Algorithms for Solving Linear Differential Equations with

Rational Function Coefficients

Erdal Imamoglu

Department of Mathematics
Florida State University

May 25, 2017

1/37



© Introduction
9 Formal Solutions, Exponents
© Quotient Method

@ Integral Bases

© Applications

2/37



Introduction

@ Closed form solutions of differential equations are solutions that can
be written in terms of well-studied functions (exponential,
logarithmic, Airy, Bessel, Whittaker, hypergeometric, ...).

@ There are powerful algorithms for some type of closed form solutions.
@ We are interested to find hypergeometric solutions.
@ Hypergeometric solutions are common, but current solvers in

computer algebra systems often fail to find such solutions.

3/37



Introduction

@ Consider the second order linear differential equation

Linp (y) =0

where

Linp = A20® + A10 + A € Q()[0] <a _ CZ:)

A hypergeometric solution of L, is a solution of the form

S(z) = exp (/le“) (ro - 2F1(ar, az; b1 f) 4 71 - 2F (a1, ag; bi; f))

where f,r,19,71 € Q(x), a1,a2,b; € Q.

@ We are interested in finding such solutions of a given regular singular
Linp € Q(2)[0].
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Introduction

@ There is also a conjecture about hypergeometric solutions.

e Conjecture (van Hoeij, Kunwar)
Every second order globally bounded equation has a hypergeometric
solution or an algebraic solution.

A globally bounded equation is a differential equation which (after
a simple scaling) admits a Convergent Integer power Series
solution (CIS solution).

e Example (Franel Numbers, OEIS A000172)
sequence = 1, 2,10, 56, 346, 2252, 15184, 104960, . . .
y(z) = 1422+ 102% + 562° + 346 2* 4+ 22522° + ...
Linp =2 (1+2) (82 —1)0* + (242° + 142 — 1) 9+ (2 + 8x)

1 12 27 12
= CoF (= 2 ——/— 2
y(z) z 2! (3’37 ’ (1—223)3)
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Introduction

@ Question How can we find hypergeometric solutions of second order
regular singular differential operators?

@ There are powerful algorithms for specific tasks:
Fang, van Hoeij (2012)
Kunwar, van Hoeij (2013)
Kunwar (2014)
van Hoeij, Vidunas (2015)

o We want to develop a general algorithm.
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Introduction

@ Contributions

We have developed two (heuristic) effective algorithms to find
hypergeometric solutions (if they exist) of second order regular
singular differential operators in Q(z)[0].

One of our algorithms is the most general algorithm in the literature.

We have developed fast algorithms to simplify n-th order regular
singular differential operators in Q(z)[0].

Simplifying ~ Solving.
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Introduction

@ Value to the Scientific Society
Hypergeometric solutions are common in physics and combinatorics.
Our implementations have been already used by physicists.
Example Feynman Diagrams.

One of our algorithms “simplify” a differential operator to another
operator which is easier to solve (Simplifying =~ Solving).

Example A 3rd order operator.
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© Formal Solutions, Exponents
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Formal Solutions, Exponents

o Let Linp = A20% + 410 + Ag € Q(z)[9).
e s € Q is a singularity if it is a root of A5, or a pole A; or Ay.

s is a regular singularity if ﬁ—;(m —s)Y ﬁ—g(x — 5)? are analytic at s.

L;yp, is regular singular if it has only regular singularities.

Formal solutions of L;,, at z = s:
y1=(z—s)(1+...)

y2 = (. —s)2(1+...) + kyilog(x —s) (k might be 0)
Exponents of Ly, at © = s: eq, €.

Exponent-difference: A(Li,p,s) = |e1 — ea].
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© Quotient Method
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Quotient Method

@ Special Case
Let Linp € Q(z)[0] with ord(Linp) = 2.
Assume that we want to find hypergeometric solutions this form:

exp (/rdx) oF1(ar,a2ibi; f)  (f,r € Q(x),a1,a2,b1 € Q)

If they exist, then there exists a GHDO

Lp=0%+ by g(gtﬁ-l_-zz)—l- 1)8— $(Cili2$) € Q@)[]
such that
Ly Lo M Dp Lin
because

2F1(al,a2;b1;$) i>C 2F1(a1,a2;b1;f) L>E exp (/rd:v>2F1(a1,a2;b1;f)
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Quotient Method

@ Problem We know Liy,, we do not know Lg (i.e., a1, a2,b1), f, r.
@ Assume that we have a (right) candidate L.
Then LB i)c M L>E Linp-

We can compute formal solutions y; of Lp and Y; of Li,, at a
non-removable singularity (order of formal solutions = a).

ui(@) Do ulf@) D Yilz) = exp ( / rdw)l/i(f(fr)) (i=12)

_ vn(x) _ Yi(z)
Let ¢(x) = y;(x), Qz) = Y;(x)'
This gives us ¢(f(x)) = ¢- Q(x) where ¢ is an unknown constant, so

fla)=q ' (c-Q(x)) mod z*
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Quotient Method

@ Problem We do not know c.

@ |dea Choose a suitable prime ¢ and compute

f@)=q " (c-Q(x)) mod (z°,)

andtry c=1,...,/—1.
For each ¢ try rational function reconstruction to find f € Fy(x).

If this succeeds for at least one ¢, then try f-adic Hensel lifting and
rational number reconstruction to find f € Q(z).

o Compute M s.t. Lp i)g MLy Linp and find 7 (there is a formula).
@ Problem We do not know Lp (i.e., aj,as,b; € Q).

14 /37



Quotient Method

@ Question How to find candidates for Lp (i.e., a1, a2,b1 € Q)?

o ap=|1—-bif, a1 = |by — a1 — az|, as = |az — ay].

o Assume that Ly Lo M Dp Linp.

LB Linp
singularities 0,1,00 S1y.+-,Syp
exponent-differences | ag, a1, Ao A(Linp, 51), - -, A(Linp, Sr)

%: a € {1, A(Linp, si)}, 1 <b<dy, 1§k:§af}

where dy = deg(f) and ay = [Q(z, f) : Q(x)].

QQ, 1, Qoo € {

@ We have a bound on dy and we consider ay < 2.
@ Problem This set might have too many elements.
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Quotient Method

@ Theorem (Special Case of Riemann-Hurwitz Formula for DEs)
f f: X —Pland Ly L M Dp Ly, then

d
243" (1~ A(Linp, 51)) = ch 2+ > (1-aw)
50 f i€{0,1,00}

where dy = deg(f) and ay = [C(z, f) : C(x)].

@ This formula eliminates vast majority of the candidates:

Qo, 01, Qoo € {% ca €{1,A(Linp,si)}, 1 <b<dy, 1<k < af}
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Quotient Method

e Algorithm Outline (find_2f1)

- Compute candidates Lp's (if any).

- Compute quotients of formal solutions at a non-removable singularity.

- Use modular reduction, Hensel lifting, rational reconstruction to find
f (if any).

- Find 7.

- Return a basis of hypergeometric solutions (if they exist) or an empty
list.

@ Algorithm find_2f1 is very effective to find solutions of type

exp (/Td?E) (ro - 2F1(a1, ag; b1; ) + 71 - 2F) (a1, ag; bi; f))

where r; = 0.
@ Question What if r; # 07
@ Idea Simplifying = Solving
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@ Integral Bases
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Integral Bases

e Example (Simplifying ~ Solving)
Consider the following number field

Qlz]/(f1)
where f; = 9881825 — 80075625 + 34958032 — 850521123 +
1537594322 — 17721960 + 7848261,

We can reduce this to
Qlz]/(f1) = Qz]/(f2)
where fo = 2% — 52t — 2123 — 122 — 2.

@ Key step to find an isomorphic number field is computation of an
integral basis.
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Integral Bases

o Let A= {f € Q[z]| f is irreducible}.

fi~ fa = Qlz]/(f1) = Qlz]/(f2) (f1, f2 € Q[z])

Goal Given f1, find fo € A with small bit-size such that f; ~ fs.

fo = a standard form of f;

Solution POLRED algorithm (Cohen and Diaz Y Diaz, 1991).

- Compute a basis for the algebraic integers of Q[z]/(f1).
- Apply LLL (Lenstra, Lenstra, and Lovasz, 1982) to this basis.

Application Reduce computations in Q[z]/(f1) to computations in
Q[]/(f2)-
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Integral Bases

o Let D =Q(z)[0] and A ={L € D|L is irreducible}.

Ly~ Ly<= D/DLy = D/DLy as D-modules (L1,Ls € D)
Goal Given Ly, find Ly € A with small bit-size such that L1 ~ L.
Lo = a standard form of L
Solution ldea Imitate POLRED.

Application Reduce solving L1 with many apparent singularities to
solving Lo with few apparent singularities.
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Integral Bases

e Computation of integral bases for (algebraic) number fields
(algebraic) function fields are well studied:

Trager (1984)

Cohen and Diaz Y Diaz (1991)
van Hoeij (1994)

de Jong (1998)

Montes (1999)

van Hoeij and Stillman (2015)

o Differential analogue of integral bases is new (Kauers and Koutschan,
2015).

@ We give an integral basis algorithm that is much faster. In addition,
we normalize the basis at infinity, which is the analogue of phase 2
in POLRED.
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Integral Bases

o L € C(x)[0] be regular singular.

L has a basis of formal solutions at x = s in the form

{x—s, if s # 00

1 T
o if s=o00

o0
y=1t> DBl ts
=0

where vg € C and P; € C[log (ts)] with deg(P;) < ord(L) and
Py #0.

@ The valuation of y at x = s is

vs(y) = Re(vs)
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Integral Bases

e Fix L € C(z)[0], ord(L) = n, and let G € C(z)[d].
G is called integral for L at s if
vs(G) = inf{vs(G(y)) |y is a solution of L at x = s} >0
G is called integral for L if vs(G) > 0 for all s € C.

e Consider the Clz]-module Of,
Or ={G € C(2)[d] | G is integral for Landord(G) < n}

A basis of Op, is called an (global) integral basis for L.
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Integral Bases

o Let L € C(x)[0], ord(L) =n, and P € Clz].

The set {b1,...,b,} is a local integral basis for L at P when

A A,
{1b1+...+

B, B by | Ai, B; € C[z]and ged(P, B;) = 1}

{G |G is integral for L at every root of P}

@ A local integral basis at a finite singularity s € C is the local integral
basis at P =z — s.
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Integral Bases

@ Question How to compute a local integral basis for an operator at one
point?

@ Theorem
{b1,...,b,} is a local integral basis for L € C(x)[0] at z =0
<~

1 Vi,j€{l,...,n} we have

vo(bi(y;)) >0  (y; = a solution of L at x = 0)

and
2 V(ciy... ) €C™N\ (0,...,0) there exists j € {1,...,n} such that

vo((c1br + -+ -+ cnbn)(yy)) < 1

26/37



Integral Bases

Let Linp € Q(2)[0] be regular singular.

Algorithm Outline (local_basis_at_0)

Compute v; = vg(y;) of the all formal solutions y; of Lin, at 2 = 0.

Let m = —|min(v;)].
- Let by = ™90,
For ¢ from 2 to n do:
1 Letb;=a-0-b;_1
2 Make the ansatz A = 1 (uy - by + - + uj—1 - bi—1 + b;).
3 Evaluate 2(y;) and equate coefficients of the non-integral terms to 0.
4 If there is a solution, find it, update b; = 2A and return to Step 2.

Return bq,...,by,.
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Integral Bases

e Improvements (Apparent singularities and algebraic singularities)

1 Apparent Singularities

A local integral basis at an apparent singularity is given by
{by =0,...,b, =0}

If e; > ord(Linp), then b; = Rem(0%, Liyp).

Our implementation only checks for apparent singularities of the most
common type where

€1,€2,...,en—1,e,=0,1,....n—2,n
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Integral Bases

2 Algebraic Singularities
Let s be an algebraic singularity with minimal polynomial P.

We compute a local integral basis {b;,...,b,} for L at x = s.

We want to scale b; in such a way that

- {c1b1, ..., cnby} is still an integral basis at © = s,
- {c1by, ..., cnby} have valuations > 1 at all roots of wl_js.
Letfori=1,...,n

P vs(b1)+14
- (75)
r— S

{Tr(e1b1), ..., Tr(enbn)}
will be a local integral basis at P.

and then
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Integral Bases

Let Lin, € Q(z)[0] be regular singular.

Algorithm Outline (global_integral_basis)

- Let Pyng be polynomial whose roots are singularities of Liyp,.

For each irreducible factor P of P,e, compute a local integral bases
for Lin, at P.

- Combine all local integral bases to form a global integral basis for
Linp.
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Integral Bases

@ Timings
Comparison of timings of Kauers' and Koutschan's integral basis
algorithm and our integral basis algorithm (in seconds) on a computer
with a 2.5 GHZ Intel Core i5-3210M CPU and 8 GB RAM.

Example Kauers-Koutschan Our algorithm
1 0.185 0.111
2 0.863 0.156
3 0.233 0.182
4 0.592 0.226
5 12.351 0.294
6 66.537 0.377
7 124.197 0.499
8 151.942 0.515
9 175.580 0.569
10 157.484 0.596
11 145.185 0.602
12 230.897 0.688
13 1609.865 0.699
14 > 1600 0.918
15 > 1600 1.133
16 > 1600 1.156
17 > 1600 1.251
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Integral Bases

@ Now, we know how to compute a global integral basis for Liyp.
@ We have control on finite singularities of Lipy,.

@ Question What about the point x = c0?

@ Normalization
Let Linp € C(z)[0] with ord(Linp) = n.

The set {b1,...,b,} is called normalized at s, if 3r; € C(x) such
that {r1b1,...,7,b,} is a local integral basis for Liy, at s.

@ We want to normalize a global integral basis at x = co.
@ Normalization of an integral basis at © = oo for an algebraic function

was introduced (Trager, 1984).
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Integral Bases

o Let Liyp € Q(x)[0] be regular singular and let
{Bi1,...,By}

be a global integral basis for Liyp.

Algorithm Outline (normalization_at_infinity)

Compute a local integral basis {b1,...,b,} at occ.

Compute change of basis matrix and follow Trager's method.

Basis elements of a normalized integral basis for L;,,, gives us gauge
transformations to simplify Li,p (to simplify it to its standard form).

Example Linp[9].
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e Applications
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Applications

@ Lets return to our problems:
1 Simplify a given differential operator (Simplifying = Solving).
2 Find hypergeometric solutions (generalize £ind_2f1).

1 Simplify a given differential operator:
Goal Given L1, find Lo with small bit-size such that L, is gauge
equivalent to Lo.

Solution Idea Imitate POLRED.

Solution standard_forms algorithm:

- Compute a normalized integral basis for L.
- If necessary, search for a better basis element to simplify L.
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Applications

2 Generalize find_2f1:

Let Lin, € Q(z)[0] be a second order regular singular operator.
We want to find hypergeometric solutions of Lj,;, of the form

exp (/Td$> (ro - 2F1(a1, ag; bys f) + 1 - 2Fy (a1, ag; by; f))

@ Algorithm Outline (hypergeometricsols)
- Try find 2f1.

- If £ind_2f1 returns an empty list, use standard forms to simplify
Liyp to another operator Liyy,.

- Feed find 2f1 with Lip.
- If find_2f1 solves I:inp, then obtain solutions of Li,, from solutions
of Linp-
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