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Introduction

Closed form solutions of differential equations are solutions that can
be written in terms of well-studied functions (exponential,
logarithmic, Airy, Bessel, Whittaker, hypergeometric, ...).

There are powerful algorithms for some type of closed form solutions.

We are interested to find hypergeometric solutions.

Hypergeometric solutions are common, but current solvers in
computer algebra systems often fail to find such solutions.
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Introduction

Consider the second order linear differential equation

Linp(y) = 0

where

Linp = A2∂
2 +A1∂ +A0 ∈ Q(x)[∂]

(
∂ =

d

dx

)

A hypergeometric solution of Linp is a solution of the form

S(x) = exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
where f, r, r0, r1 ∈ Q(x), a1, a2, b1 ∈ Q.

We are interested in finding such solutions of a given regular singular
Linp ∈ Q(x)[∂].
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Introduction

There is also a conjecture about hypergeometric solutions.

Conjecture (van Hoeij, Kunwar)
Every second order globally bounded equation has a hypergeometric
solution or an algebraic solution.

A globally bounded equation is a differential equation which (after
a simple scaling) admits a Convergent Integer power Series
solution (CIS solution).

Example (Franel Numbers, OEIS A000172)

sequence = 1, 2, 10, 56, 346, 2252, 15184, 104960, . . .

y(x) = 1 + 2x+ 10x2 + 56x3 + 346x4 + 2252x5 + . . .

Linp = x (1 + x) (8x− 1) ∂2 +
(
24x2 + 14x− 1

)
∂ + (2 + 8x)

y(x) =
1

1− 2x
· 2F1

(
1

3
,
2

3
; 1;

27x2

(1− 2x)3

)
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Introduction

Question How can we find hypergeometric solutions of second order
regular singular differential operators?

There are powerful algorithms for specific tasks:
Fang, van Hoeij (2012)
Kunwar, van Hoeij (2013)
Kunwar (2014)
van Hoeij, Vidunas (2015)

We want to develop a general algorithm.
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Introduction

Contributions

We have developed two (heuristic) effective algorithms to find
hypergeometric solutions (if they exist) of second order regular
singular differential operators in Q(x)[∂].

One of our algorithms is the most general algorithm in the literature.

We have developed fast algorithms to simplify n-th order regular
singular differential operators in Q(x)[∂].

Simplifying ≈ Solving.
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Introduction

Value to the Scientific Society

Hypergeometric solutions are common in physics and combinatorics.

Our implementations have been already used by physicists.

Example Feynman Diagrams.

One of our algorithms “simplify” a differential operator to another
operator which is easier to solve (Simplifying ≈ Solving).

Example A 3rd order operator.
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Formal Solutions, Exponents

Let Linp = A2∂
2 +A1∂ +A0 ∈ Q(x)[∂].

s ∈ Q is a singularity if it is a root of A2, or a pole A1 or A0.

s is a regular singularity if A1
A2

(x− s)1, A0
A2

(x− s)0 are analytic at s.

Linp is regular singular if it has only regular singularities.

Formal solutions of Linp at x = s:

y1 = (x− s)e1(1 + . . . )

y2 = (x− s)e2(1 + . . . ) + ky1 log(x− s) (k might be 0)

Exponents of Linp at x = s: e1, e2.

Exponent-difference: ∆(Linp, s) = |e1 − e2|.
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Quotient Method

Special Case

Let Linp ∈ Q(x)[∂] with ord(Linp) = 2.

Assume that we want to find hypergeometric solutions this form:

exp

(∫
r dx

)
· 2F1(a1, a2; b1; f) (f, r ∈ Q(x), a1, a2, b1 ∈ Q)

If they exist, then there exists a GHDO

LB = ∂2 +
b1 − (a1 + a2 + 1)

x(1− x)
∂ − a1a2

x(1− x)
∈ Q(x)[∂]

such that
LB

f−→C M
r−→E Linp

because

2F1(a1, a2; b1;x)
f−→C 2F1(a1, a2; b1; f)

r−→E exp

(∫
r dx

)
2F1(a1, a2; b1; f)
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Quotient Method

Problem We know Linp, we do not know LB (i.e., a1, a2, b1), f , r.

Assume that we have a (right) candidate LB.

Then LB
f−→C M

r−→E Linp.

We can compute formal solutions yi of LB and Yi of Linp at a
non-removable singularity (order of formal solutions = a).

yi(x)
f−→C yi(f(x))

r−→E Yi(x) = exp

(∫
r dx

)
yi(f(x)) (i = 1, 2)

Let q(x) = y1(x)
y2(x)

, Q(x) = Y1(x)
Y2(x)

.

This gives us q(f(x)) = c ·Q(x) where c is an unknown constant, so

f(x) ≡ q−1(c ·Q(x)) mod xa
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Quotient Method

Problem We do not know c.

Idea Choose a suitable prime ` and compute

f(x) ≡ q−1(c ·Q(x)) mod (xa, `)

and try c = 1, . . . , `− 1.

For each c try rational function reconstruction to find f ∈ F`(x).

If this succeeds for at least one c, then try `-adic Hensel lifting and
rational number reconstruction to find f ∈ Q(x).

Compute M s.t. LB
f−→C M

r−→E Linp and find r (there is a formula).

Problem We do not know LB (i.e., a1, a2, b1 ∈ Q).
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Quotient Method

Question How to find candidates for LB (i.e., a1, a2, b1 ∈ Q)?

α0 = |1− b1|, α1 = |b1 − a1 − a2|, α∞ = |a2 − a1|.

Assume that LB
f−→C M

r−→E Linp.

LB Linp

singularities 0, 1,∞ s1, . . . , sr
exponent-differences α0, α1, α∞ ∆(Linp, s1), . . . ,∆(Linp, sr)

α0, α1, α∞ ∈
{ a
kb

: a ∈ {1,∆(Linp, si)}, 1 ≤ b ≤ df , 1 ≤ k ≤ af
}

where df = deg(f) and af = [Q(x, f) : Q(x)].

We have a bound on df and we consider af ≤ 2.

Problem This set might have too many elements.
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Quotient Method

Theorem (Special Case of Riemann-Hurwitz Formula for DEs)

If f : X −→ P1 and LB
f−→C M

r−→E Linp, then

−2 +
∑
si

(1−∆(Linp, si)) =
df
af

−2 +
∑

i∈{0,1,∞}

(1− αi)


where df = deg(f) and af = [C(x, f) : C(x)].

This formula eliminates vast majority of the candidates:

α0, α1, α∞ ∈
{ a
kb

: a ∈ {1,∆(Linp, si)}, 1 ≤ b ≤ df , 1 ≤ k ≤ af
}
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Quotient Method

Algorithm Outline (find 2f1)

- Compute candidates LB’s (if any).

- Compute quotients of formal solutions at a non-removable singularity.

- Use modular reduction, Hensel lifting, rational reconstruction to find
f (if any).

- Find r.

- Return a basis of hypergeometric solutions (if they exist) or an empty
list.

Algorithm find 2f1 is very effective to find solutions of type

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
where r1 = 0.

Question What if r1 6= 0?

Idea Simplifying ≈ Solving

17 / 37



1 Introduction

2 Formal Solutions, Exponents

3 Quotient Method

4 Integral Bases

5 Applications

18 / 37



Integral Bases

Example (Simplifying ≈ Solving)

Consider the following number field

Q[x]/(f1)

where f1 = 98818x6 − 800756x5 + 3495803x4 − 8505211x3 +
15375943x2 − 17721960x+ 7848261.

We can reduce this to

Q[x]/(f1) ∼= Q[x]/(f2)

where f2 = x6 − 5x4 − 21x3 − 12x− 2.

Key step to find an isomorphic number field is computation of an
integral basis.
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Integral Bases

Let A = {f ∈ Q[x] | f is irreducible}.

f1 ∼ f2 ⇐⇒ Q[x]/(f1) ∼= Q[x]/(f2) (f1, f2 ∈ Q[x])

Goal Given f1, find f2 ∈ A with small bit-size such that f1 ∼ f2.

f2 = a standard form of f1

Solution POLRED algorithm (Cohen and Diaz Y Diaz, 1991).

- Compute a basis for the algebraic integers of Q[x]/(f1).
- Apply LLL (Lenstra, Lenstra, and Lovasz, 1982) to this basis.

Application Reduce computations in Q[x]/(f1) to computations in
Q[x]/(f2).
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Integral Bases

Let D = Q(x)[∂] and A = {L ∈ D |L is irreducible}.

L1 ∼ L2 ⇐⇒ D/DL1
∼= D/DL2 as D-modules (L1, L2 ∈ D)

Goal Given L1, find L2 ∈ A with small bit-size such that L1 ∼ L2.

L2 = a standard form of L1

Solution Idea Imitate POLRED.

Application Reduce solving L1 with many apparent singularities to
solving L2 with few apparent singularities.
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Integral Bases

Computation of integral bases for (algebraic) number fields
(algebraic) function fields are well studied:

Trager (1984)
Cohen and Diaz Y Diaz (1991)
van Hoeij (1994)
de Jong (1998)
Montes (1999)
van Hoeij and Stillman (2015)

Differential analogue of integral bases is new (Kauers and Koutschan,
2015).

We give an integral basis algorithm that is much faster. In addition,
we normalize the basis at infinity, which is the analogue of phase 2
in POLRED.
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Integral Bases

L ∈ C(x)[∂] be regular singular.

L has a basis of formal solutions at x = s in the form

y = tνss

∞∑
i=0

Pit
i
s ts =

{
x− s, if s 6=∞
1
x , if s =∞

where νs ∈ C and Pi ∈ C[log (ts)] with deg(Pi) < ord(L) and
P0 6= 0.

The valuation of y at x = s is

vs(y) = Re(νs)
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Integral Bases

Fix L ∈ C(x)[∂], ord(L) = n, and let G ∈ C(x)[∂].

G is called integral for L at s if

vs(G) = inf{vs(G(y)) | y is a solution of L at x = s} ≥ 0

G is called integral for L if vs(G) ≥ 0 for all s ∈ C.

Consider the C[x]-module OL

OL = {G ∈ C(x)[∂] | G is integral for L and ord(G) < n}

A basis of OL is called an (global) integral basis for L.
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Integral Bases

Let L ∈ C(x)[∂], ord(L) = n, and P ∈ C[x].

The set {b1, . . . , bn} is a local integral basis for L at P when{
A1

B1
b1 + · · ·+ An

Bn
bn |Ai, Bi ∈ C[x] and gcd(P,Bi) = 1

}
=

{G |G is integral for L at every root of P}

A local integral basis at a finite singularity s ∈ C is the local integral
basis at P = x− s.
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Integral Bases

Question How to compute a local integral basis for an operator at one
point?

Theorem

{b1, . . . , bn} is a local integral basis for L ∈ C(x)[∂] at x = 0

⇐⇒
1 ∀i, j ∈ {1, . . . , n} we have

v0(bi(yj)) ≥ 0 (yj = a solution of L at x = 0)

and

2 ∀(c1, . . . , cn) ∈ Cn \ (0, . . . , 0) there exists j ∈ {1, . . . , n} such that

v0((c1b1 + · · ·+ cnbn)(yj)) < 1
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Integral Bases

Let Linp ∈ Q(x)[∂] be regular singular.

Algorithm Outline (local basis at 0)

- Compute vj = v0(yj) of the all formal solutions yj of Linp at x = 0.

- Let m = −bmin(vj)c.
- Let b1 = xm∂0.

- For i from 2 to n do:

1 Let bi = x · ∂ · bi−1

2 Make the ansatz A = 1
x (u1 · b1 + · · ·+ ui−1 · bi−1 + bi).

3 Evaluate A(yj) and equate coefficients of the non-integral terms to 0.
4 If there is a solution, find it, update bi = A and return to Step 2.

- Return b1, . . . , bn.
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Integral Bases

Improvements (Apparent singularities and algebraic singularities)

1 Apparent Singularities

A local integral basis at an apparent singularity is given by

{b1 = ∂e1 , . . . , bn = ∂en}

If ei ≥ ord(Linp), then bi = Rem(∂ei , Linp).

Our implementation only checks for apparent singularities of the most
common type where

e1, e2, . . . , en−1, en = 0, 1, . . . , n− 2, n
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Integral Bases

2 Algebraic Singularities

Let s be an algebraic singularity with minimal polynomial P .

We compute a local integral basis {b1, . . . , bn} for L at x = s.

We want to scale bi in such a way that
- {c1b1, . . . , cnbn} is still an integral basis at x = s,
- {c1b1, . . . , cnbn} have valuations ≥ 1 at all roots of P

x−s .

Let for i = 1, . . . , n

ci =

(
P

x− s

)vs(b1)+i
and then

{Tr(c1b1), . . . ,Tr(cnbn)}
will be a local integral basis at P .
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Integral Bases

Let Linp ∈ Q(x)[∂] be regular singular.

Algorithm Outline (global integral basis)

- Let Psing be polynomial whose roots are singularities of Linp.

- For each irreducible factor P of Psing, compute a local integral bases
for Linp at P .

- Combine all local integral bases to form a global integral basis for
Linp.
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Integral Bases

Timings
Comparison of timings of Kauers’ and Koutschan’s integral basis
algorithm and our integral basis algorithm (in seconds) on a computer
with a 2.5 GHZ Intel Core i5-3210M CPU and 8 GB RAM.

Example Kauers-Koutschan Our algorithm
1 0.185 0.111
2 0.863 0.156
3 0.233 0.182
4 0.592 0.226
5 12.351 0.294
6 66.537 0.377
7 124.197 0.499
8 151.942 0.515
9 175.580 0.569
10 157.484 0.596
11 145.185 0.602
12 230.897 0.688
13 1609.865 0.699
14 > 1600 0.918
15 > 1600 1.133
16 > 1600 1.156
17 > 1600 1.251
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Integral Bases

Now, we know how to compute a global integral basis for Linp.

We have control on finite singularities of Linp.

Question What about the point x =∞?

Normalization

Let Linp ∈ C(x)[∂] with ord(Linp) = n.

The set {b1, . . . , bn} is called normalized at s, if ∃ri ∈ C(x) such
that {r1b1, . . . , rnbn} is a local integral basis for Linp at s.

We want to normalize a global integral basis at x =∞.

Normalization of an integral basis at x =∞ for an algebraic function
was introduced (Trager, 1984).
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Integral Bases

Let Linp ∈ Q(x)[∂] be regular singular and let

{B1, . . . , Bn}

be a global integral basis for Linp.

Algorithm Outline (normalization at infinity)

- Compute a local integral basis {b1, . . . , bn} at ∞.

- Compute change of basis matrix and follow Trager’s method.

Basis elements of a normalized integral basis for Linp gives us gauge
transformations to simplify Linp (to simplify it to its standard form).

Example Linp[9].
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Applications

Lets return to our problems:

1 Simplify a given differential operator (Simplifying ≈ Solving).
2 Find hypergeometric solutions (generalize find 2f1).

1 Simplify a given differential operator:

Goal Given L1, find L2 with small bit-size such that L1 is gauge
equivalent to L2.

Solution Idea Imitate POLRED.

Solution standard forms algorithm:

- Compute a normalized integral basis for L1.
- If necessary, search for a better basis element to simplify L1.
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Applications

2 Generalize find 2f1:

Let Linp ∈ Q(x)[∂] be a second order regular singular operator.

We want to find hypergeometric solutions of Linp of the form

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
Algorithm Outline (hypergeometricsols)

- Try find 2f1.

- If find 2f1 returns an empty list, use standard forms to simplify
Linp to another operator L̃inp.

- Feed find 2f1 with L̃inp.

- If find 2f1 solves L̃inp, then obtain solutions of Linp from solutions
of L̃inp.
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