized exponents of order 1 operators (in this case n is always 1

in Definition 2.3.3). This will be used to recover the exp-product transformation
(ii)−−→. Let L = ∂−r

with r ∈ C(x).

Example 2.3.7 The solution of L = ∂ − 1
x2

at x = 0 is

y = exp(

∫
1

x2
dx) = exp(

∫ 1
x

x
dx).

Then the generalized exponent of L at x = 0 is 1
x ∈ C[x−1].

12



Remark 2.3.8 Let e be the exponent of L at x = 0. Then:

• L is regular singular (Definition 2.1.16) at x = 0 if e ∈ C, then we usually write xe for

exp
∫
e
x .

• L is nonsingular at x = 0 if e = 0.

• y is meromorphic at x = 0⇐⇒ e ∈ Z.

Definition 2.3.9 Two (generalized) exponents e1, e2 ∈ C[t−1p ] at x = p ∈ P1 are called equivalent

if they differ by an integer, i.e.,

e1 ∼ e2 ⇐⇒ e1 − e2 ∈ Z.

One can classify the solution exp(
∫
r) of operator L = ∂ − r up to a meromorphic factor by taking

the image of e in C[t−1p ]/Z.

Remark 2.3.10 [13]

• Fuchs’ relation: L = ∂ − r and the set of all singularities of L is {p1, . . . , pn} ⊆ P1. Then

n∑
i=1

ConstTerm(ei) = 0, (2.4)

where ei is the generalized exponent of L at x = pi. This is to say that the sum of residues of

r is 0.

• If the ei are only given up to equivalence, then

n∑
i=1

ConstTerm(ei) ∈ Z. (2.5)

Partial Fraction Decomposition. This subsection discusses the relation between the partial

fraction decomposition of r and the (generalized) exponents of L = ∂ − r at singularities.

Let L = ∂−r with r ∈ C(x), then y = exp(
∫
r) is the solution of L. Rewrite the partial fraction

decomposition

r = P (x) +
∑∑ aij

(x− pi)j

as

r = P (x) +
∑ ei

ti

13



with ti = x− pi, pi ∈ C and ei ∈ C[t−1i ]. Here ei
ti

is the polar part of r at x = pi and describes the

asymptotic behavior of y near pi. For example, y is meromorphic at x = pi if and only if ei ∈ Z.

As another example, if ei = 5
4 , then y behaves as (x− pi)

5
4 · S(x) where S(x) is analytic at x = pi

with S(pi) 6= 0. If ei is not a constant, e.g, ei = 1
ti
, then y has an essential singularity at x = pi and

x = pi is an irregular singularity (Definition 2.1.16) of L.

Remark 2.3.11 For pi ∈ C, the generalized exponent ei of ∂ − r at x = pi represents the polar

part of r at x = pi.

Example 2.3.12 If the (generalized) exponents of ∂ − r at singularities in C are:

Points (Generalized) Exponents

0 1/2

1 3 + 1/t1
2 5 + 1/t22

then r = P (x) + 1/2
x + 3

x−1 + 1
(x−1)2 + 5

x−2 + 1
(x−2)3 , here P (x) is a polynomial.

Now turn to the generalized exponent of ∂ − r at x =∞. Suppose P (x) =
∑n

i=0 aix
i, then the

solution at infinity is

exp(

∫
r) = exp(

n∑
i=0

aix
i+1

i+ 1
) = exp(

n∑
i=0

ai

(i+ 1)ti+1
∞

).

By the definition of the generalized exponent, exp(
∑n

i=0
ai

(i+1)ti+1
∞

) = exp(
∫

e
t∞
dt∞). So we can solve

for e∞ =
∑n

i=0
−ai
ti+1
∞

+ c, here c is a constant and can be obtained by Fuchs’ relation (2.4).

Example 2.3.13 If L = ∂ − r with r = 3
x + 5

x2
+ 7

x−1 + 5
(x−1)2 + 3 + 5x+ 7x2, then the generalized

exponents of L at x = 0, x = 1 and x =∞ are:

e0 = 3 +
5

x
,

e1 = 7 +
5

x− 1
.

e∞ = −10− 3x− 5x2 − 7x3.

The constant −10 in e∞ is obtained by Fuchs’ relation (2.4), or by:

14



Remark 2.3.14 Another way to compute e∞ is by applying the change of variables transformation

with x 7→ 1
x on L, then compute the generalized exponent of the new operator in C[x−1] at x = 0,

and then replace x by t∞.

Remark 2.3.15 Conversely, if the generalized exponent of ∂ − r at x = ∞ is
∑k

i=0
bi
ti
, then the

polar part at x =∞ is
∑k

i=1−bixi−1. If the generalized exponent at x = pi ∈ C is ei, then the polar

part of r at x = pi is ei
ti

with ti = x−pi. So if given generalized exponents of ∂−r at all singularities

in P1, then r can be obtained by adding all polar parts at its singularities. (The exponent of ∂ − r

at regular points is 0, therefore the polar part is also 0.)

2.3.2 Case of Higher Order

For higher order operators, we focus on regular singular operators (all exponents in C) because

this is the case of the globally bounded operators.

Definition 2.3.16 If the order of L1 is greater than 1, then it has more than one exponents at

every point p ∈ P1. Exponents of L1 at x = p (say set A) are equivalent to exponents of L2 at x = p

(say set B) if there exists a one-to-one map f : A→ B such that for any a ∈ A, a ∼ f(a) ∈ B by

Definition 2.3.9. Use ∼ to denote this equivalence.

Example 2.3.17 Let L1 = ∂3 + 4(110x2−21x−3)
x(40x2−37x−3) ∂

2 + 4
9
2640x2+142x−15
(40x2−37x−3)x2)∂+ 880

27
20x+3

(40x2−37x−3)x2 and L2 =

9x2(x− 1)∂3 + (−18x+ 81x2)∂2 + (−2 + 162x)∂ + 54. Exponents of L1 and L2 at x = 0 are:

Operators Exponents at x = 0

L1 0,−1/3,−2/3

L2 0, 2/3, 1/3

Then {0,−1
3 ,−

2
3} ∼ {0,

2
3 ,

1
3} since 0 ∼ 0, −1

3 ∼
2
3 and −2

3 ∼
1
3 .

2.4 Exponents and Transformations

This section discusses the relation between exponents (Definition 2.3.2) and transformations

(Definition 2.1.8).

2.4.1 Exponents and Change of Variables Transformation

Let L1 be a regular singular operator of order 3 and its exponents are:

15



Singularities Exponents

p ep,1, ep,2, ep,3
q eq,1, eq,2, eq,3
r er,1, er,2, er,3

Let the pullback function be f = ax+b
cx+d ∈ C(x). Say f sends (p̃, q̃, r̃) to (p, q, r) if f(p̃) = p,

f(q̃) = q, f(r̃) = r. Let L2 be the new operator: L1
(i), f−−−→ L2. Then by definition of change of

variables ((i) in Definition 2.1.8), exponents of L2 should be:

Singularities Exponents

p̃ ep,1, ep,2, ep,3
q̃ eq,1, eq,2, eq,3
r̃ er,1, er,2, er,3

Remark 2.4.1 Given any two operators L1, L2 ∈ D, we can test if L1
(i)−→ L2 and obtain pullback

function f of degree 1 (if exists) from their exponents.

Example 2.4.2 Suppose L1
(i), f−−−→ L2 with some degree 1 pullback function f and exponents of L1

and L2 are:

Singularities of L1 Exponents Singularities of L2

0 0, 1− b1, 1− b2 2

1 0, 1, b1 + b2 − a1 − a2 − a3 ∞
∞ a1, a2, a3 −3

So f sends (2,∞,−3) to (0, 1,∞), which implies f = x−2
x+3 .

2.4.2 Exponents and Exp-product Transformation

Suppose L ∈ D is of order n. Let p ∈ P1 and ep,1, . . . , ep,n be exponent(s) of L at x = p. Let

dp ∈ C[t−1p ] be the (generalized) exponent of ∂ − r at x = p with r ∈ C(x). By (ii) in Definition

2.1.8, exp-product transformation
(ii), r−−−→ sends y (solution of L) to y · exp(

∫
r), so exponents of

L s©(∂ − r) at x = p are ep,1 + dp, . . . , ep,n + dp.

Remark 2.4.3 If L1
(ii)−−→ L2, then by comparing exponents of L1 and L2 at their singularities, we

can obtain the exponents of ∂− r at those points, therefore obtain r as described in Remark 2.3.15.

Example 2.4.4 The (generalized) exponents of L1 and L2 at their singularities are:
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Singularities Exponents of L1 (Generalized) Exponents of L2

0 0, 0 2, 2

1 0, −1 0, −1

2 1, 2 1 + 1/(x− 2), 2 + 1/(x− 2)

∞ 0, 0 −2, −2

Try to find r ∈ C(x) such that L1
(ii), r−−−→ L2.

• At x = 0, [0, 0] and [2, 2] ⇒ d0 = 2 ⇒ r0 = 2
x .

• At x = 1, [0,−1] and [0,−1] ⇒ d1 = 0 ⇒ r1 = 0.

• At x = 2, [1, 2] and [1 + 1
x−2 , 2 + 1

x−2 ] ⇒ d2 = 1
x−2 ⇒ r2 = 1

(x−2)2 .

• At x =∞, [0, 0] and [−2,−2] ⇒ d∞ = −2 ⇒ r∞ = 0.

• [d0, d1, d2, d∞] = [2, 0, 1
x−2 ,−2] satisfies Fuchs’ relation (2.4). So r = 2

x + 1
(x−2)2 .

2.4.3 Exponents and Gauge Transformation

Remark 2.4.5 [32] Operators L1 and L2 are gauge equivalent =⇒ Exponents of L1 and L2 are

equivalent at any p ∈ P1.

Remark 2.4.6 In maple, “Homomorphisms” command in DEtools package checks if two operators

are gauge equivalent and return gauge transformations (
(iii)−−→) if exist(s).
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CHAPTER 3

COMPUTE 3F2-TYPE SOLUTIONS WITH

PULLBACK FUNCTIONS OF DEGREE ONE

For an order 2 operator L, to compute its 2F1-type solution containing 2F1(a, b; c | f) is equivalent

to:

• Task 1. Compute a, b, c and the pullback function f in transformation
(i)−→ (Definition 2.1.8).

• Task 2. Let M be the minimal operator of y = 2F1(a, b; c | f), compute M
(ii), (iii)−−−−−→ L which

means to compute r ∈ C(x), G ∈ C(x)[∂] such that exp(
∫
r) ·G(y) ∈ V (L) for all y ∈ V (M).

We have Maple program for task 2 on order 2 operators [27] which deals with transformations

(ii)+(iii), so the key remaining task is task 1. But for order 3, we do have code for (ii) or (iii) (2.4.6),

but not (ii)+(iii). So for 3F2-solver in this chapter, we have to start with algorithm for (ii)+(iii).

That means to perform task 2, we need a program to find exp(
∫
r) for order 3 (Section 3.1).

The hypergeometric function is 3F2(a1, a2, a3; b1, b2 | f). So task 1 is to find a1, a2, a3, b1, b2 and f

(Section 3.2).

Let L1 be the minimal operator of 3F2(a1, a2, a3; b1, b2 |x) and L2 be an order 3 operator with

3F2-type solutions. Following table shows that (generalized) exponents of L2 at any x = p ∈ P1 are

in C[t−1p ].

(Resulting) Operators L1 L1
(i), f−−−→ L1

(i), f−−−→ (ii), r−−−→ L1
(i), f−−−→ (ii), (iii)−−−−−→

(Generalized) Exponents at x = p ∈ P1 C C C[t−1p ] C[t−1p ]

So to find r in task 2 (Section 3.1), we restrict operators with generalized exponents in C[t−1p ].

We also implemented a general algorithm (Section 3.3) to deal with other cases: there exist gener-

alized exponents in C[t
− 1

2
p ] or C[t

− 1
3

p ].

3.1 Find r in L1
(ii), r−−−→ (iii)−−→ L2 in 3F2-solver

This section deals with the case when all (generalized) exponents of L1 and L2 are in C[t−1p ] at

any p ∈ P1. Suppose at x = p ∈ P1, the (generalized) exponent set of L1 is Ap and that of L2 is

Bp. Then by Section 2.4.2 and 2.4.3,
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L1
(ii), (iii)−−−−−→ L2 ⇐⇒ ∃ dp ∈ C[t−1p ] s.t. Ap + dp ∼ Bp at any p ∈ P1.

Algorithm 3.1.1 Find Difference(s) dp at x = p.

• Input: two (generalized) exponent sets Ap = {ep,1, ep,2, ep,3} and Bp = {ẽp,1, ẽp,2, ẽp,3}.

• Output: the set of all differences dp mod Z (dp ∈ C[t−1p ]) such that Ap + dp ∼ Bp if exists.

• Steps: for each candidate dp ∈ {ẽp,1 − ep,1, ẽp,1 − ep,2, ẽp,1 − ep,3}, check if Ap + dp ∼ Bp.

Return all such dp mod Z as a set.

• Comment: focus on dp mod Z rather than dp since
(iii)−−→ shifts exponents by integers (Sec-

tion 2.4.3).

Algorithm 3.1.2 Find r in L1
(ii), r−−−→ (iii)−−→ L2.

• Input: two operators L1, L2 ∈ K[∂].

• Output: the set of candidates r ∈ C(x) such that L1
(ii), r−−−→ (iii)−−→ L2.

• Steps.

– 1. Find all singularities of L1 and L2 : S = {p1, p2, . . . , pn}.

– 2. For each pi ∈ S, use Algorithm 3.1.1 to find dpi ∈ C[t−1pi ] between (generalized)

exponents of L1 and L2. Denote the set of such difference(s) as Dpi . Now we have

Dp1 , . . . , Dpn .

– 3. For each (d1, . . . , dn) ∈ Dp1 × . . . × Dpn do: if (d1, . . . , dn) satisfies Fuchs’ Rela-

tion (2.5), then the sum of all polar parts corresponding to (d1, . . . , dn) is a candidate

for r as in Remark 2.3.15.

• Comment: command “gen-exp” under DEtools package in Maple returns the (generalized)

exponents of the given operator at the given point p ∈ P1.

Example 3.1.3 (Generalized) Exponents of L1 and L2 at their singularities are:

Singularities Exponents of L1 (Generalized) Exponents of L2

0 0, 1/2, 2/3 −4 + 3/x, −7/2 + 3/x, −10/3 + 3/x

1 0, 1, −31/6 0, 1, −43/6

2 0, 1, 2 −3/2, −1/2, 1/2

∞ 1, 2, 3 1/2, 3/2, 5/2
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Table 3.1: Exponents at Singularities of L1

Singularities Exponents Logarithmic1

0 0, 1− b1, 1− b2 when {b1, b2, b1 − b2} ∩ Z 6= ∅
1 0, 1, b1 + b2 − a1 − a2 − a3 when b1 + b2 − a1 − a2 − a3 ∈ Z
∞ a1, a2, a3 when {a1 − a2, a1 − a3, a2 − a3} ∩ Z 6= ∅

At x = 0,

{0, 1

2
,
2

3
}+

3

x
∼ {−4 +

3

x
,−7

2
+

3

x
,−10

3
+

3

x
}

so d0 = 3
x modZ. Likewise, d1 = 0 modZ, d2 = 1

2 modZ, d∞ = 1
2 modZ. Now (d0, d1, d2, d∞) =

( 3x , 0,
1
2 ,

1
2) satisfies Fuchs’ Relation (2.5), so 1/2

x−2 + 3
x2

is one candidate for r.

3.2 Compute 3F2-type Solutions with Pullback Functions of
Degree One

Recall that our task is to compute 3F2-type solutions of any irreducible order 3 operator L2,

L1
(i), f−−−→ (ii), (iii)−−−−−→ L2, (3.1)

where L1 is the minimal operator of 3F2(a1, a2, a3; b1, b2 |x). Now with Algorithm 3.1.2 and

command “Homomorphisms” in Maple (Remark 2.4.6) which deals with the second part in (3.1),

our task is reduced to finding M, or equivalently, L1 and the pullback function f. We start with

the case that the degree of f is 1.

Table 3.1 gives exponents at all non-removable singularities of L1.

To compute 3F2-type solutions, the essential part is how three types of transformations affect

(generalized) exponents2, which was discussed in Section 2.4.

Remark 3.2.1

• Change of variables transformation: suppose the pullback function f = ax+b
cx+d sends (p, q, r) to

(0, 1,∞) with different p, q, r ∈ P1, i.e., f(p) = 0, f(q) = 1 and f(r) = ∞, then the table of

L1
(i), f−−−→ is:

Singularities Exponents Logarithmic

p 0, 1− b1, 1− b2 when {b1, b2, b1 − b2} ∩ Z 6= ∅
q 0, 1, b1 + b2 − a1 − a2 − a3 when b1 + b2 − a1 − a2 − a3 ∈ Z
r a1, a2, a3 when {a1 − a2, a1 − a3, a2 − a3} ∩ Z 6= ∅

2If a generalized exponent is a constant then it is called an exponent
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• Exp-product transformation
(ii), r−−−→ adds the same dp ∈ C[t−1p ] to each exponent at x = p ∈ P1,

but this does not change exponent differences. The table of L1
(i), f−−−→ (ii), r−−−→ is:

Singularities (Generalized) Exponents

p (dp, dp, dp) + (0, 1− b1, 1− b2)
q (dq, dq, dq) + (0, 1, b1 + b2 − a1 − a2 − a3)
r (dr, dr, dr) + (a1, a2, a3)

• Gauge transformation
(iii), G−−−−→ only shifts generalized exponents in C[t−1p ] by integers. So the

table of L1
(i), f−−−→ (ii), r−−−→ → (iii), G is:

Singularities (Generalized) Exponents

p (dp, dp, dp) + (0, 1− b1, 1− b2) + (n1, n2, n3)

q (dq, dq, dq) + (0, 1, b1 + b2 − a1 − a2 − a3) + (n4, n5, n6)

r (dr, dr, dr) + (a1, a2, a3) + (n7, n8, n9)

Here n1, . . . , n9 could be any integer.

Example 3.2.2 Let L2 = −6(2x+ 1)2(x+ 6)(x− 5)5∂3 + (−72x9 + 1332x8 − 6642x7 − 17927x6 +

266074x5−771517x4 +423090x3 +485575x2 +914750x+445625)∂2 +(−72x10 +1368x9−7524x8−

9232x7 + (450971/2)x6− (1425263/2)x5 + 641162x4− 277031x3 + (1137955/2)x2 + (5503725/2)x+

1243875)∂ + (−24x11 + 468x10 − 2832x9 + 448x8 + (113859/2)x7 − (817465/4)x6 + 278133x5 −

(1152739/4)x4 − (854729/2)x3 + (10070009/4)x2 + 757190x + 4259475/4), its exponents at non-

removable singularities are shown below. Does it have 3F2-type solutions?

Singularities Exponents Logarithmic

−6 0, 1, −31/6 No

−1/2 0, 1/2, 2/3 No

5 1, 2, 3 Yes

First, find all possible (p, q, r) such that f(p) = 0, f(q) = 1 and f(r) = ∞ with some pullback

function f. In the following discussion, we say a singularity s is a candidate for p (q, r) if it is

possible that f(s) = 0 (1,∞). From Table 3.1, exponents at x = 1 are (0, 1, b1 + b2− a1− a2− a3),

so exponents at candidate for q must be (e1, e1 + n, e2) with some integer n. Any singularity is a

candidate for p and r.
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Now exponents of L2 at −6 and 5 can be written as (e1, e1 +n, e2). So they may be candidates

for q. But −6 (without logarithmic solution) can only come from 1 because in Table 3.1, an integer

exponent difference at x = 0 (x = ∞) implies a logarithmic solution. So all possible (p, q, r)

are (−1
2 ,−6, 5) and (5,−6,−1

2) and their corresponding pullback functions are 2x+1
x−5 and x−5

2x+1

respectively. Next, compute all parameters a1, a2, a3, b1 and b2 for each candidate.

Algorithm 3.2.3 Compute Parameters corresponding to (p, q, r).

• Input: one candidate of (p, q, r).

• Output: corresponding parameters a1, a2, a3, b1 and b2.

• Steps.

– 1. Find exponents at these singularities, say:

Singularities Exponents

p ep,1, ep,2, ep,3
q eq,1, eq,2, eq,3
r er,1, er,2, er,3

Here eq,2 = eq,1 + n for some integer n.

– 2. Subtract dq := eq,1 from exponents at x = q:

[eq,1, eq,2, eq,3]
−dq−−→ [0, n, eq,3 − eq,1].

Subtract dp := ep,1 (dp could also be ep,2 or ep,3) from exponents at x = p:

[ep,1, ep,2, ep,3]
−dp−−→ [0, ep,2 − ep,1, ep,3 − ep,1].

Since the sum of all exponents is a constant, so dp + dq needs to be added to exponents

at x = r:

[er,1, er,2, er,3]
dp+dq−−−−→ [er,1 + ep,1 + eq,1, er,2 + ep,1 + eq,1, er,3 + ep,1 + eq,1].

– 3. Now compare new exponents with those of L1 in Table 3.1, then {a1, a2, a3} = {er,1 +

ep,1 + eq,1, er,2 + ep,1 + eq,1, er,3 + ep,1 + eq,1} and b1, b2 can be obtained by solving {1−
b1, 1− b2} = {ep,2 − ep,1, ep,3 − ep,1}.

Continue with Example 3.2.2. Here we just deal with one candidate (−1
2 ,−6, 5). The pullback

function is f = 2x+1
x−5 . There are three cases (other cases are equivalent to these up to gauge trans-

formations) in parameters for this candidate.

Details of first case are shown below. So {a1, a2, a3} = {1, 2, 3} and {b1, b2} = {12 ,
1
3}.

22



Singularities Exponents Differences New Exponents

−1/2 0, 2/3, 1/2 0 0, 2/3, 1/2

−6 0, 1,−31/6 0 0, 1,−31/6

5 1, 2, 3 0 1, 2, 3

Likewise for the second case: {a1, a2, a3} = {53 ,
8
3 ,

11
3 } and {b1, b2} = {53 ,

7
6}.

Singularities Exponents Differences New Exponents

−1/2 0, 2/3, 1/2 −2/3 −2/3, 0,−1/6

−6 0, 1,−31/6 0 0, 1,−31/6

5 1, 2, 3 2/3 5/3, 8/3, 11/3

Likewise for the third case: {a1, a2, a3} = {32 ,
5
2 ,

7
2} and {b1, b2} = {32 ,

5
6}.

Singularities Exponents Differences New Exponents

−1/2 0, 2/3, 1/2 −1/2 −1/2, 1/6, 0

−6 0, 1,−31/6 0 0, 1,−31/6

5 1, 2, 3 1/2 3/2, 5/2, 7/2

Now the minimal operator L1 corresponding to each candidate [a1, a2, a3; b1, b2] can be obtained.

After applying on L1 a change of variables transformation with the pullback function f , use Algo-

rithm 3.1.2 to find r and “Homomorphisms” command in Maple to find G in L1
(i), f−−−→ (ii), r−−−→ (iii), G−−−−→

L2. Now in Example 3.2.2, we obtain

[[1, 2, 3,
1

3
,
1

2
],

2x+ 1

x− 5
,

1

x+ 6
+

2

x− 5
+

1

2
− x, 1

x3 − 4x2 − 35x+ 150
],

where the first entry consists of parameters in 3F2 function, the second is the pullback function f,

the third is the parameter r in the exp-product transformation and the last one is the parameter

G in the gauge transformation.

We could generalize 3F2-solver to f of degree 2 or 3 as in Vijay’s thesis [23]. However, it is still

not enough for order 3 since there exist many other hypergeometric functions.

3.3 Find r in L1
(ii), r−−−→ (iii)−−→ L2 for any Order 3 Operators

Recall that a generalized exponent at x = p ∈ P1 can be any element in C[t
− 1

n
p ] with n ∈ N

(Definition 2.3.5).

Definition 3.3.1 Let E :=
⋃
n≥1C[x−

1
n ].
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• For e ∈ E, define the ramification of e as min{n | e ∈ C[x−
1
n ]} and denote it as ram(e). It is

unramified if ram(e) = 1. Define

Ve = exp(

∫
e

x
)C((x))[e, ln(x)] = exp(

∫
e

x
)C((x

1
n ))[ln(x)],

where n = ram(e).

• Let e1, e2 ∈ E, then e1 is equivalent to e2 (e1 ∼ e2) if Ve1 = Ve2 . This holds if and only if

e1 − e2 ∈ 1
nZ where n = ram(e1). Note that this coincides with Definition 2.3.9 when e1,

e2 ∈ C[t−1p ], i.e., ramification of them is 1.

Remark 3.3.2

• Ve is a C(x)[∂]-module, which is to say, G(Ve) ⊆ Ve for any G ∈ C(x)[∂]. So a gauge trans-

formation sends a generalized exponent to its equivalent generalized exponent.

• Let V =
⊕

e∈E/∼
Ve. One can show that this is the universal extension of C((x)) in the sense of

Definition 2.1.3. Thus we can take V (L) := Ker(L : V → V ) from Definition 2.1.3. Denote

Ve(L) := Ker(L : Ve → Ve) = V (L) ∩ Ve, then V (L) =
⊕

e∈E/∼
Ve(L).

Example 3.3.3 At x = ∞, generalized exponents of L1 are A := {0, 1√
−t∞
− 3

4 ,−
1√
−t∞
− 3

4} and

those of L2 are B := {1, 1√
−t∞
− 1

4 ,−
1√
−t∞
− 1

4}. By Definition 2.3.16, A ∼ B since

0 ∼ 1

1√
−t∞

− 3

4
∼ 1√
−t∞

− 1

4

− 1√
−t∞

− 3

4
∼ − 1√

−t∞
− 1

4
.

The last two equivalences hold because both differences is 1
2 and the ramification of them is 2.

The task of this section is to find r in

L1
(ii), r−−−→ (iii)−−→ L2

where L1 and L2 have some generalized exponents with ramification greater than 1. Example 3.3.3

shows that finding difference between ramified generalized exponent sets is different from that of

unramified sets (Algorithm 3.1.1). So the algorithm that parallels with Algorithm 3.1.1 is needed:

denote generalized exponent set of L1 at x = p ∈ P1 as A and that of L2 as B, there are two cases

to consider:

• Two elements in A (B) have ramification 2 (Section 3.3.1).

• All elements in A (B) have ramification 3 (Section 3.3.2).
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3.3.1 Case with Ramification 2

In this case there are two generalized exponents of L1 at x = p with ramification 2 and the

other one unramified. Let e1 ∈ C[t−1p ] and e2, e3 ∈ C[t
− 1

2
p ] − C[t−1p ]. Denote this case as of type

(1, 2). In this case, the output of “gen-exp” command in Maple can not be used directly since the

notations are inconsistent (Example 3.3.4 below).

Example 3.3.4 At x =∞, “gen-exp” command in Maple gives the generalized exponents of L1 =

(x−1)2∂3 +x∂ and L2 = (x−1)2∂3 +(3x7−6x6 +3x5)∂2 +(3x12−6x11 +3x10 +15x6 +x−30x5 +

15x4)∂ + (x17 − 2x16 + x15 + 15x11 − 30x10 + 15x9 + x6 + 20x5 − 40x4 + 20x3) as shown below.

T = t∞ = 1/x −T 2 = t∞ = 1/x

L1 0 1/T − 3/4

L2 1/T 6 1/T − 3/4 + 1/T 12

Let A := {e1, e2, e3} be the generalized exponents of L1 at x = ∞ and B := {ẽ1, ẽ2, ẽ3} be the

generalized exponents of L2 at x = ∞ with e1, ẽ1 unramified. Our goal is to find the difference

between them. Since the ramification is invariant under
(ii), (iii)−−−−−→ transformations, so to find differ-

ence between A and B is equivalent to computing ẽ1− e1 mod Z and ẽ2− e2 mod 1
2Z. Now p =∞,

e1 = 0, ẽ1 = 1
T 6 and ẽ1 − e1 mod Z = 1

T 6 mod Z, so

dp := ẽ1 − e1 =
1

T 6
=

1

t6∞
.

But note that T in the third column is not the same as T in the second column. So for further

computation, we need to make them consistent. Compute the minpoly of 1
T −

3
4 (denoted as m2) and

minpoly of 1
T −

3
4 + 1

T 12 (denoted as m̃2) in the field extension from C(t∞) to C(T ), here −T 2 = t∞.

m2 = X2 +
3

2
X +

9

16
+

1

t∞
,

m̃2 = X2 + (− 2

t6∞
+

3

2
)X + (

9

16
+

1

t∞
− 3

2t6∞
+

1

t12∞
).

Now compute the difference between e2 and ẽ2 from the coefficients of two minpolys with respect to

X,

d′p :=

3
2 − (− 2

t6∞
+ 3

2)

2
=

1

t6∞
= dp.

And m̃2(X + d′p) = m2, so the difference is dp = 1
t6∞
.
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Algorithm 3.3.5 Compute the Difference at x = p with type (1, 2).

• Input: two irreducible order 3 operators L1, L2 ∈ K[∂] and one singularity x = p of L1 or L2

of type (1, 2).

• Output: the difference dp between the generalized exponents of L1 and L2 at x = p.

• Steps.

– 1. Use “gen-exp” command in Maple to find generalized exponents of L1 and L2 at

x = p. Denote the outputs as [e1, T = tp], [e2, c1T
2 = tp] and [ẽ1, T = tp], [ẽ2, c2T

2 = tp]

for some constants c1 and c2.

– 2. Let dp = ẽ1 − e1. Compute the minpolys of e2 and ẽ2 over C(tp) and denote them as

m2, m̃2 ∈ C(tp)[X]. Say m2 = X2 + a1X + a0 and m̃2 = X2 + b1X + b0, let d′p = a1−b1
2 ,

then check if dp ≡ d′p mod 1
2Z and m̃2(X + d′p) = m2. If so, return dp, otherwise return

“not projectively equivalent”.

3.3.2 Case with Ramification 3

In this case, three generalized exponents of L1 at x = p have ramification 3. Denote this case

as of type (3). The output of “gen-exp” on L1 at x = p is [e, c1T
3 = tp] for some constant c1. If

L1
(ii), (iii)−−−−−→ L2, then generalized exponents of L2 at x = p has to be of type (3) and the output of

“gen-exp” on L2 at x = p must be [ẽ, c2T
3 = tp] with c2 ∈ C.

Remark 3.3.6 The algorithm of computing the difference at x = p of type (3) is similar to Al-

gorithm 3.3.5 except now the minpolys have degree 3. Let m and m̃ be minpolys of e and ẽ over

C(tp)[X]. Let dp = a2−b2
3 where a2 and b2 are coefficients of m and m̃ with respect to X2. We only

need to check if m̃(X + dp) = m, if yes, then return 3 differences: dp, dp − 1
3 and dp + 1

3 , otherwise

return “not projectively equivalent”.

Example 3.3.7 At x = 0, the generalized exponents of L1 = x5∂3 + x and L2 = x5∂3 − 3
2x(x2 −

4)∂2 + (3(4x5 + x4 − 32x3 − 8x2 + 16)/4x3)∂ − (16x8 + 12x7 − 319x6 − 144x5 − 12x4 + 384x3 +

48x2 − 64)/(8x7) are:

L1 L2

−T 3 = t0 = x 1/T + 4/3 1/T + 4/3− 1/2T 3 + 2/T 9

So p = 0, e = 1
T + 4

3 and ẽ = 1
T + 4

3 −
1

2T 3 + 2
T 9 . Therefore

m = X3 − 4X2 +
16X

3
− 64x− 27

27t0
,
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m̃ = X3 − (4 + 3
2t0
− 6

t30
)X2 + (64t60 + 48t50 + 9t40 − 192t30 − 72t20 + 144)/(12t60)X − (512t90 + 360t80 +

216t70 − 2277t60 − 1728t50 − 324t40 + 3456t30 + 1296t20 − 1728)/(216t90).

Then dp = a2−b2
3 = 1

2t0
− 2

t30
and m̃(X + dp) = m. So differences are

{ 1

2t0
− 2

t30
,

1

2t0
− 2

t30
+

1

3
,

1

2t0
− 2

t30
− 1

3
}.
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CHAPTER 4

COMPUTE F1-TYPE SOLUTIONS WITH

PULLBACK FUNCTIONS OF DEGREE ONE

The most well known example of A-hypergeometric function that is not univariate is Appell’s F1

function. It is a generalization of Gauss hypergeometric series 2F1(a, b, c |x) and defined by:

F1(a, b1, b2, c |x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn.

It satisfies a system of bivariate differential equations. If x and y are replaced by univariate

functions, then the result satisfies a univariate differential equation of order 3.

Example 4.0.8 Let

L = ∂3 +
225x3 − 140x2 + 21x+ 18

15x(x− 1)(x+ 1)(5x− 3)
∂2 +

4375x4 − 10125x3 − 660x2 + 8235x− 1701

900x2(x+ 1)(x− 1)2(5x− 3)
∂

+
625x3 + 3200x2 − 4995x+ 1134

600x3(x+ 1)(x− 1)2(5x− 3)
.

(4.1)

One solution of L(y) = 0 at x = 0 is

r · F1(a, b1, b2, c |u, v) (4.2)

where a = 1
2 , b1 = 1

3 , b2 = 1
5 , c = 1, u = x, v = 1

x and r = 1√
x
.

Our F1-solver computes solutions in Example 4.0.8 by following steps.

• Compute candidates of functions u, v. (Section 4.1)

• Divide the candidate set of [u, v] into orbits. (Section 4.2)

• For each orbit, pick one element and compute parameters a, b1, b2, c in (4.2), exp-product

transformation and gauge transformation which send Lc to L. Here Lc is the minimal operator

of F1(a, b1, b2, c |u, v) (Section 4.3).
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4.1 Compute Candidates u, v in F1(a, b1, b2, c |u, v)

If u, v ∈ C(x), then the minimal operator Lc of F1(a, b1, b2, c |u, v) can be computed by the

implementation [26]. If Lc can be transformed to L by some exp-product transformations and

gauge transformations (Lc
(ii), (iii)−−−−−→ L), then they have the same non-removable singularities (Defi-

nition 2.1.14). Let R(u, v) be the set of roots of u, 1−u, 1
u , v, 1−v, 1

v and u−v, all non-removable

singularities of Lc. To find candidates of u,v, we search for u, v ∈ C(x) such that R(u, v) = A where

A is the non-removable singularity set of L. At the moment we restrict u and v to degree 1, which

is the most simple case. Later on we may generalize this to higher degrees.

First, compute all candidates of u.

Algorithm 4.1.1 CandidateU

• Input: the non-removable singularity set, A, of the order 3 operator L.

• Output: the set of all Möbius transformations f : P 7→ P with {0, 1,∞} ⊆ f(A).

• Steps: list all combinations of 3 different elements p, q, r ∈ A. For each combination [p, q, r],

compute the Möbius transformation f such that f(p) = 0, f(q) = 1 and f(r) = ∞. Return

the set of all such f .

Example 4.1.2 Continue with Example 4.0.8. The non-removable singularity set of L is A =

{−1, 0, 1,∞}. Note that x = 3
5 is an apparent singularity (Definition 2.1.16) since the solutions at

x = 3
5 are analytic. Algorithm 4.1.1 returns the set M = {x, 1x ,

1
x+1 , . . .} with 24 functions.

Algorithm 4.1.3 below picks two functions u, v from the output of Algorithm 4.1.1, then check if

R(u, v) = A.

Algorithm 4.1.3 CandiUV

• Input: a set A.

• Output: the set of all pairs [u, v] with R(u, v) = A.

• Steps.

– Apply algorithm 4.1.1 on A, then obtain the set M.

– Return the set of all pairs u, v ∈M with R(u, v) = A.

Example 4.1.4 Continue with Example 4.1.2. Algorithm 4.1.3 returns the set of 144 candidate

pairs: S = {[x, 1x ], [x, x
x+1 ], [x,−x], . . .}.
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4.2 Divide the Candidate Set into Orbits

Example 4.1.4 shows that there may be many candidate pairs [u, v] ∈ S. Checking one pair

(Section 4.3) is a substantial amount of work. The goal in this section is to reduce the number of

candidate pairs [u, v].

Proposition 4.2.1 The following functions satisfy the same differential equations.

• F1(a, b1, b2, c |u, v)

• r1 · F1(c− a, b1, b2, c | u
u−1 ,

v
v−1)

• r2 · F1(a, c− b1 − b2, b2, c | u
u−1 ,

v−u
1−u )

• r3 · F1(a, b1, c− b1 − b2, c | v−uv−1 ,
v
v−1)

• F1(a, b1, b2, b1 + b2 + a+ 1− c | 1− u, 1− v)

where r1 = (1− u)−b1(1− v)−b2 , r2 = (1− u)−a, r3 = (1− v)−a.

Pf : the first 4 relations are found in [12] and the last one is obtained by the implementation [31].

Proposition 4.2.1 shows that after testing a candidate of the form [∗, ∗, ∗, ∗, u, v], there is no

need to try [∗, ∗, ∗, ∗, u
u−1 ,

v
v−1 ], [∗, ∗, ∗, ∗, u

u−1 ,
v−u
1−u ], [∗, ∗, ∗, ∗, v−uv−1 ,

v
v−1 ] and [∗, ∗, ∗, ∗, 1− u, 1− v].

Definition 4.2.2 Let L6 = Q(a, b1, b2, c, u, v) with a, b1, b2, c, u, v algebraically independent. Let

G =<R1, R2, R3, R4>⊆ Aut(L6) where R1, R2, R3, R4 act on f(a, b1, b2, c |u, v) ∈ L6 as follows:

• R1(f(a, b1, b2, c |u, v)) = f(c− a, b1, b2, c | u
u−1 ,

v
v−1).

• R2(f(a, b1, b2, c |u, v)) = f(a, c− b1 − b2, b2, c | u
u−1 ,

v−u
1−u ).

• R3(f(a, b1, b2, c |u, v)) = f(a, b1, c− b1 − b2, c | v−uv−1 ,
v
v−1).

• R4(f(a, b1, b2, c |u, v)) = f(a, b1, b2, b1 + b2 + a+ 1− c | 1− u, 1− v).

Proposition 4.2.3 G ∼= S5 and acts faithfully on L2 := Q(u, v) ⊆ L6 as well, so we can also

interpret G as a subgroup of Aut(L2). Let G3 =<R1, R2, R3>⊆ G, a subgroup of G that preserves

the point (u, v) = (0, 0). Then G3
∼= S2 × S3.
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Pf : The orbit of a ∈ L6 under G is A = {a, c − a, b1 + b2 + 1 − c, 1 − b1, 1 − b2} and R1 acts as

the permutation (12) on A. Similarly, R2, R3 and R4 acts as the permutation (34), (35) and (23).

These actions are faithful and thus:

G ∼=< (12), (34), (35), (23) >∼= S5

and

G3
∼=< (12), (34), (35) >∼= S2 × S3.

Algorithm 4.2.4 below uses G to divide the candidate set of [u, v] into orbits.

Algorithm 4.2.4 GetOrb

• Input: the set of candidates of [u, v] obtained from Algorithm 4.1.3.

• Output: the same candidates divided into orbits.

• Steps: for each pair [u, v], find its orbit under the group G:

– let B := {[u, v]}.

– While B 6= B ∪R1(B)∪R2(B)∪R3(B)∪R4(B) do B := B ∪R1(B)∪R2(B)∪R3(B)∪
R4(B). Here Ri ∈ G ⊆ Aut(L2) with 1 ≤ i ≤ 4.

Example 4.2.5 Continue with Example 4.1.4. Algorithm 4.2.4 divides S consisting of 144 pairs

into only 3 orbits: {{[x, 1x ], . . .}, {[x,−x], . . .}, {[x−1x+1 ,
x+1
x−1 ], . . .}}.

Rather than checking all candidates [u, v], now it suffices to check one candidate [u, v] in each

orbit.

4.3 Compute Parameters a, b1, b2, c and Transformations

Let Lc be the minimal operator of F1(a, b1, b2, c |u, v) where u, v ∈ C(x) of degree 1. Table 4.1

and 4.2 relate the parameters a, b1, b2, c to the exponents of Lc. Let U be the set of roots of u, 1−u

and 1
u and let V be the set of roots of v, 1−v and 1

v . Table 4.1 describes the relation when U∩V = ∅

and the multiplicity of the root of u− v is 1. For example, if x = 0 is a root of u but not a root of

v or 1− v or 1
v , then table 4.1 shows how to obtain b2 − c+ 1 from the exponents of Lc at x = 0.

If U ∩ V 6= ∅, then the relation changes. Table 4.2 describes this case. For example, if x = 0 is

a common root of u and 1 − v, then Table 4.2 shows how to obtain {b2 − c + 1, c − a − b2} from
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Table 4.1: Exponents at Single Roots

At Root of Exponents of Lc
u [0, 1, b2 − c+ 1]

1− u [0, 1, c− a− b1]
1
u [a, b1, b1 + 1]

v [0, 1, b1 − c+ 1]

1− v [0, 1, c− a− b2]
1
v [a, b2, b2 + 1]

u− v [0, 1, 1− b1 − b2]

Table 4.2: Exponents at Common Roots

At Root of Exponents of Lc
[u, v, u− v] [0, 1− c, 2− c]

[u, v, u− v, u− v] [0, 1− c, 2− b1 − b2 − c]
[u, 1− v] [0, b2 − c+ 1, c− a− b2]

[u, 1v ] [a, b2, 2b2 − c+ 1]

[1− u, v] [0, c− a− b1, b1 − c+ 1]

[1− u, 1− v, u− v] [0, c− a− b1 − b2, c− a− b1 − b2 + 1]

[1− u, 1− v, u− v, u− v] [0, c− a− b1 − b2, c− a− 2b1 − 2b2 + 1]

[1− u, 1v ] [a, b2, c− a− b1 + b2]

[ 1u , v] [a, b1, 2b1 + 1− c]
[ 1u , 1− v] [a, b1, c− a+ b1 − b2]

[ 1u ,
1
v ] [a, a+ 1, b1 + b2]

[u− v, u− v] [0, 1, 2− 2b1 − 2b2]

the exponents of Lc at x = 0. Likewise, if x = 0 is a common root of u and v and x = 0 is a root

of u− v with multiplicity 1, then {1− c, 2− c} can be obtained from the exponents of Lc at x = 0.

Likewise for the case in which the common root of u and v is a root of u− v with multiplicity 2.

Now compute the parameters in two cases.

• Lc
(ii), r−−−→ L.

• Lc
(ii), r−−−→ (iii), G−−−−→ L.

4.3.1 Case with Exp-product Transformation

From Section 2.4.2, the exp-product transformation (
(ii)−−→) changes the exponents at one point

by the same difference. So if Lc
(ii), r−−−→L, then the parameters can be computed by solving equations

from the exponents of Lc and L.
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Example 4.3.1 Continue with Example 4.2.5. Let [u, v] = [x, 1x ] from the first orbit and Lc be the

minimal operator of F1(a, b1, b2, c |x, 1x). Then 0 is the common root of u and 1
v . The exponents of

Lc at 0 are [a, b2, 2b2 − c + 1] from Table 4.2. The exponents of L at 0 are [1, 9
10 ,

7
10 ]. Let d be the

difference between them. Then:

{a+ d, b2 + d, 2b2 − c+ 1 + d} = {1, 9

10
,

7

10
}.

This implies 3! sets of equations since there are 3! ways to pair elements in {a+d, b2+d, 2b2−c+1+d}

and elements in {1, 9
10 ,

7
10}. For example, we can pair them as {a+d = 7

10 , b2+d = 9
10 , 2b2−c+1+d =

1}. By eliminating d, {a − b2 = −1
5 , c − b2 − 1 = − 1

10}. Likewise, we can obtain 6 such sets of

equations, which is the output of Algorithm 4.3.2 below with the input 1, 9
10 ,

7
10 , a, b2, 2b2 − c+ 1.

Algorithm 4.3.2 MatchExp1

• Input: the exponents of the given operator L at some non-removable singularity p, e1, e2, e3,

and the exponents of Lc at p, f1, f2, f3, where Lc is the minimal operator of F1(a, b1, b2, c |u, v)

with unknown parameters a, b1, b2 and c.

• Output: some equations regarding parameters a, b1, b2 and c.

• Steps: compute the set of differences among e1, e2, e3 and the set of differences among f1, f2, f3,

set equations between these two sets and return the solvable ones.

Algorithm 4.3.3 below shows that the parameters a, b1, b2, c and the parameter r in Lc
(ii), r−−−→L

can be computed at the same time. Since the relation of parameters and exponents of Lc changes

as the relation of u and v changes, so there are several cases to consider. Algorithm 4.3.3 deals with

the case when u and 1
v have a common root, 1

u and v have a common root, 1− u and 1− v have a

common root and it is also a root of u− v with multiplicity 1. For other cases, the algorithms are

very similar to Algorithm 4.3.3.

Algorithm 4.3.3 Case1

• Input: the operator L and one candidate pair u, v.

• Output: the set of all combinations [a, b1, b2, c, u, v, r] where r is the parameter in Lc
(ii), r−−−→L.

Recall Lc is the minimal operator of F1(a, b1, b2, c |u, v).

• Steps.
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– Let x = p be the common root of u and 1
v . According to Table 4.2, the exponents of Lc

at p are [a, b2, 2b2 − c + 1]. Use Algorithm 4.3.2 to relate exponents of L at x = p and

[a, b2, 2b2 − c+ 1]. Solve for a and b2.

– Let Lc be the minimal operator of F1(a, b1, b2, c |u, v) where a and b2 are written in terms

of c. So Lc has only two unknown parameters b1 and c. Take r as one third of the differ-

ence between the coefficients of L and Lc with respect to ∂2. If Lc can be transformed to

L by some exp-product transformation, then the parameter of the transformation should

be r. So set an equation between L and Lc s©(∂ − r) and then solve for b1 and c. If there

exists a solution, then the combination [a, b1, b2, c, u, v, r] in the output is obtained.

• Comment. Algorithm 4.3.2 may return more than 1 equations, which means there may be

more than 1 solutions for parameters in F1. All possibilities are checked in Algorithm 4.3.3.

Example 4.3.4 Continue with Example 4.2.5. Let [u, v] = [x, 1x ] from one orbit. Case1(L, x, 1x)

returns {[12 ,
1
3 ,

1
5 , 1, x,

1
x ,−

1
2x ], [ 8

15 ,
1
5 ,

1
3 ,

31
30 , x,

1
x ,−

11
30x ]}.

4.3.2 Case with Exp-product Transformation and Gauge Transformation

If Lc
(ii), r−−−→ (iii), G−−−−→L, then from Section 2.4.2 and 2.4.3, there exists some dp ∈ C[t−1p ] such that

{generalized exponents of Lc at x = p} +dp ∼ {generalized exponents of L at x = p} for any p ∈ P1.

Like what we did in Subsection 4.3.1, we can set some equations between exponents of Lc and L.

The only difference is that shifting by integers is allowed in this case.

Example 4.3.5 Continue with Example 4.3.1. The relation

{a+ d, b2 + d, 2b2 − c+ 1 + d} ∼ {1, 9

10
,

7

10
}.

also implies 3! sets of equations. One of them is

{a+ d =
7

10
mod Z, b2 + d =

9

10
mod Z, 2b2 − c+ 1 + d = 1 mod Z}.

By eliminating d, {a− b2 = −1
5 +n2, c− b2− 1 = − 1

10 +n1} for some integers n1 and n2. Likewise,

we can obtain 6 such sets of equations, which is the output of Algorithm 4.3.6 below with input

1, 9
10 ,

7
10 , a, b2, 2b2 − c+ 1, n1, n2.

Algorithm 4.3.6 MatchExp2

• Input: the input of Algorithm 4.3.2 and two indices which indicate two integers.
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• Output: some equations regarding parameters a, b1, b2 and c.

• Steps: the only difference from Algorithm 4.3.2 is when setting equations between the differ-

ences, allow them shifting by some integer.

Now at each non-removable singularity of L, we have a bunch of equation sets about parameters

a, b1, b2 and c. Algorithm 4.3.7 below combines all of them and compute the parameters.

Algorithm 4.3.7 Comb

• Input: the outputs of Algorithm 4.3.6 at all non-removable singularities of L, say S1, . . . , Sn.

• Output: the set of candidates for [a, b1, b2, c].

• Steps: for each (s1, . . . , sn) ∈ S1 × . . . × Sn, solve for parameters a, b1, b2, c and return all

solutions.

Now Lc is known. Then use Algorithm 3.1.2 to compute r and “Homomorphisms” to compute

G in Lc
(ii), r−−−→ (iii), G−−−−→L.
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CHAPTER 5

COMPUTE HOMOMORPHISM(S) BETWEEN TWO

D-MODULES

We have many univariate tools for hypergeometric functions, such as compute r in
(ii), r−−−→, compute

G in
(iii), G−−−−→ for any order operators and compute transformations

(ii), (iii)−−−−−→ for operators of order

2 [27] and order 3 (Section 3.3). But these tools can not deal with multivariate A-hypergeometric

functions. So now we need to generalize them to multivariate. By Remark 2.2.3, to generalize

transformation (iii), we need to compute homomorphisms between two D-modules. Here D can

be, for example, the differential ring C(x, y)[∂x, ∂y].
1 We will illustrate this tool via computing

homomorphisms between M := FD1 (a, b1, b2, c |x, y) and M ′ := FD1 (a+1, b1, b2, c |x, y) (D-modules

of F1(a, b1, b2, c |x, y) and F1(a+1, b1, b2, c |x, y) respectively with D = C(x, y)[∂x, ∂y]) by following

steps:

• for each variable and each D-module, find a cyclic vector (Definition 5.2.1) and compute its

minimal operator with respect to that variable (Section 5.2). Let Lx and L′x be the minimal

operator of M and M ′ with respect to x, Ly and L′y be the minimal operator of them with

respect to y.

• For each variable, use the univariate tool (DEtools[Homomorphisms] in Maple) to find ho-

momorphisms between two minimal operators with respect to that variable. Let hx be the

homomorphism(s) between Lx and L′x, and hy be the homomorphism(s) between Ly and L′y.

From hx and hy, we can obtain Hx, the homomorphism of M and M ′ as C(x, y)[∂x]-modules,

and Hy, the homomorphism of them as C(x, y)[∂y]-modules. Then compute Hx ∩Hy, which

is the homomorphism between M and M ′ as D-modules. (Section 5.3)

By Definition 2.2.4, to generalize transformation (ii)+(iii), we use the tensor product of two D-

modules since tensor product with a 1-dimensional D-module (M ⊗ I) corresponds to applying the

transformation (ii) on its minimal operator (L s©(∂ − r)) where I is the 1-dimensional D-module

for r. (Section 5.4)

1We will focus on two variables through the approach, but it also works for more variables (Section 5.3.3).
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5.1 The C(x, y)[∂x, ∂y]-Module of F1(a, b1, b2, c |x, y)

Let K = C(x, y), D = K[∂x, ∂y]. As in Section 2.2, a D-module is a finitely dimensional K-

vector space on which D acts. To turn Kn into a D-module, take two n× n matrices Mx and My

over K and define

∂x

a1...
an

 = Mx

a1...
an

+

∂x(a1)
...

∂x(an)


and

∂y

a1...
an

 = My

a1...
an

+

∂y(a1)...
∂y(an)

 .
In the ring D, the elements ∂x and ∂y commute, so ∂x∂y and ∂y∂x must have the same action on

Kn in order for Kn to be a D-module. That implies ( d
dx + Mx)My = ( ddy + My)Mx (integrability

condition). Given v ∈ Kn and Mx, My, we can compute its minimal operator in K[∂x] or in K[∂y].

Let B1 = F1(a, b1, b2, c |x, y) for some a, b1, b2, c ∈ C. Then its D-module DB1 := {L(B1) |L ∈

D} generally has K-dimension 3, but can have lower dimension for specific values of the parameters

(for example, if a = 0, then B1 = 1 in which case DB1 is just K). To avoid such drop in dimension,

we define a D-module for F1(a, b1, b2, c |x, y), denoted as FD1 (a, b1, b2, c |x, y), as follows:

• as a K-vector space it is K3,

• ∂x and ∂y act on K3 as follows: if

a1a2
a3

 ∈ K3, then

∂x ·

a1a2
a3

 = Mx

a1a2
a3

+

∂x(a1)
∂x(a2)
∂x(a3)


and

∂y ·

a1a2
a3

 = My

a1a2
a3

+

∂y(a1)∂y(a2)
∂y(a3)


where

Mx =


−b1
x

b1+1−c+b2
x(x−1) 0

b1
x

ax2+b1x−cx+x−axy+b2xy+cy−b1y−y−b2y
x(y−x)(x−1)

b1
x−y

0 b2(y−1)
(x−1)(x−y)

b1
y−x

 (5.1)
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and

My =


−b2
y 0 b1+1−c+b2

y(y−1)
0 b2

x−y
b1(1−x)

(x−y)(y−1)
b2
y

b2
y−x

b1x−cx+x+b2x+axy−b1xy+cy−y−b2y−ay2
y(y−1)(y−x)

 . (5.2)

Proposition 5.1.1 Let B1 = F1(a, b1, b2, c |x, y), B2 = F1(a, b1 + 1, b2, c |x, y), B3 = F1(a, b1, b2 +

1, c |x, y). Then KB1+KB2+KB3 is a D-module and DB1 is a submodule of it. If dimK(DB1) = 3

then DB1
∼= KB1 + KB2 + KB3

∼= FD1 (a, b1, b2, c |x, y) as D-modules. If dimK(KB1 + KB2 +

KB3) < 3 then it is a quotient module of FD1 (a, b1, b2, c |x, y).

Pf : ∂x and ∂y act on B1, B2, B3 as (implementation [31] and [24]):

• (1) ∂xB1 = − b1
x B1 + b1

x B2, ∂yB1 = − b2
y B1 + b2

y B3.

• (2) ∂xB2 = b1+b2−c+1
x(x−1) B1 − ax2+(b1−c+1−ay+b2y)x+(c−b1−b2−1)y

x(x−1)(x−y) B2 + b2(y−1)
(x−1)(x−y)B3,

∂yB2 = b2
x−yB2 − b2

x−yB3.

• (3) ∂yB3 = b1+b2−c+1
y(y−1) B1 + ay2+(b2−c+1−ax+b1x)y+(c−b1−b2−1)x

y(y−1)(x−y) B3 − b1(x−1)
(y−1)(x−y)B2,

∂xB3 = b1
x−yB2 − b1

x−yB3.

So KB1 +KB2 +KB3 is a D-module and DB1 ⊆ KB1 +KB2 +KB3 is a submodule. Define

the K-linear map ψ : FD1 (a, b1, b2, c |x, y)→ KB1 +KB2 +KB3 with ψ(

1
0
0

) = B1, ψ(

0
1
0

) = B2,

ψ(

0
0
1

) = B3. Then ψ is a D-module homomorphism between FD1 (a, b1, b2, c |x, y) and KB1 +

KB2 +KB3 since the matrices Mx (5.1) and My (5.2) in FD1 (a, b1, b2, c |x, y) match precisely with

(1)(2)(3) under ψ.

• If dimK(KB1 + KB2 + KB3) = 3, then ψ is one-to-one, so FD1 (a, b1, b2, c |x, y) ∼= KB1 +

KB2 +KB3 as D-modules.

• If dimK(KB1 + KB2 + KB3) < 3, then the image of ψ, KB1 + KB2 + KB3, is a quotient

module of FD1 (a, b1, b2, c |x, y).

• If dimK(DB1) = 3, then dimK(KB1 +KB2 +KB3) = 3 and therefore DB1
∼= KB1 +KB2 +

KB3
∼= FD1 (a, b1, b2, c |x, y) as D-modules.
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Remark 5.1.2 From now on, use the form [[variables], [derivatives], [matrices]] to denote mod-

ules. The first entry encodes the field K = C(x1, · · · , xp) and the first two entries encode the

differential ring K[∂x1 , · · · , ∂xp ]. So [[x, y], [∂x, ∂y], [Mx,My]] with Mx, My in (5.1) (5.2) denotes

the module FD1 (a, b1, b2, c |x, y).

5.2 Find a Cyclic Vector and its Minimal Operator with respect
to One Variable

Definition 5.2.1 Let [[x1, x2, . . . , xp], [∂x1 , ∂x2 , . . . , ∂xp ], [Mx1 ,Mx2 , . . . ,Mxp ]] denote a module M .

Let K = C(x1, . . . , xp). An element B ∈ M is a cyclic vector with respect to xi (1 ≤ i ≤ p) if

K[∂xi ]B = M. The cyclic vector theorem in [25] ensures the existence of cyclic vectors. Moreover,

for irreducible modules, every nonzero vector is cyclic.

Algorithm 5.2.2 CycVec

• Input: a module M and a variable xi.

• Output: m, a cyclic vector of M with respect to xi, and its minimal operator.

• Steps: let m be the following element in M. Check if it is cyclic with respect to xi. If yes,

then stop and return m and its minimal operator with respect to xi.

– Elements in the standard basis of M, which are n by one vectors with only one entry

equal 1 and others equal 0. Here n is the dimension of M as a K-vector space.

– Combinations of the basis elements with random small number coefficients.

– Combinations of the basis elements with random large number coefficients.

– Combinations of the basis elements with degree 1 rational function coefficients.

Example 5.2.3 By Algorithm 5.2.2, CycVec(FD1 (a, b1, b2, c |x, y), x) finds a cyclic vector of the

D-module FD1 (a, b1, b2, c |x, y) with respect to x,

1
0
0

, and its minimal operator Lx with respect to

x.

Lx = 1 +
b1x+ 2x+ 2ax+ b2y − ay − y − c

ab1
∂x

+
4x2 + ax2 + 2b1x

2 − b1x− cx− 2x− b1xy − axy + b2xy − 3xy − b2y + y + cy

ab1(1 + b1)
∂2x

+
x2 − x− xy + y

ab1(1 + b1)
∂3x.

(5.3)
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5.3 Compute Homomorphisms between Two Modules

Let K = C(x, y), D = K[∂x, ∂y], Dx = K[∂x] and Dy = K[∂y]. Let M,M ′ be D-modules. As

K-vector spaces, M is Kn and M ′ is Kn′
. Our goal is to compute the homomorphisms between M

and M ′ as D-modules.

Theorem 5.3.1

HomD(M,M ′) = HomDx(M,M ′) ∩HomDy(M,M ′).

Pf : HomD(M,M ′) ⊆ HomDx(M,M ′)∩HomDy(M,M ′) since Dx ⊆ D and Dy ⊆ D. Conversely,

if φ ∈ HomDx(M,M ′)∩HomDy(M,M ′), then ∀m ∈M, φ(rm) = rφ(m) for every r ∈ Dx and every

r ∈ Dy, in particular, for r = ∂x and r = ∂y. By repeating this and using K-linearity, we have

φ(rm) = rφ(m) for all r ∈ K[∂x, ∂y]. So φ ∈ HomD(M,M ′).

Theorem 5.3.1 reduces our goal to two tasks.

• Compute HomDx(M,M ′) and HomDy(M,M ′).

• Given two vector spaces V1, V2 ⊆ Matn′,n(K), where V1 is a C(y)-vector space and V2 is a

C(x)-vector space, compute their intersection V1 ∩ V2 (a C-vector space).

5.3.1 Compute HomDx(M,M ′)

Let (m,Lx) = CycVec(M,x) and (m′, L′x) = CycVec(M ′, x) (Algorithm 5.2.2). Then (Re-

mark 2.2.3):

M ∼= Dx/DxLx and M ′ ∼= Dx/DxL
′
x as Dx−modules. (5.4)

Remark 5.3.2 If φ : M → M ′ is a homomorphism as Dx-modules and m ∈ M is a cyclic vector

with respect to x, then φ is completely determined by φ(m).

Remark 5.3.3 DEtools[Homomorphisms] in Maple. Let L1, L2 ∈ Dx. The “Homomorphisms(L2, L1)”

command in Maple computes a basis of all G ∈ Dx/DxL2, for which 1 7−→ G is a Dx-homomorphism

from Dx/DxL1 to Dx/DxL2.

By (5.4) and Remark 5.3.3, if G is in the output of “Homomorphisms(L′x, Lx)”, then the cor-

responding element φ ∈ HomDx(M,M ′) ⊆ HomK(M,M ′) = Matn′,n(K) (recall HomK(M,M ′) =

HomK(Kn,Kn′
)) is Mat1 ·Mat−12 where

Mat1 = (G(m′), ∂xG(m′), . . . , ∂n−1x G(m′)) ∈ Matn′,n(K)
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and

Mat2 = (m, ∂xm, . . . , ∂
n−1
x m) ∈ GLn(K).

Mat1 gives φ on the basis m, ∂xm, . . . , ∂
n−1
x m and Mat−12 is the change of basis matrix from

{m, ∂xm, . . . , ∂n−1x m} to the standard basis. Likewise, one can compute HomDy(M,M ′).

5.3.2 Compute HomDx(M,M ′) ∩ HomDy(M,M ′)

Lemma 5.3.4 If h1, . . . , hd ∈ HomDx(M,M ′) are C(y)-linear independent, then h1, . . . , hd are

K-linear independent.

Pf : suppose h1, . . . , hd are K-linear dependent. Choose a minimal linear relation
∑d

i=1 cihi = 0

with the fewest nonzero ci ∈ K. We may assume c1 = 1 (otherwise reorder to make c1 6= 0 then

divide by c1). So

∀m ∈M,
d∑
i=1

cihi(m) = 0. (5.5)

Since hi ∈ HomDx(M,M ′) and ∂x ∈ Dx, applying ∂x gives

∀m ∈M,

d∑
i=1

[∂x(ci) · hi(m) + cihi(∂xm)] = 0. (5.6)

Since
∑d

i=1 cihi(∂xm) = 0 (by (5.5) and ∂xm ∈M), so
∑d

i=1 ∂x(ci) ·hi = 0 with ∂x(c1) = ∂x(1) = 0.

Then
∑d

i=1 ∂x(ci) · hi = 0 has fewer nonzero terms than
∑d

i=1 cihi = 0. By minimality, all ∂x(ci)

must be 0 and hence ci ∈ C(y). So h1, . . . , hd are C(y)-linear dependent, which means that K-linear

dependency of elements in HomDx(M,M ′) implies C(y)-linear dependency. Then its contrapositive

is also true, which completes the proof.

Let h1, . . . , hd1 be a basis of HomDx(M,M ′) as a C(y)-vector space and H1, . . . ,Hd2 be a basis

of HomDy(M,M ′) as a C(x)-vector space. All of them are n′ × n matrices over K.

Algorithm 5.3.5 Case of d1 = d2 = 1

• Input: h1 ∈ HomDx(M,M ′) and H1 ∈ HomDy(M,M ′).

• Output: HomD(M,M ′).

• Steps.

– 1. Check if h1 = Q ·H1 for some Q ∈ K.
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– 2. If so, check if there exist D1 ∈ C(y) and D2 ∈ C(x) such that Q = D1 ·D2.

– 3. If so, return h1
D1

(equals h2
D2

).

• Comment. If the check in step 1 or step 2 fails, then return the empty set.

Example 5.3.6 By computations in Section 5.3.1, a Dx-module homomorphism h1 from F1(a +

1, b1, b2, c |x, y) to F1(a, b1, b2, c |x, y) and a Dy-module homomorphism H1 are:

h1 =

b1(a− b1 − b2)(y − 1) b1(b1+b2−c+1)(y−1)
x−1 b1(b1 + b2 − c+ 1)

b21(y − 1) − b1(a+b1−c+1)(y−1)
x−1 −b21

b1b2(y − 1) −b1b2(y−1)
x−1 −b1(a+ b2 − c+ 1)


and

H1 =

b2(a− b1 − b2)(x− 1) b2(b1 + b2 − c+ 1) b2(b1+b2−c+1)(x−1)
y−1

b1b2(x− 1) −b2(a+ b1 − c+ 1) − b1b2(x−1)
y−1

b22(x− 1) −b22 − b2(a+b2−c+1)(x−1)
y−1

 .
Now h1 = b1(y−1)

b2(x−1) ·H1, so h1
b1(y−1) ∈ HomD(FD1 (a+ 1, b1, b2, c |x, y), FD1 (a, b1, b2, c |x, y)).

Algorithm 5.3.7 Case of SPANK(h1, . . . , hd1) = SPANK(H1, . . . ,Hd2) and dim(HomD(M,M ′)) =

d1.

• Input: a basis of HomDx(M,M ′) as C(y)-vector space, h1, . . . , hd1, and a basis of HomDy(M,M ′)

as C(x)-vector space, H1, . . . ,Hd2.

• Output: a basis of HomD(M,M ′).

• Steps.

– 1. By Lemma 5.3.4, d1 = d2. Let d = d1. Write h1, . . . , hd into one n′ · n× d matrix A,

(i, j)th entry in hk being ((i − 1)n + j, k)th entry in A, i = 1, . . . , n′, j = 1, . . . , n and

k = 1, . . . , d. Likewise, H1, . . . ,Hd give another n′ · n× d matrix B.

– 2. Solve for the change of basis matrix C = (Cij)d×d such that hi =
∑d

j=1Cij ·Hj for

every i = 1, . . . , d, that is, A = B · C.

– 3. Let C1 be the invertible matrix from substituting y by some random value in the matrix

C. Then C1 ∈ Matd,d(C(x)). Let C2 = C−11 ·C, then C2 ∈ Matd,d(C(y)) and C = C1 ·C2.

(The existence of such C1 and C2 is ensured by dim(HomD(M,M ′)) = d1.)

– 4. Rewrite A · C−12 as d n′ × n matrices, which is the inverse process of step 1. Return

the set of these matrices.
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• Comment on step 3. Let {B1, . . . , Bd} be a basis of HomD(M,M ′) as a C-vector space. Then

SPANC(y)(B1, . . . , Bd) ⊆ SPANC(y)(h1, . . . , hd). From Lemma 5.3.4,

dim(SPANC(y)(B1, . . . , Bd)) = dim(SPANC(B1, . . . , Bd)) = d.

And dim(SPANC(y)(h1, . . . , hd)) = d, so SPANC(y)(h1, . . . , hd) = SPANC(y)(B1, . . . , Bd).

Case 3. d1 6= d2 or dim(HomD(M,M ′)) 6= d1. This would be detected in Step 3 in Algo-

rithm 5.3.7. For completeness, we should implement this case too. We did not implement this case

because it has not yet occurred in our computation.

5.3.3 General Case: M and M ′ are C(x1, x2, . . . , xp)[∂x1 , ∂x2 , . . . , ∂xp ]-Modules with
p > 2

Let K = C(x1, x2, . . . , xp), D = K[∂x1 , ∂x2 , . . . , ∂xp ] and Dxi = K[∂xi ] for i = 1, 2 . . . , p. Algo-

rithm 5.3.8 below deals with the case when d1 = d2 = . . . = dp = 1 where di is the dimension of

HomDxi
(M,M ′) with i = 1, 2 . . . , p.

Algorithm 5.3.8 combHom

• Input: two matrices A,B ∈ Matn′,n(K) and three variable sets l1, l2 and l, where A is unique

up to l1, B is unique up to l2 and l = {x1, x2, . . . , xp}.

• Output: a list of two entries. The first entry is the matrix C ∈ Matn′,n(K), which is equal to

both A and B up to their own constants. The second entry is the variable set ll where C is

unique up to it.

• Steps are similar as in Algorithm 5.3.5. Just replace x by variables in l2 and replace y by

variables in l1. Then let ll = l1 ∩ l2.

• Comment. If A ∈ HomDx1
(M,M ′), then l1 = {x2, . . . , xp} since A is unique up to constants

in C(x2, . . . , xp).

Example 5.3.9 Let K = C(x, y, z), D = K[∂x, ∂y, ∂z], Dx = K[∂x], Dy = K[∂y] and Dz = K[∂z].

Let M be the module of F1(a, b1, b2, c |x2, yz) and M ′ be the module of F1(a+1, b1, b2, c |x2, yz), then

by the computation in Section 5.3.1, homomorphisms hx ∈ HomDx(M,M ′), hy ∈ HomDy(M,M ′)

and hz ∈ HomDz(M,M ′) are:
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hx =

b1(a− b1 − b2)(yz − 1) b1(b1+b2−c+1)(yz−1)
x2−1 b1(b1 + b2 − c+ 1)

b21(yz − 1) − b1(a+b1−c+1)(yz−1)
x2−1 −b21

b1b2(yz − 1) −b1b2(yz−1)
x2−1 −b1(a+ b2 − c+ 1)


and

hy =


−b2(a− b1 − b2)(x2 − 1)z −b2(b1 + b2 − c+ 1)z − b2(b1+b2−c+1)(x2−1)z

yz−1
−b1b2(x2 − 1)z b2(a+ b1 − c+ 1)z b1b2(x2−1)z

yz−1
−b22(x2 − 1)z b22z

b2(a+b2−c+1)(x2−1)z
yz−1


and

hz =


−b2(a− b1 − b2)(x2 − 1)y −b2(b1 + b2 − c+ 1)y − b2(b1+b2−c+1)(x2−1)y

yz−1
−b1b2(x2 − 1)y b2(a+ b1 − c+ 1)y b1b2(x2−1)y

yz−1
−b22(x2 − 1)y b22y

b2(a+b2−c+1)(x2−1)y
yz−1


Since hx = − b1(yz−1)

b2(x2−1)z · hy = b1(yz−1)
b2z

· (− 1
x2−1) · hy, so combHom(hx, hy, {y, z}, {x, z}, {x, y, z})

returns [hx,y, z] with hx,y = b2z
b1(yz−1) · hx as follows:

hx,y =


b2(a− b1 − b2)z b2(b1+b2−c+1)z

x2−1
b2(b1+b2−c+1)z

yz−1
b1b2z − b2(a+b1−c+1)z

x2−1 − b1b2z
yz−1

b22z − b22z
x2−1 − b2(a+b2−c+1)z

yz−1


Now hx,y = − z

(x2−1)y ·hz, so combHom(hx,y, hz, {z}, {x, y}, {x, y, z}) gives
hx,y
z ∈ HomD(M,M ′).

Likewise, when SPANK(HomDx1
(M,M ′)) = . . . = SPANK(HomDxp

(M,M ′)) and the dimension

of HomD(M,M ′) equals the dimension of HomDxi
(M,M ′) which is greater than 1, making the same

changes as what we did in Algorithm 5.3.8 on Algorithm 5.3.7 gives the Algorithm “combHom2”.

Algorithm 5.3.10 hom

• Input: two modules M,M ′ where M is Kn and M ′ is Kn′
as K-vector spaces, K = C(x1, . . . , xp).

• Output: HomD(M,M ′) with D = K[∂x1 , . . . , ∂xp ].

• Steps.

– Compute HomDxi
(M,M ′) for i = 1 . . . p (Section 5.3.1). Let di be the dimension of

HomDxi
(M,M ′) and {Ai,1, . . . , Ai,di} be a basis of HomDxi

(M,M ′).
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– If d1 = d2 = . . . = dp = 1, then apply Algorithm 5.3.8 on A1,1, A2,1 to get a new

matrix Anew. Then for each i with 2 < i ≤ p (if exists), apply Algorithm 5.3.8 on Anew

and Ai,1 until all Ai,1 (i = 3, . . . , p) are used once. If it returns a matrix Anew, then

Anew ∈ HomD(M,M ′). If d1 = d2 = . . . = dp > 2 and the dimension of HomD(M,M ′)

equals d1, then use the Algorithm “combHom2” to do the same procedure.

5.4 Compute Projective Homomorphisms between Two Modules

In this section, let K = C(x, y) and D = K[∂x, ∂y]. Algorithm 5.3.10 computes homomorphisms

between two D-modules of multivariate case, which corresponds to finding G in
(iii), G−−−−→ for the

univariate case. Now we need an algorithm to check if two modules M1 and M2 are projectively

equivalent. By Definition 2.2.4, this is equivalent to computing the 1-dimensional module I such

that the tensor product of M1 and I (M1 ⊗ I) is homomorphic to M2. The 1-dimensional module

I corresponds to r in
(ii), r−−−→ which could be computed by:

Algorithm 5.4.1 OneDiModule

• Input: an algebraic function r ∈ K and a variable list [x, y].

• Output: the 1-dimensional module corresponding to r: [[x, y], [∂x, ∂y], [[
∂x(r)
r ], [

∂y(r)
r ]]].

• Comment: the 1-dimensional D-module one to one corresponds to r ∈ K.

Algorithm 5.4.2 TProModule

• Input: any two modules M1 and M2 over the same ring.

• Output: the tensor product module of M1 and M2: M1 ⊗M2.

• Comments.

– The basis of M1 ⊗M2 is {b ⊗ B} for any basis element b ∈ M1 and any basis element

B ∈M2.

– ∂x(b⊗B) = (∂xb)⊗B+ b⊗ (∂xB) and ∂y(b⊗B) = (∂yb)⊗B+ b⊗ (∂yB) for any b ∈M1

and any B ∈M2.

Example 5.4.3 Let M1 = [[x, y], [∂x, ∂y], [

[
a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

]
]] and M2 = [[x, y], [∂x, ∂y], [[c], [d]]].

Let {b1, b2} be the basis of M1 and {B} be a basis of M2. Then {b1⊗B, b2⊗B} is a basis of M1⊗M2.

And the relations:

45



∂xb1 = a11b1 + a21b2,

∂xb2 = a12b1 + a22b2,

∂xB = cB.

Then:

∂x(b1 ⊗B) = (∂xb1)⊗B + b1 ⊗ (∂xB) = (a11 + c)(b1 ⊗B) + a21(b2 ⊗B),

∂x(b2 ⊗B) = (∂xb2)⊗B + b2 ⊗ (∂xB) = a12(b1 ⊗B) + (a22 + c)(b2 ⊗B).

So the matrix of M1⊗M2 with respect to x is

[
a11 + c a12
a21 a22 + c

]
, likewise, one can obtain the ma-

trix with respect to y:

[
b11 + d b12
b21 b22 + d

]
. So M1⊗M2 is [[x, y], [∂x, ∂y], [

[
a11 + c a12
a21 a22 + c

]
,

[
b11 + d b12
b21 b22 + d

]
]].

Remark 5.4.4 Let I be the 1-dimensional module of function r, then M1 ⊗ I is equivalent to

applying
(ii), r−−−→ on the minimal operator of M1.

Algorithm 5.4.5 projHom

• Input: two D-modules M1, M2 and a number N indicating options (comment).

• Output: the set of lists [r, h] which gives M1
(ii), r−−−→ (iii), h−−−−→ M2, i.e., M2 is homomorphic

(under h) to M1 ⊗ I where I is the 1-dimensional module for r.

• Steps.

– 1. For each variable (x, y), use Algorithm 5.2.2 to find cyclic vector of M1 and its

minimal operators L1x and L1y. Likewise, find minimal operators L2x and L2y of M2.

Let S1 be the set of singularities of L1x and L2x with form x = p ∈ P1. Let S2 be the

set of singularities of L1y and L2y with form y = q ∈ P1. Let S3 be the set of other

singularities (e.g. x = y).

– 2. For singularities in S1, compute exponents of L1x, say {e1, . . . , em}, and exponents

of L2x, say {f1, . . . , fn}. Let Dx−p be the exponent difference set of all possible fi − ej
with i = 1, . . . , n, j = 1, . . . ,m. Let

fp =

{
x− p, p ∈ C
1
x , p =∞.
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Then (fp)
d with d ∈ Dx−p is a candidate factor of r. For singularities in S2, let Dy−q be

the exponent difference set of L1y and L2y. Let

fq =

{
y − p, p ∈ C
1
y , p =∞.

Then (fq)
d, d ∈ Dy−q, is a candidate factor of r.

– 3. For singularities in S3, say F (x, y), find the exponent difference set DFx from L1x,

L2x and DFy from L1y, L2y. For each d ∈ DFx, if there exists d̃ ∈ DFy such that

d− d̃ ∈ Z, then F (x, y)d is a candidate factor of r.

– 4. For each possible function r =
∏
p∈S1, q∈S2, F∈S3

(fp)
d1(fq)

d2F (x, y)d3 where d1, d2 and

d3 are exponent differences at singularities, use Algorithm 5.4.1 to obtain the module

for r, say I, then use Algorithm 5.4.2 to obtain M1 ⊗ I, then apply Algorithm 5.3.10 on

M1 ⊗ I and M2, if there exists a homomorphism h, then [r, h] is a list in the output.

• Comment: there may be hundreds of candidates r. Adding options to the projective homomor-

phism, such as surjective or injective, may rule out lots of candidates (Example 5.4.7 below).

The number in the input controls this: N = 1 for surjective, N = 2 for injective and N = 0

for the general case.

Remark 5.4.6 Suppose there exists a projective homomorphism h from D-module M1 to M2, then

• If M1 is irreducible, then h is injective.

• If M2 is irreducible, then h is surjective.

Example 5.4.7 Let M1 = FD1 (1, b1, b2, c |x, y) (reducible) and M2 be the D-module of 2F1(1 −

b1, c − b1 − b2, c − b1 | y(x−1)x(y−1)). Algorithm 5.4.5 gives projective homomorphism from M1 to M2:

r = xc−b1−b2−1(x− 1)b1−c(x− y)b1−2+b2(y − 1)1−b1 and the homomorphism:

h =

[
1

x(x2−x−xy+y)
cx−x−b1x+xy−b2xy+b2y+2b1y−cy

b1x(x−1)(x−y)(x2−x−xy+y)
b2xy−b2x−xy+b1xy+y−b1y

b2x(x−1)(x−y)2(y−1)
0 (b1−1)(b1+b2−c)y

b1(b1−c)x2(y−1)(x2−x−xy+y)
(b1−1)(b1+b2−c)y

b2(b1−c)x2(x−y)(y−1)2

]

There are 243 candidates for r when using Algorithm 5.4.5 by projHom(M1,M2,0). But M2 is

irreducible, so by Remark 5.4.6, the projective homomorphism is surjective. By adding this option,

the number of candidates of r drops to 1 by projHom(M1,M2,1), which saves a lot of computation.

Remark 5.4.8 [24] gives a similar relation between F1(a, b1, b2, b1 +b2 |x, y) (reducible) and some

2F1 function as in Example 5.4.7.
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CHAPTER 6

APPLICATIONS

Using the tools in Chapter 5, this chapter mainly discusses if the order 2 factors of reducible A-

hypergeometric systems of order 3 come from the 2F1 function, the only globally bounded (Defini-

tion 1.1.4) A-hypergeometric function of order 2. This partly answers the Question 3 in Section 1.1.

6.1 Reducible Appell F1

LetK = C(x, y) andD = K[∂x, ∂y]. Example 5.4.7 gives one reducible case of FD1 (a, b1, b2, c |x, y).

This section discusses all reducible cases: F1(a, b1, b2, c |x, y) is reducible if and only if [4]

a ∈ Z or b1 ∈ Z or b2 ∈ Z or c− a ∈ Z or c− b1 − b2 ∈ Z. (6.1)

Theorem 6.1.1 Let M = FD1 (a, b1, b2, c |x, y) as defined in Section 5.1. In each reducible case (6.1),

M is projectively equivalent to FD1 (a′ ∈ Z, b′1, b′2, c′ |x′, y′) where C(x′, y′) = C(x, y).

Pf : Proposition 4.2.1 gives (up to automorphisms of C(u, v), take u = x and v = y) projective

equivalences among the modules of:

• (i) F1(a, b1, b2, c)

• (ii) F1(c− a, b1, b2, c)

• (iii) F1(a, c− b1 − b2, b2, c)

• (iv) F1(a, b1, c− b1 − b2, c)

• (v) F1(a, b1, b2, b1 + b2 + a+ 1− c).

Observe that1: a ∈ Z (ii)←→ c − a ∈ Z (i)←→ 4th − 1st entry inZ (v)←→ b1 + b2 + 1 − c ∈ Z ⇔

c − b1 − b2 ∈ Z (iii)←→ 2nd entry inZ (i)←→ b1 ∈ Z. Likewise, b2 ∈ Z reduces to a ∈ Z using (iv)

instead of (iii). So all reducible cases in (6.1) reduce to a ∈ Z under the transformations from

Proposition 4.2.1.

1note ↔ refers to a transformation from proposition 4.2.1 and ⇔ refers to equivalent statements.
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Theorem 6.1.2 If c 6∈ Z, then modules FD1 (a ∈ Z, b1, b2, c |x, y) reduce to FD1 (0, b1, b2, c |x, y) or

FD1 (1, b1, b2, c |x, y) under isomorphisms, otherwise they reduce to FD1 (0, b1, b2, c |x, y) or FD1 (1, b1, b2, c |x, y)

or FD1 (c, b1, b2, c |x, y) when c ∈ Z and c ≥ 1 or FD1 (c− 1, b1, b2, c |x, y) when c ∈ Z and c ≤ 0.

Pf : Example 5.3.6 gives a homomorphism between FD1 (a, b1, b2, c |x, y) and FD1 (a+1, b1, b2, c |x, y):

H =

a− b1 − b2
b1+b2−c+1

x−1
b1+b2−c+1

y−1
b1 −a+b1−c+1

x−1 − b1
y−1

b2
−b2
x−1 −a+b2−c+1

y−1

 .
This is an isomorphism if a 6= 0 and a 6= c − 1 since then det(H) = a(a+1−c)2

(x−1)(y−1) 6= 0. Let

Ma = FD1 (a, b1, b2, c |x, y).

• (i) If c 6∈ Z, then M1
∼= M2

∼= M3
∼= . . . and M0

∼= M−1 ∼= M−2 ∼= . . . , so for any a ∈ Z,
Ma
∼= M0 or Ma

∼= M1.

• (ii) If c ∈ Z and c ≥ 1, then M0
∼= M−1 ∼= M−2 ∼= . . . , M1

∼= . . . ∼= Mc−1 and Mc
∼= Mc+1

∼=
Mc+2

∼= . . . , so for any a ∈ Z, Ma is isomorphic to M0, M1 or Mc.

• (iii) If c ∈ Z and c ≤ 0, similar to (ii), Ma is isomorphic to M0, M1 or Mc−1.

Definition 6.1.3 Given a D-module M = [[x, y], [∂x, ∂y], [Mx,My]] with a basis {B1, . . . , Bn},

recall that Mx and My are the derivative matrices of the basis with respect to x and y respectively.

The dual module of M is the D-module with basis {B∗1 , . . . , B∗n} and:

B∗i (Bj) =

{
0, i 6= j
1, i = j,

i, j = 1, . . . , n.

Algorithm 6.1.4 dualmodule

• Input: any D-module [[x, y], [∂x, ∂y], [Mx,My]].

• Output: the dual module of the input [[x, y], [∂x, ∂y], [−MT
x ,−MT

y ]].

• Comment. Let Xj,i = (Mx)j,i for i, j = 1, . . . , n. Since 0 = ∂x(B∗i · Bj) = ∂x(B∗i )(Bj) +

B∗i (∂x(Bj)), then

∂x(B∗i )(Bj) = −B∗i (∂x(Bj)) = −B∗i (Xj,1B1 + . . .+Xj,iBi + . . .) = −Xj,i.

So the derivative matrix with respect to x is −MT
x . Likewise, the derivative matrix with

respect to y is −MT
y .

49



Theorem 6.1.5 The modules FD1 (0, b1, b2, c |x, y) and FD1 (1, b1, b2, c |x, y) reduce to each other

under the dual.

Pf : there is a homomorphism between the dual module of F1(1− a, 1− b1, 1− b2, 3− c |x, y) and

the module of F1(a, b1, b2, c |x, y), which is computed by Algorithms 6.1.4 and 5.3.10.

Definition 6.1.6 A D-module M comes from 2F1 if there exists a 1-dimensional module I such

that M is homomorphic to the tensor product of I and the module of 2F1(a, b, c | g(x, y)) for some

a, b, c ∈ Q and g(x, y) ∈ C(x, y).

Theorem 6.1.7 Any irreducible 2nd order submodule or quotient module of FD1 (a, b1, b2, c |x, y)

comes from 2F1.

Pf : Example 5.4.7 shows that the reducible case of a = 1 comes from 2F1. Now Theorem 6.1.7

is a corollary of Theorems 6.1.1, 6.1.2 and 6.1.5 combined.

6.2 Horn G2 and Appell F1

Like Appell’s F1 function, Horn G2 function is a bivariate order 3 A-hypergeometric function

with 4 parameters as well. It is defined by

G2(a1, a2, b1, b2 |x, y) =
∞∑

m,n=0

(a1)m(a2)n(b1)n−m(b2)m−n
m!n!

xmyn.

One can compute its D-module (D = C(x, y)[∂x, ∂y]) using the same method as in the com-

putation of FD1 (a, b1, b2, c |x, y). From now on, denote its D-module as GD2 (a1, a2, b1, b2 |x, y). All

non-removable singularities of the minimal operator of G2(a1, a2, b1, b2 |x, y) are

{x = −1, x = 0, x =∞, y = −1, y = 0, y =∞, xy = 1}.

Proposition 6.2.1 The group of automorphisms on [x, y] which preserves the non-removable sin-

gularities of G2(a1, a2, b1, b2 |x, y) is isomorphic to S5 and it is generated by the maps which send

[x, y] to [y, x], [ 1x ,
1
y ], [x,− 1

xy ] and [x, y+1
xy−1 ]. Furthermore, the D-modules generated by the following

functions are projectively equivalent.

• G2(a1, a2, b1, b2 |x, y).
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• G2(a2, a1, b2, b1 | y, x).

• G2(a1, a2, a2 + b2 − a1, a1 + b1 − a2 | 1x ,
1
y ).

• G2(b1 + b2, a2, a2 − b1, a1 − a2 + b1 |x,− 1
xy ).

• G2(1− a1 − b1, a2, b1, 1− a2 − b1 − b2 |x, y+1
xy−1).

Pf : count the elements in the group generated by the maps which send [x, y] to [y, x], [ 1x ,
1
y ],

[x,− 1
xy ], [x, y+1

xy−1 ], then one can verify that the transformation group is isomorphic to S5. Next,

for each generator, take [ 1x ,
1
y ] for instance, do

• Use Algorithm 5.2.2 to compute the minimal operator (of order 3) of G2(a1, a2, b1, b2 |x, y)

and G2(A1, A2, B1, B2 | 1x ,
1
y ) with respect to x. Denote them as L1 and L2.

• Let r = 1
3 · (c1 − c2) where c1 and c2 are coefficients of L1 and L2 with respect to ∂2x.

• Equate L2 and L1 s©(∂x − r) to solve for A1, A2, B1 and B2. (Now A1 = a1, A2 = a2,

B1 = a2 + b2 − a1 and B2 = a1 + b1 − a2)

• Repeat the above steps with respect to y and make sure it gives the same solution for A1,

A2, B1 and B2.

• Use Algorithm 5.4.5 to compute the projective homomorphism between GD2 (a1, a2, a2 + b2 −
a1, a1 + b1 − a2 | 1x ,

1
y ) and GD2 (a1, a2, b1, b2 |x, y).

• The result of last step is {[x−1−a1y−1−a2 , H]}. So the tensor product of the two modules,

GD2 (a1, a2, a2 + b2− a1, a1 + b1− a2 | 1x ,
1
y ) and the module for x−1−a1y−1−a2 , is isomorphic to

GD2 (a1, a2, b1, b2 |x, y). Here H is the homomorphism:

 1
xy −a1

y −a2
x

0 −x
y 0

0 0 − y
x


with non-zero determinant 1

x2y
. So GD2 (a1, a2, a2 + b2 − a1, a1 + b1 − a2 | 1x ,

1
y ) is projectively

equivalent to GD2 (a1, a2, b1, b2 |x, y).

Recall that the group of automorphisms which preserves the non-removable singularities of

F1(a, b1, b2, c |x, y) is also S5 (Propsition 4.2.3), so we want to know if G2 and F1 define the equiva-

lent system. To uncover this, we use F1-solver to check if G2 is solvable in terms of F1 and it turns

out to be true.
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Table 6.1: Singularities of F1 and G2

A-hypergeometric Functions F1(a, b1, b2, c |x, y) G2(a1, a2, b1, b2 |x, y)

Non-removable Singularities

x = 0, x = 1, x =∞,
y = 0, y = 1, y =∞,

x = y

x = −1, x = 0, x =∞,
y = −1, y = 0, y =∞,

xy = 1

Example 6.2.2 Let L be the minimal operator of G2(
1
2 ,

1
3 ,

1
5 ,

1
7 |x, 2x−1). The F1-solver in Chap-

ter 4 finds the F1-type solution

5x+ 2

6x(x+ 1)
· F1(

23

35
,
1

2
,
1

3
,
19

14
| 1

x+ 1
,
2x− 1

2x
)

in the following steps.

• Algorithm 4.1.3 finds 408 candidate pairs [u, v] in F1(a, b1, b2, c |u, v).

• Algorithm 4.2.4 divides these candidates [u, v] into 14 orbits.

• For each orbit, take the first pair [u, v] and use Algorithm 4.3.3 to compute the parameters in

F1 and the exp-product parameter r.

Next we try to find the exact relation between G2 and F1. To compute transformations on

[x, y] which send the non-removable singularities of F1 to those of G2, compare their singularities

(Table 6.1). By observation, one of such transformations is: [x, y] 7→ [−x,− 1
y ]. Using the same

method in Proposition 6.2.1, we found the D-modules of the following functions are projectively

equivalent

• F1(a, b1, b2, c |x, y)

• G2(b1, b2, 1 + b2 − c, a− b2 | − x,− 1
y )

and Algorithm 5.4.5 gives the projective homomorphism: [y−b2−1, H]. Here H is the homomor-

phism

 1
y − b1

xy 0

0 − b1
xy 0

0 0 b2


with the determinant − b1b2

xy2
.

This implies the systems of Appell F1 and Horn G2 are equivalent. So Theorem 6.1.7 also hold

for G2: any irreducible 2nd order submodule or quotient module of GD2 (a1, a2, b1, b2 |x, y) comes

from 2F1.
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Remark 6.2.3 In [16], it is stated that y−b2 ·G2(b1, b2, 1+b2−c, a−b2 | −x,− 1
y ) and F1(a, b1, b2, c |x, y)

satisfy the same differential equations.

6.3 Reducible Horn G3

Horn G3 function is another A-hypergeometric function of order 3 which is defined by:

G3(a, b |x, y) =

∞∑
m,n=0

(a)2m−n(b)2n−m
m!n!

xmyn.

One can compute its D-module (D = C(x, y)[∂x, ∂y]) and we denote it as GD3 (a, b |x, y). From

[4], G3(a, b |x, y) is reducible if and only if

a+ 2b ∈ Z or 2a+ b ∈ Z.

Theorem 6.3.1 All reducible cases of G3(a, b |x, y) reduce to a+2b = 0 or a+2b = 1 or 2a+b = 0

or 2a+ b = 1 under isomorphisms.

Pf : Algorithm “hom” gives a homomorphism between GD3 (a, b |x, y) and GD3 (a+1, b |x, y) and

the determinant is nonzero if and only a + 2b 6= 0. So the reducible cases a + 2b ∈ Z reduce to

a + 2b = 0 and a + 2b = 1. Likewise the reducible cases 2a + b ∈ Z reduce to 2a + b = 0 and

2a+ b = 1.

Theorem 6.3.2 The reducible G3(1− 2b, b |x, y) satisfies the same differential equations as

(3y + 1)
3b
2
−1y1−2b · 2F1(

1

3
− 1

2
b,

2

3
− 1

2
b,

1

2
| (27xy2 − 9y − 2)2

4(3y + 1)3
).

One can test this relation using Algorithm 5.4.5. Steps to find this relation:

• (i) Obtain the pullback function (27xy2−9y−2)2
4(3y+1)3

in 2F1.

– Fix b in G3(1 − 2b, b |x, y) with some value. Substitute y by some function f ∈ C(x).

Let L be the minimal operator of the cyclic vector in GD3 (1− 2b, b |x, f) with respect to

x, then L has a right factor L2, an order 2 operator.

– For each L2, use Algorithm 5.2.1 in [19] to obtain its 2F1-type solution containing a

pullback function p ∈ C(x).

– Collect a bunch of pairs [f, p] and interpolate p in terms of f and x.
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• (ii) Obtain parameters in 2F1 : fix y ∈ C(x). Assign b to different values. Each b corresponds

to a list of parameters in 2F1 solution as above. Then using these data, interpolate parameters

in terms of b.

• (iii) Now use Algorithm 5.4.5 to find the projective homomorphism between GD3 (1−2b, b |x, y)

and 2F
D
1 (13 −

1
2b,

2
3 −

1
2b,

1
2 |

(27xy2−9y−2)2
4(3y+1)3

).

Theorem 6.3.3 Any irreducible 2nd order submodule or quotient module of GD3 (a, b |x, y) comes

from 2F1.

6.4 Reducible Horn G1

Horn G1 function is another A-hypergeometric function of order 3 and defined by

G1(a, b1, b2 |x, y) =
∞∑

m,n=0

(a)m+n(b1)n−m(b2)m−n
m!n!

xmyn

From [4], G1(a, b1, b2 |x, y) is reducible if and only if

{a, a+ b1, a+ b2, b1 + b2} ∩ Z 6= ∅.

Reference [16] gives the relation between G1 and F1:

(1+x+y)a·G1(a, b1, b2 |x, y) = F1(1−b1−b2, a, a, a−b1+1 | 1 + 2x+
√

1− 4xy

2(1 + x+ y)
,
1 + 2x−

√
1− 4xy

2(1 + x+ y)
).

(6.2)

As what we did on D-module of F1, one can compute the D-module of G1 and then apply the

algorithms on it. After applying the same trick as in the proof of Theorem 6.1.1 on the parameters

in the Relation (6.2), Theorem 6.1.7 implies the same result for G1:

Theorem 6.4.1 Any irreducible 2nd order submodule or quotient module of GD1 (a, b1, b2 |x, y)

comes from 2F1.
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CHAPTER 7

ORDER 3 A-HYPERGEOMETRIC FUNCTIONS

AND THEIR POLYTOPES

7.1 Structure of A-hypergeoemtric Functions1

The definition of A-hypergeometric functions begins with a finite subset A ⊆ Zr (hence the

name) consisting of N vectors a1, . . . , aN such that:

• SPANZ(a1, . . . , aN ) = Zr and

• there exists a linear form h on Rr such that h(ai) = 1 for all i. 2

Let A denote the matrix (a1, . . . , aN )r×N . A vector of parameters α = (α1, . . . , αr) ∈ Rr is also

given. The lattice L := {(l1, . . . , lN ) ∈ ZN |
∑N

i=1 liai = 0}.

The A-hypergeometric equations are a set of partial differential equations with independent

variables v1, . . . , vN . This set includes two groups. The first group consists of the structure equa-

tions:

�1Φ :=
∏
li>0

∂lii Φ−
∏
li<0

∂
|li|
i Φ = 0 (7.1)

for all l = (l1, . . . , lN ) ∈ L. The second group consists of the homogeneity or Euler equations.

ZiΦ := (a1,iv1∂1 + . . .+ aN,ivN∂N − αi)Φ = 0, i = 1, . . . , r (7.2)

where ak,i denotes the i-th coordinate of ak.

Now a formal solution of the A-hypergeometric system (7.1), (7.2) can be given by

ΦL,γ(v1, . . . , vN ) =
∑
l∈L

vl1+γ11 · · · · · vlN+γN
N

Γ(l1 + γ1 + 1) · · · · · Γ(lN + γN + 1)

1This whole section is from [4].
2This condition ensures the function is regular singular.
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where l = (l1, . . . , lN ) and (γ1, . . . , γN ) satisfies α = γ1a1 + . . .+ γNaN .

Example 7.1.1 Let the matrix A = (a1, a2, a3, a4) =

1 0 0 1
0 1 0 1
0 0 1 −1

. Then L = SPANZ([−1,−1, 1, 1]).

α = (−a,−b, c− 1), choose γ = (−a,−b, c− 1, 0). Then the formal solution is

ΦL,γ = v−a1 · v
−b
2 · v

c−1
3

∑
k∈Z

v−k1 v−k2 vk3v
k
4

Γ(−k − a+ 1)Γ(−k − b+ 1)Γ(c+ k)Γ(k + 1)
(7.3)

= v−a1 · v
−b
2 · v

c−1
3 · sin(πa)sin(πb)

π2

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
(
v3v4
v1v2

)k. (7.4)

Let v1 = v2 = v3 = 1 and v4 = z then it becomes 2F1(a, b, c | z).

Definition 7.1.2 The polytope corresponding to the matrix A = (a1, . . . , aN )(r×N) is the convex

hull of the endpoints of ai.

Remark 7.1.3 Example 7.1.1 gives a way to connect matrix A and A-hypergeometric functions.

In this way, given an A-hypergeometric function, one can construct its matrix A and therefore find

its corresponding polytope.

7.2 Relations among A-hypergeometric Functions

Theorem 7.2.1 Suppose the matrices of A-hypergeometric functions f1 and f2 are A = (a1, . . . , aN )r×N

and B = (b1, . . . , bN )r×N . Then f1 and f2 are equivalent if

• {a1, . . . , aN} = {b1, . . . , bN} or

• there exists an r× r matrix C such that {B1, . . . , BN} = {b1, . . . , bN} where (B1, . . . , BN ) :=

C · (a1, . . . , aN ).

Algorithm 7.2.2 Check Equivalence

• Input: two matrices (A)r×N and (B)r×N with r < N corresponding to two A-hypergeometric

functions.

• Output: one r × r matrix or “No equivalence”.

• Steps.

– 1. Consider A and B as two sets of columns rather than matrices and check if they are

equal as sets. If yes, then return the r × r identity matrix, otherwise, do step 2.
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– 2. Take r linearly independent columns of A, denoted as (MA)r×r.

– 3. Take r columns of B, denoted as (MB)r×r. Let M := MB ·M−1A , i.e., M ·MA = MB,

check if M · A and B satisfy the condition in step 1. If yes, then return M , otherwise,

repeat Step 3 until all such MB are tested. If none of them gives a matrix M , then return

“No equivalence”.

Example 7.2.3 Appell’s F1 function can be obtained by the matrix A and Horn G2 function by

the matrix B as follows: A =


1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 1 1 1

 and B =


1 0 0 0 1 −1
0 1 0 0 0 1
0 0 1 0 1 0
1 1 1 1 1 1

 .

Algorithm 7.2.2 returns the matrix M =


1 0 −1 0
0 0 1 0
0 1 0 0
0 0 0 1

 , which verifies the equivalence of these

two functions as stated in Section 6.2. Likewise, Algorithm 7.2.2 also finds the equivalences among

Horn functions G1, H3 and H6 (the equivalence of H3 and H6 was stated in [16]).

Definition 7.2.4 Suppose the matrices of two A-hypergeometric functions f1 and f2 are A =

(a1, . . . , aN )r×N and B = (b1, . . . , bN )r×N . If there exists a matrix (C)r×r such that

• {B1, . . . , BN} ⊆ {b1, . . . , bN} with (B1, . . . , BN ) = C ·A and

• After reordering rows and columns (if necessary), C ·A can be written in

[
(Ã)(r−1)×(N−1) α

0 0

]
and there exists a column in Ã which equals α and the matrix Ã(r−1)×(N−1) also defines f2,

then f1 and f2 has weak equivalence. In fact, f2 is a special case of f1.

Similar to Algorithm 7.2.2, we developed an algorithm to test weak equivalence and using it,

we found:

G3 ⊆ G1 ∼ H3 ∼ H6 ⊆ F1 ∼ G2

.
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APPENDIX A

GLOBALLY BOUNDED BUT NOT 3F2-SOLVABLE

THIRD ORDER OPERATOR

The order 3 differential operator L is:

L = ∂3 +
5891x3 + 9388x2 − 11890x+ 3000

15x(x+ 4)(43x− 20)(2x− 1)
∂2

+
235296x3 + 30775x2 − 191300x+ 36000

900x2(x+ 4)(43x− 20)(2x− 1)
∂

+
3096x2 − 5005x− 1900

900x2(x+ 4)(43x− 20)(2x− 1)
.

Our goal is to show:

• L is not projectively equivalent (2.1.11) to Lx 7→fB for any pullback function f ∈ C(x) where

LB is a minimal operator of a 3F2 function and Lx 7→fB denotes the operator after applying a

change of variables (2.1.8) on LB.

• L has a globally bounded (1.1.1) solution.

After showing these, L is a counter-example for Question 1.

A.1 Not 3F2-solvable

Lemma A.1.1 If Lx 7→fB is projectively equivalent to L, then its non-removable singularities (2.1.16)

are {−4, 12 ,∞, 0} and they have the following local properties.

Singularities Logarithmic ∆(Lx 7→fB , p) up to ∼Z
−4 No 1, 3/10

1/2 No 1, 19/30

∞ No 1,−1/30

0 Yes 0, 1/2

Here ∆ gives the exponent differences at the singularity x = p and the equivalence ∼Z is defined in

Definition A.1.2 below.

To prove Lemma A.1.1, we need some definitions and lemmas.
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Definition A.1.2 Let {e1, e2, e3} be the exponents of a regular singular (2.1.18) third order oper-

ator L at x = p, then define ∆(L, p) as (e2− e1, e3− e1). Note that ∆ is only well-defined up to an

equivalence denoted as ∼2 where the equivalence class of (d1, d2) ∈ C2 is {(d1, d2), (d2, d1), (−d1, d2−

d1), (d2 − d1,−d1), (−d2, d1 − d2), (d1 − d2,−d2)} (one entry for each permutation of [e1, e2, e3]).

Lemma A.1.3 If L2 = L1 s©(∂ − r) then ∆(L1, p) ∼2 ∆(L2, p).

Lemma A.1.4 If L1 is projectively equivalent to L2, then ∆(L1, p) ∼Z ∆(L2, p) where (d1, d2) ∼Z

(d′1, d
′
2) if there exist n1, n2 ∈ Z such that (d1, d2)− (n1, n2) ∼2 (d′1, d

′
2).

Now Lemma A.1.1 follows from Lemma A.1.3, A.1.4 and the local properties of L:

Singularities Logarithmic Exponents ∆(L, p) up to ∼2

−4 No 0, 1, 3/10 1, 3/10

1/2 No 0, 1, 19/30 1, 19/30

∞ No 1/5, 6/5, 1/6 1,−1/30

0 Yes 0, 0, 1/2 0, 1/2

As shown in table 3.1, LB has non-removable singularities {0, 1,∞}. If f has degree d and has

r0 roots, r∞ poles and r1 roots of 1− f , then we expect that Lx 7→fB has r0 + r1 + r∞ non-removable

singularities. But under some condition (Lemma A.1.6 below), some of them become regular or

removable singular. Use D0, D1, D∞ to denote the number of such points corresponding to 0, 1,∞,

then

r0 + r1 + r∞ −D0 −D1 −D∞ = 4.

Definition A.1.5 Say f(q) = p with ramification index m if q is a root of f(x)− p of order m.

Lemma A.1.6 For Lx7→fB with f ∈ C(x), 2 is the least possible ramification index to make roots

of 1 − f regular or removable singular and 3 is the least possible ramification index to make roots

of f and poles of f regular or removable singular.

Pf : suppose the exponents of LB at x = 1 are (0, 1, 12) and f(5) = 1 with ramification index 2,

then the exponents of Lx 7→fB at x = 5 are (0, 1, 2), so Lx 7→fB is regular at x = 5. But the situations at

x = 0 and x =∞ are a little different. Roots of f or poles of f may become regular or removable

singular only if the solution of LB at x = 0 and x = ∞ is not logarithmic, in which case the

exponents cannot be (0, 12 , n) or (0, 12 ,
1
2 + n) with n ∈ Z (table 3.1). So the ramification index to

make roots of f or poles of f regular or removable singular is at least 3.
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Claim A.1.7 If L is projectively equivalent to Lx 7→fB with f ∈ C(x), then the degree of f, d ≤ 12.

First, we may assume the solution of LB is logarithmic at x =∞ by the following two reasons.

• By Table 3.1, the solution of LB is logarithmic at x = 1 if and only if ∆(LB, 1) ∈ Z2 and

therefore ∆(Lx7→fB , 0) ∈ Z2. But ∆(Lx 7→fB , 0) = (0, 12) 6∈ Z2, so the solution of LB is logarithmic

either at x = 0 or at x =∞.

• Let L1 and L2 be the minimal operator of 3F2(a1, a2, a3; b1, b2 |x) and 3F2(a1, 1− b1 + a1, 1−
b2 + a1; 1 − a2 + a1, 1 + a1 − a3 | 1x), then L1 and L2 are projectively equivalent. So for any

LB, one can find L′B which is projectively equivalent to LB and swaps 0 and ∞.

Next, Hurwitz’s equation (introduced below) relates the degree of f , d, to the ramification

indices of f at singularities of Lx 7→fB .

∑
p∈P1

(ep − 1) = 2d− 2.

Here p is a singularity of Lx 7→fB and ep is the ramification index of f at x = p. Since the solution

of Lx 7→fB is logarithmic only at x = 0, so f(0) = ∞ with ramification index d, which contributes

d− 1 in
∑

(ep − 1). Therefore:

∑
f(p)∈{0,1}

(ep − 1) ≤ d− 1.

So the total number of roots of f and 1− f is

r0 + r1 = 2d−
∑

f(p)∈{0,1}

(ep − 1) ≥ d+ 1.

Since {−4, 12 ,∞} are non-removable singularities of Lx 7→fB from f−1({0, 1}), so

D0 +D1 = r0 + r1 − 3 ≥ d− 2.

On the other hand, by Lemma A.1.6,

D0 ≤
d

3
,

D1 ≤
d

2
.
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So for any p ∈ {0, 1}, the number of roots of f(x) − p at which Lx 7→fB is regular or removable

singular is

Dp ≥ d− 2−max(D0, D1) = d− 2− d

2
=
d

2
− 2. (A.1)

Combining with D0 ≤ d
3 gives

d

3
≥ d

2
− 2,

therefore d ≤ 12.

Claim A.1.8 If L is projectively equivalent to Lx 7→fB with f ∈ C(x), then the degree of f, d ≥ 12.

Lemma A.1.9 Let m1,m2 be positive integers and e ∈ C. If

m1e ≡
3

10
modZ,

m2e ≡
19

30
modZ.

then m1 +m2 ≥ 16.

Pf : refer to the computation file [31].

Lemma A.1.10 Let m1,m2 be positive integers and d1, d2 ∈ C. If the following equivalences hold,

m1 · (d1, d2) ∼Z (1,
3

10
) (A.2)

m2 · (d1, d2) ∼Z (1,
19

30
) (A.3)

then m1 +m2 ≥ 16.

Pf : By Definition A.1.2 and Lemma A.1.4, Relations (A.2) and (A.3) can be interpreted into

6 cases since we may assume m2(d1, d2) ≡ (1, 1930) modZ.

• CASE 1: (i) m1d1 ≡ 1 modZ, (ii) m1d2 ≡ 3
10 modZ, (iii) m2d1 ≡ 1 modZ, (iv) m2d2 ≡

19
30 modZ.

(ii) + (iv)
Lemma A.1.9
========⇒ m1 +m2 ≥ 16.
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• CASE 2: (i) m1d1 ≡ 3
10 modZ, (ii) m1d2 ≡ 1 modZ, (iii) m2d1 ≡ 1 modZ, (iv) m2d2 ≡

19
30 modZ.

(iv)⇒ d2 =
n1

30n2
, n1, n2 ∈ Z, gcd(30, n1) = 1

(ii)
==⇒ m1 ≥ 30.

• CASE 3: m1d1 ≡ −1 modZ, m1d2 ≡ − 7
10 modZ, m2d1 ≡ 1 modZ and m2d2 ≡ 19

30 modZ.
Same as CASE 1.

• CASE 4: m1d1 ≡ − 7
10 modZ, m1d2 ≡ −1 modZ, m2d1 ≡ 1 modZ and m2d2 ≡ 19

30 modZ.
Same as CASE 2.

• CASE 5: (i) m1d1 ≡ − 3
10 modZ, (ii) m1d2 ≡ 7

10 modZ, (iii) m2d1 ≡ 1 modZ, (iv) m2d2 ≡
19
30 modZ.

(i) + (iii)⇒ m2 ∈ 10Z (iv)
==⇒ d2 =

n1
300n2

(ii)
==⇒ m1 ≥ 30.

Here n1, n2 ∈ Z and gcd(n1, 300) = 1.

• CASE 6: m1d1 ≡ 7
10 modZ, m1d2 ≡ − 3

10 modZ, m2d1 ≡ 1 modZ and m2d2 ≡ 19
30 modZ.

Same as CASE 5.

Corollary A.1.11 Suppose L is projectively equivalent to Lx 7→fB . If f(−4) = f(12) = p ∈ {0, 1},

then d ≥ 16.

Pf : all non-removable singularities of L come from the non-removable singularities of LB, which

are {0, 1,∞}. Recall that we assume LB has a logarithmic solution at x =∞, so {−4, 12 ,∞}, non-

logarithmic singularities of Lx 7→fB , must come from {0, 1}. Suppose f(−4) = f(12) = p ∈ {0, 1} and

the ramification indices of f(x)− p at x = −4, x = 1
2 are m1, m2, then

∆(L,−4) ∼Z m1∆(LB, p) and ∆(L,
1

2
) ∼Z m2∆(LB, p).

Denote ∆(LB, p) as (d1, d2) ∈ C2, now

m1(d1, d2) ∼Z ∆(L,−4) = (1,
3

10
) and m2(d1, d2) ∼Z ∆(L,

1

2
) = (1,

19

30
).

So the degree of f , d ≥ m1 +m2 ≥ 16 by Lemma A.1.10.

Remark A.1.12 Likewise, the lower degree bound of f can be computed in the following cases.

Cases Lower Degree Bound of f

f(−4) = f(12) ∈ {0, 1} 16

f(−4) = f(∞) ∈ {0, 1} 16

f(∞) = f(12) ∈ {0, 1} 12
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Now prove Claim A.1.8.

Pf : by the proof of Corollary A.1.11, singularities {−4, 12 ,∞} come from {0, 1}. So at least two

of them come from the same point. So the table in Remark A.1.12 gives all possible cases, which

implies that d ≥ 12.

Claim A.1.13 L is not projectively equivalent to Lx 7→fB with the pullback function f ∈ C(x).

Pf : if not, then d = 12 by Claims A.1.7 and A.1.8. And it only happens when f(∞) = f(12) = p ∈

{0, 1} from the table in Remark A.1.12. Now suppose this holds, then 1
2 is a root of f(x)− p. But

the exponent differences of L at x = 1
2 are (1, 1930), so LB has to have an exponent difference in n

30·Z

at x = p where n ∈ Z and gcd(30, n) = 1. So to make roots of f(x)−p regular or removable singular,

the ramification index at that root has to be greater than or equal to 30, which can not happen

since the degree of f is 12 < 30. This fact contradicts with the inequality (A.1): Dp ≥ d
2 − 2 = 4.

A.2 A Globally Bounded Solution

Recall the Appell’s series F1 (Chapter 4) is defined by

F1(a, b1, b2, c;x, y) =

∞∑
m,n=0

(a)m+n (b1)m (b2)n
(c)m+nm!n!

xmyn,

where (q)n = q(q + 1) · · · (q + n− 1).

Proposition A.2.1 The following recurrence relations follow from the definition of F1.

• (R1) (a − b1 − b2)F1(a, b1, b2, c;x, y) − aF1(a + 1, b1, b2, c;x, y) + b1F1(a, b1 + 1, b2, c;x, y) +

b2F1(a, b1, b2 + 1, c;x, y) = 0.

• (R2) cF1(a, b1, b2, c;x, y)− (c− a)F1(a, b1, b2, c+ 1;x, y)− aF1(a+ 1, b1, b2, c+ 1;x, y) = 0.

• (R3) cF1(a, b1, b2, c;x, y)+c(x−1)F1(a, b1+1, b2, c;x, y)−(c−a)xF1(a, b1+1, b2, c+1;x, y) = 0.

• (R4) cF1(a, b1, b2, c;x, y)+c(y−1)F1(a, b1, b2+1, c;x, y)−(c−a)yF1(a, b1, b2+1, c+1;x, y) = 0.

Algorithm A.2.2 Simplify Appell function: F simp1 .

• Input: nonnegative integers n0, n1, n2, n3 and a, b1, b2, c 6∈ C − {0,−1,−2, ...}. Assume a 6≡
cmodZ and b1 + b2 6≡ cmodZ.
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• Output: Rewrite F1(a + n0, b1 + n1, b2 + n2, c + n3;x, y) as a C(x, y)-linear combination of

{F1(a, b1, b2, c |x, y), F1(a, b1+1, b2, c |x, y), F1(a, b1, b2+1, c |x, y)}, a basis of FR1 (a, b1, b2, c |x, y)

(Section 5.1).

• Steps.

– 1. If (n0, n1, n2, n3) ∈ {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}, then return F1(a + n0, b1 +

n1, b2 + n2, c+ n3;x, y).

– 2. Let S1 := F simp1 (a+ n0 − 1, b1 + n1 + 1, b2 + n2, c+ n3;x, y),

S2 := F simp1 (a+ n0 − 1, b1 + n1, b2 + n2 + 1, c+ n3;x, y),

S3 := F simp1 (a+ n0 − 1, b1 + n1, b2 + n2, c+ n3;x, y).

If n0 > 0, then return 1
a+n0−1 [(b1+n1)·S1+(b2+n2)·S2+(a+n0−1−b1−b2−n1−n2)·S3].

(This follows from R1.)

– 3. Let S4 := F simp1 (a+ n0, b1 + n1, b2 + n2, c+ n3 − 1;x, y),

S5 := F simp1 (a+ n0, b1 + n1, b2 + n2 + 1, c+ n3 − 1;x, y)],

S6 := F simp1 (a+ n0, b1 + n1 + 1, b2 + n2, c+ n3 − 1;x, y)].

Now n0 = 0. If n3 > 0, then return c+n3−1
(a+n0−c−n3+1)(b1+n1−c−n3+1+b2+n2)xy

[((c + n3 − 1 −
a− n0)xy− (b2 + n2)x− (b1 + n1)y) ·S4− (b2 + n2)x(y− 1) ·S5− (b1 + n1)y(x− 1) ·S6].
(To get this, first use step 1 to reduce R2, then use R3 and R4 to reduce it further.)

– 4. Let S7 := F simp1 (a+ n0, b1 + n1, b2 + n2 − 1, c+ n3;x, y),

S8 := F simp1 (a+ n0, b1 + n1 − 1, b2 + n2, c+ n3;x, y).

Now n0 = n3 = 0. If n1 · n2 > 0, then return 1
x−y (x · S7 − y · S8). (Do substitutions

b1 = b1 + 1 in R4 and b2 = b2 + 1 in R3. Denote the new relations as R6 and R5. Then

x ·R6 − y ·R5 gives the term.)

– 5. Let S9 := F simp1 (a+ n0, b1 + n1 − 2, b2 + n2, c+ n3;x, y),

S10 := F simp1 (a+ n0, b1 + n1 − 1, b2 + n2 + 1, c+ n3;x, y).

Now n0 = n3 = 0 and n1 · n2 = 0. If n1 > 1, then return 1
(b1+n1−1)(x−1)y [(b1 + n1 − 1−

c − n3 + b2 + n2)y · S9 + (−2y + xy + (c + n3)y − (b2 + n2)x − (b2 + n2)y + (b1 + n1 −
2)xy− (a+ n0)xy+ (b2 + n2)xy− 2(b1 + n1− 2)y) · S8 + ((b2 + n2)(x− xy) · S10)]. (This

follows from R3 reduced from step 1 to step 2.)

– 6. Let S11 := F simp1 (a+ n0, b1 + n1, b2 + n2 − 2, c+ n3;x, y),

S12 := F simp1 (a+ n0, b1 + n1 + 1, b2 + n2 − 1, c+ n3;x, y).

Now n0 = n1 = n3 = 0. If n2 > 1, then return 1
(b2+n2−1)x(y−1) [(b2 + n2 − 1 − c − n3 +

b1 + n1)x · S11 + (−2x + xy + (c + n3)x − (b1 + n1)y − (b1 + n1)x + (b2 + n2 − 2)xy −
(a+n0)xy+ (b1 +n1)xy− 2(b2 +n2− 2)x) ·S7 + ((b1 +n1)(y− xy) ·S12)]. (This follows

from R4 reduced from step 1 to step 2.)

Proposition A.2.3 Following derivatives result from definition of Appell series.
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• ∂xF1(a, b1, b2, c;x, y) = ab1
c F1(a+ 1, b1 + 1, b2, c+ 1;x, y).

• ∂yF1(a, b1, b2, c;x, y) = ab2
c F1(a+ 1, b1, b2 + 1, c+ 1;x, y).

Lemma A.2.4 Let F (x) = x(x+1)...(x+m−1)
m! . Let a be a rational number with denominator d =

pe11 . . . pekk . Let D = pe1+1
1 . . . pek+1

k . Then Dm · F (a) is an integer.

Pf : Let p be a prime and e be the multiplicity of p in the denominator of a.

• Case 1: e = 0. In this case, a is an element of the p-adic integers Zp. Choose an integer A for

which vp(a − A) > vp(m!) where vp is the p-adic valuation. Then vp(F (A) − F (a)) > 0. So

vp(F (a)) ≥ 0 since vp(F (A)) ≥ 0.

• Case 2: e > 0. We now have to prove that vp(F (a)) ≥ −m(e + 1), which follows from

vp(a(a+ 1)...(a+m− 1)) = −m · e and vp(m!) ≤ m.

Claim A.2.5 F1(
1
6 ,

1
5 ,

1
5 , 1, x, y) is globally bounded (1.1.1).

Pf : by definition,

F1(
1

6
,
1

5
,
1

5
, 1, x, y) =

∞∑
m,n=0

(16)m+n (15)m (15)n

(m+ n)!m!n!
xmyn.

Take q1 = 36 and q2 = 25, from Lemma A.2.4, for ∀m ∈ N, ( 1
6
)m (q1)m

m! ∈ Z and
( 1
5
)m (q2)m

m! ∈ Z. Let

q = q1 · q2, then

F1(
1

6
,
1

5
,
1

5
, 1, qx, qy) =

∞∑
m,n=0

(16)m+n (15)m (15)n

(m+ n)!m!n!
(qx)m(qy)n

=

∞∑
m,n=0

(16)m+n (15)m (15)n

(m+ n)!m!n!
· (q1)m · (q2)m · xm · (q1)n · (q2)n · yn

=

∞∑
m,n=0

(16)m+n (q1)
m+n

(m+ n)!
·

(15)m (q2)
m

(m)!
·

(15)n (q2)
n

(n)!
· xmyn

So F1(
1
6 ,

1
5 ,

1
5 , 1, x, y) is globally bounded.

Definition A.2.6 The valuation of f ∈ Q[[x]] = {
∞∑
i=0

aix
i|ai ∈ Q}, denoted as v(f), is defined by

v(f) =

{
min{i | ai 6= 0}, f 6= 0
∞, f = 0.
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Remark A.2.7

• ∀f, g ∈ Q[[x]], v(f + g) ≥ min{v(f), v(g)}.

• ∀ n ∈ N, ∀f ∈ Q[[x]], v(fn) = n · v(f).

Definition A.2.8 For any f1, f2 ∈ Q[[x]], their distance d(f1, f2) is defined as

d(f1, f2) =

{
0, f1 = f2
2−v(f1−f2), f1 6= f2.

Remark A.2.9 Q[[x]] is a metric space with the above distance, also the completion of Q[x] w.r.t

this metric.

Lemma A.2.10 Let R = {f ∈ Q[[x]] | ∃m,n > 0 s.t. nf(mx) ∈ Z[[x]]}.

• (a) If fn ∈ Q[x], n = 0, 1, 2, ..., then
∞∑
n=0

fn converges w.r.t metric d if and only if fn converges

to 0.

• (b) If f, g ∈ Q[[x]] with v(g) > 0, then f ◦ g is well defined in Q[[x]] by (a). Moreover, if

f, g ∈ R, then f ◦ g ∈ R.

Claim A.2.11 Let y1 = x+
√
x2+4x
2 and y2 = x−

√
x2+4x
2 . Then F1(

1
6 ,

1
5 ,

1
5 , 1, y1, y2) is globally bounded.

This follows from Claim A.2.5 and Lemma A.2.10.

Claim A.2.12 F1(
1
6 ,

1
5 ,

1
5 , 1, y1, y2) is a solution of L.

Apply L on F1(
1
6 ,

1
5 ,

1
5 , 1, y1, y2) using Algorithm A.2.2 and relations in A.2.3.
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[16] A. Erdélyi. Hypergeometric Functions Of Two Variables. Acta Math., 83(1):131–164, 1950.

[17] T. Fang. Solving Linear Differential Equations in terms of Hypergeometric Functions by 2-
Descent. PhD thesis, Florida State University, 2012.

[18] T. Fang and M. van Hoeij. 2descent for Second Order Linear Differential Equations. In
Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation,
ISSAC ’11, pages 107–114, New York, NY, USA, 2011. ACM.

[19] E. Imamoglu. Algorithms For Solving Linear Differential Equations With Rational Function
Coefficients. PhD thesis, Florida State University, 2017.

[20] E. Imamoglu and M. van Hoeij. Computing Hypergeometric Solutions of Second Order Linear
Differential Equations using Quotients of Formal Solutions and Integral Bases. Accepted for
Journal of Symbolic Computation.

[21] E. Imamoglu and M. van Hoeij. Computing Hypergeometric Solutions of Second Order Linear
Differential Equations Using Quotients of Formal Solutions. In Proceedings of the 2015 ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 235–242,
New York, NY, USA, 2015. ACM.

[22] V. J. Kunwar. Hypergeometric Solutions of Linear Differential Equations with Rational Func-
tion Coefficients. PhD thesis, Florida State University, 2014.

[23] V. J. Kunwar and M. van Hoeij. Second Order Differential Equations with Hypergeometric
Solutions of Degree Three. In Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’13, pages 235–242, New York, NY, USA, 2013. ACM.

[24] M. J. Schlosser. Multiple hypergeometric series - Appell series and beyond. In Computer
Algebra in Quantum Field Theory, pages 305–324, 2013.

[25] M. van der Put and M. F. Singer. Galois Theory of Linear Differential Equations, volume 328
of Grundlehren der mathematischen Wissenschaften. Springer, 2003.

[26] M. van Hoeij. A Maple Implementation of Minimal Operators of Appell F1. http://www.

math.fsu.edu/~wxu/F1solver/code/F1.txt.

68

http://www.math.fsu.edu/~wxu/F1solver/code/F1.txt
http://www.math.fsu.edu/~wxu/F1solver/code/F1.txt


[27] M. van Hoeij. Implementation for Finding Equivalence Map. http://www.math.fsu.edu/

~hoeij/files/equiv.

[28] M. van Hoeij and E. Imamoglu. 2F1-type Solutions of Second Order Differential Equations.
ACM Communications in Computer Algebra, 48(3):143–144, 2014.

[29] M. van Hoeij and Q. Yuan. Finding All Bessel Type Solutions for Linear Differential Equations
with Rational Function Coefficients. In Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’10, pages 37–44, New York, NY, USA, 2010.
ACM.

[30] M. M. Wouodjie. Order Three Irregular Singular Solvers. PhD thesis, University of Kassel, In
Progress.

[31] W. Xu. A Maple Implementation. https://www.math.fsu.edu/~wxu/Dissertation/

Implementation.txt.

[32] Q. Yuan. Finding All Bessel Type Solutions for Linear Differential Equations with Rational
Function Coefficients. PhD thesis, Florida State University, 2012.

[33] N. Zenine, S. Boukraa, S. Hassani, and J. M. Maillard. The Fuchsian differential equation of
the square Ising Model X3 susceptibility. Journal of Physics A: Mathematical and General,
37(41):9651–9668, 2004.

69

http://www.math.fsu.edu/~hoeij/files/equiv
http://www.math.fsu.edu/~hoeij/files/equiv
https://www.math.fsu.edu/~wxu/Dissertation/Implementation.txt
https://www.math.fsu.edu/~wxu/Dissertation/Implementation.txt


BIOGRAPHICAL SKETCH

Wen Xu was born in Tangshan, Hebei, China. She completed her Bachelor’s degree in 2010, and

her Master’s degree in 2012 in Mathematics at Harbin Institute of Technology. In the same year,

she started to pursue her Ph.D degree in Mathematics under the supervision of Dr. Mark van

Hoeij, at Florida State University, Tallahassee, FL, US.

70


	Title Page
	Table of Contents
	List of Tables
	List of Symbols
	Abstract

	1 Introduction
	1.1 Motivation
	1.2 Univariate Hypergeometric Functions
	1.3 Multivariate Hypergeometric Functions

	2 Preliminaries
	2.1 Differential Operators and Transformations
	2.2 D-modules
	2.3 Exponents
	2.3.1  Case of Order 1
	2.3.2  Case of Higher Order

	2.4 Exponents and Transformations
	2.4.1 Exponents and Change of Variables Transformation
	2.4.2 Exponents and Exp-product Transformation
	2.4.3 Exponents and Gauge Transformation


	3 Compute 3F2-type Solutions with Pullback Functions of Degree One
	3.1 Find r in L1(ii),r (iii) L2 in 3F2-solver
	3.2 Compute 3F2-type Solutions with Pullback Functions of Degree One
	3.3 Find r in L1(ii),r (iii) L2 for any Order 3 Operators
	3.3.1 Case with Ramification 2
	3.3.2 Case with Ramification 3


	4 Compute F1-type Solutions with Pullback Functions of Degree One
	4.1 Compute Candidates u,v in F1(a,b1,b2,c|u,v)
	4.2 Divide the Candidate Set into Orbits
	4.3 Compute Parameters a,b1,b2,c and Transformations
	4.3.1 Case with Exp-product Transformation
	4.3.2 Case with Exp-product Transformation and Gauge Transformation


	5 Compute Homomorphism(s) between two D-Modules
	5.1 The C(x,y)[x, y]-Module of F1(a,b1,b2,c|x,y)
	5.2 Find a Cyclic Vector and its Minimal Operator with respect to One Variable
	5.3 Compute Homomorphisms between Two Modules
	5.3.1 Compute HomDx(M,M')
	5.3.2 Compute HomDx(M,M')HomDy(M,M')
	5.3.3 General Case: M and M' are C(x1,x2,�,xp)[x1,x2,�,xp]-Modules with p>2

	5.4 Compute Projective Homomorphisms between Two Modules

	6 Applications
	6.1 Reducible Appell F1
	6.2 Horn G2 and Appell F1
	6.3 Reducible Horn G3
	6.4 Reducible Horn G1

	7 Order 3 A-hypergeometric functions and Their Polytopes
	7.1 Structure of A-hypergeoemtric FunctionsThis whole section is from beukers3.
	7.2 Relations among A-hypergeometric Functions

	Appendix
	A Globally Bounded but Not 3F2-solvable Third Order Operator
	A.1 Not 3F2-solvable
	A.2 A Globally Bounded Solution

	Bibliography

	Biographical Sketch

