Algorithms for Solving Linear Differential Equations with Rational Function Coefficients

Erdal Imamoglu

Department of Mathematics Florida State University

May 25, 2017

- Pormal Solutions, Exponents
- 3 Quotient Method
- Integral Bases

- Closed form solutions of differential equations are solutions that can be written in terms of well-studied functions (exponential, logarithmic, Airy, Bessel, Whittaker, hypergeometric, ...).
- There are powerful algorithms for some type of closed form solutions.
- We are interested to find hypergeometric solutions.
- Hypergeometric solutions are common, but current solvers in computer algebra systems often fail to find such solutions.

Introduction

• Consider the second order linear differential equation

$$L_{\rm inp}(y) = 0$$

where

$$L_{\rm inp} = A_2 \partial^2 + A_1 \partial + A_0 \in \mathbb{Q}(x)[\partial] \qquad \left(\partial = \frac{d}{dx}\right)$$

A hypergeometric solution of L_{inp} is a solution of the form

$$S(x) = \exp\left(\int r \, dx\right) \left(r_0 \cdot {}_2\mathsf{F}_1(a_1, a_2; b_1; f) + r_1 \cdot {}_2\mathsf{F}_1'(a_1, a_2; b_1; f)\right)$$

where $f, r, r_0, r_1 \in \overline{\mathbb{Q}(x)}$, $a_1, a_2, b_1 \in \mathbb{Q}$.

 We are interested in finding such solutions of a given regular singular L_{inp} ∈ ℚ(x)[∂].

Introduction

• There is also a conjecture about hypergeometric solutions.

• Conjecture (van Hoeij, Kunwar) Every second order globally bounded equation has a hypergeometric solution or an algebraic solution.

A globally bounded equation is a differential equation which (after a simple scaling) admits a Convergent Integer power Series solution (CIS solution).

• Example (Franel Numbers, OEIS A000172)

 $\mathsf{sequence} = 1, 2, 10, 56, 346, 2252, 15184, 104960, \dots$

$$\begin{split} y(x) &= 1 + 2\,x + 10\,x^2 + 56\,x^3 + 346\,x^4 + 2252\,x^5 + \dots \\ L_{\rm inp} &= x\,(1+x)\,(8\,x-1)\,\partial^2 + \left(24\,x^2 + 14\,x-1\right)\partial + (2+8\,x) \\ y(x) &= \frac{1}{1-2\,x} \cdot \,_2\mathsf{F}_1\left(\frac{1}{3},\frac{2}{3};\,1;\,\frac{27\,x^2}{(1-2\,x)^3}\right) \end{split}$$

- Question How can we find hypergeometric solutions of second order regular singular differential operators?
- There are powerful algorithms for specific tasks: Fang, van Hoeij (2012) Kunwar, van Hoeij (2013) Kunwar (2014) van Hoeij, Vidunas (2015)
- We want to develop a **general** algorithm.

Contributions

We have developed two (heuristic) effective algorithms to find hypergeometric solutions (if they exist) of second order regular singular differential operators in $\mathbb{Q}(x)[\partial]$.

One of our algorithms is the most general algorithm in the literature.

We have developed fast algorithms to simplify *n*-th order regular singular differential operators in $\mathbb{Q}(x)[\partial]$.

Simplifying \approx Solving.

• Value to the Scientific Society

Hypergeometric solutions are common in physics and combinatorics.

Our implementations have been already used by physicists.

Example Feynman Diagrams.

One of our algorithms "simplify" a differential operator to another operator which is easier to solve (Simplifying \approx Solving).

Example A 3rd order operator.

1 Introduction

Pormal Solutions, Exponents

3 Quotient Method

Integral Bases

5 Applications

Formal Solutions, Exponents

• Let
$$L_{inp} = A_2 \partial^2 + A_1 \partial + A_0 \in \mathbb{Q}(x)[\partial].$$

• $s \in \overline{\mathbb{Q}}$ is a **singularity** if it is a root of A_2 , or a pole A_1 or A_0 .

- s is a regular singularity if $\frac{A_1}{A_2}(x-s)^1$, $\frac{A_0}{A_2}(x-s)^0$ are analytic at s.
- L_{inp} is **regular singular** if it has only regular singularities.
- Formal solutions of L_{inp} at x = s: $y_1 = (x - s)^{e_1}(1 + ...)$ $y_2 = (x - s)^{e_2}(1 + ...) + ky_1 \log(x - s)$ (k might be 0) Exponents of L_{inp} at x = s: e_1, e_2 . Exponent-difference: $\Delta(L_{inp}, s) = |e_1 - e_2|$.

1 Introduction

2 Formal Solutions, Exponents

3 Quotient Method

Integral Bases

5 Applications

• Special Case

Let
$$L_{inp} \in \mathbb{Q}(x)[\partial]$$
 with $ord(L_{inp}) = 2$.

Assume that we want to find hypergeometric solutions this form:

$$\exp\left(\int r\,dx\right)\cdot {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \quad (f,r\in\overline{\mathbb{Q}(x)},a_{1},a_{2},b_{1}\in\mathbb{Q})$$

If they exist, then there exists a GHDO

$$L_B = \partial^2 + \frac{b_1 - (a_1 + a_2 + 1)}{x(1 - x)} \partial - \frac{a_1 a_2}{x(1 - x)} \in \mathbb{Q}(x)[\partial]$$

such that

$$L_B \xrightarrow{f} C M \xrightarrow{r} E L_{inp}$$

because

$${}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};x) \xrightarrow{f} {}_{C} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{r} {}_{E} \exp\left(\int r \, dx\right) {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{12/32} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{12/32} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{12/32} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{12/32} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f) \xrightarrow{r} {}_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1}$$

- Problem We know L_{inp} , we do not know L_B (i.e., a_1, a_2, b_1), f, r.
- Assume that we have a (right) candidate L_B .

Then
$$L_B \xrightarrow{f} C M \xrightarrow{r} E L_{inp}$$
.

We can compute formal solutions y_i of L_B and Y_i of L_{inp} at a non-removable singularity (order of formal solutions = a).

$$y_i(x) \xrightarrow{f} _C y_i(f(x)) \xrightarrow{r} _E Y_i(x) = \exp\left(\int r \, dx\right) y_i(f(x)) \quad (i = 1, 2)$$

Let
$$q(x) = \frac{y_1(x)}{y_2(x)}$$
, $Q(x) = \frac{Y_1(x)}{Y_2(x)}$.

This gives us $q(f(x)) = c \cdot Q(x)$ where c is an unknown constant, so $f(x) \equiv q^{-1}(c \cdot Q(x)) \mod x^a$

- Problem We do not know *c*.
- Idea Choose a suitable prime ℓ and compute

$$f(x) \equiv q^{-1}(\mathbf{c} \cdot Q(x)) \mod (x^a, \ell)$$

and try $\boldsymbol{c} = 1, \ldots, \ell - 1$.

For each c try rational function reconstruction to find $f \in \mathbb{F}_{\ell}(x)$.

If this succeeds for at least one c, then try ℓ -adic Hensel lifting and rational number reconstruction to find $f \in \mathbb{Q}(x)$.

- Compute M s.t. $L_B \xrightarrow{f} C M \xrightarrow{r} E L_{inp}$ and find r (there is a formula).
- Problem We do not know L_B (i.e., $a_1, a_2, b_1 \in \mathbb{Q}$).

• Question How to find candidates for L_B (i.e., $a_1, a_2, b_1 \in \mathbb{Q}$)?

•
$$\alpha_0 = |1 - b_1|$$
, $\alpha_1 = |b_1 - a_1 - a_2|$, $\alpha_\infty = |a_2 - a_1|$.

• Assume that
$$L_B \xrightarrow{f} C M \xrightarrow{r} E L_{inp}$$
.

	L_B	$L_{ m inp}$
singularities	$0,1,\infty$	s_1,\ldots,s_r
exponent-differences	$\alpha_0, \alpha_1, \alpha_\infty$	$\Delta(L_{\text{inp}}, s_1), \dots, \Delta(L_{\text{inp}}, s_r)$

$$\alpha_0, \alpha_1, \alpha_\infty \in \left\{ \frac{a}{kb} : a \in \{1, \Delta(L_{\text{inp}}, s_i)\}, 1 \le b \le d_f, 1 \le k \le a_f \right\}$$

where
$$d_f = \deg(f)$$
 and $a_f = [\mathbb{Q}(x, f) : \mathbb{Q}(x)].$

- We have a bound on d_f and we consider $a_f \leq 2$.
- Problem This set might have too many elements.

• Theorem (Special Case of Riemann-Hurwitz Formula for DEs) If $f: X \longrightarrow \mathbb{P}^1$ and $L_B \xrightarrow{f}_C M \xrightarrow{r}_E L_{inp}$, then

$$-2 + \sum_{s_i} (1 - \Delta(L_{\text{inp}}, s_i)) = \frac{d_f}{a_f} \left(-2 + \sum_{i \in \{0, 1, \infty\}} (1 - \alpha_i) \right)$$

where $d_f = \deg(f)$ and $a_f = [\mathbb{C}(x, f) : \mathbb{C}(x)].$

• This formula eliminates vast majority of the candidates:

$$\alpha_0, \alpha_1, \alpha_\infty \in \left\{ \frac{a}{kb} : a \in \{1, \Delta(L_{\text{inp}}, s_i)\}, 1 \le b \le d_f, 1 \le k \le a_f \right\}$$

- Algorithm Outline (find_2f1)
- Compute candidates L_B 's (if any).
- Compute quotients of formal solutions at a non-removable singularity.
- Use modular reduction, Hensel lifting, rational reconstruction to find f (if any).
- Find r.
- Return a basis of hypergeometric solutions (if they exist) or an empty list.
- Algorithm find_2f1 is very effective to find solutions of type

$$\exp\left(\int r\,dx\right)\left(r_{0}\cdot_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f)+\frac{r_{1}}{r_{1}}\cdot_{2}\mathsf{F}_{1}'(a_{1},a_{2};b_{1};f)\right)$$

where $r_1 = 0$.

- Question What if $r_1 \neq 0$?
- Idea Simplifying \approx Solving

1 Introduction

2 Formal Solutions, Exponents

3 Quotient Method

Integral Bases

5 Applications

Example (Simplifying ≈ Solving)
 Consider the following number field

 $\mathbb{Q}[x]/(f_1)$

where $f_1 = 98818x^6 - 800756x^5 + 3495803x^4 - 8505211x^3 + 15375943x^2 - 17721960x + 7848261.$

We can reduce this to

$$\mathbb{Q}[x]/(f_1) \cong \mathbb{Q}[x]/(f_2)$$

where $f_2 = x^6 - 5x^4 - 21x^3 - 12x - 2$.

• Key step to find an isomorphic number field is computation of an **integral basis**.

• Let $A = \{ f \in \mathbb{Q}[x] \mid f \text{ is irreducible} \}.$

 $f_1 \sim f_2 \iff \mathbb{Q}[x]/(f_1) \cong \mathbb{Q}[x]/(f_2) \qquad (f_1, f_2 \in \mathbb{Q}[x])$

Goal Given f_1 , find $f_2 \in A$ with small bit-size such that $f_1 \sim f_2$.

 $f_2 = a$ standard form of f_1

Solution POLRED algorithm (Cohen and Diaz Y Diaz, 1991).

- Compute a basis for the algebraic integers of $\mathbb{Q}[x]/(f_1)$.
- Apply LLL (Lenstra, Lenstra, and Lovasz, 1982) to this basis.

Application Reduce computations in $\mathbb{Q}[x]/(f_1)$ to computations in $\mathbb{Q}[x]/(f_2)$.

• Let $D = \mathbb{Q}(x)[\partial]$ and $A = \{L \in D \mid L \text{ is irreducible}\}.$

 $L_1 \sim L_2 \iff D/DL_1 \cong D/DL_2 \text{ as } D\text{-modules} \qquad (L_1, L_2 \in D)$

Goal Given L_1 , find $L_2 \in A$ with small bit-size such that $L_1 \sim L_2$.

 $L_2 = a$ standard form of L_1

Solution Idea Imitate POLRED.

Application Reduce solving L_1 with many **apparent singularities** to solving L_2 with few apparent singularities.

• Computation of integral bases for (algebraic) number fields (algebraic) function fields are well studied:

```
Trager (1984)
Cohen and Diaz Y Diaz (1991)
van Hoeij (1994)
de Jong (1998)
Montes (1999)
van Hoeij and Stillman (2015)
```

- Differential analogue of integral bases is new (Kauers and Koutschan, 2015).
- We give an integral basis algorithm that is much **faster**. In addition, we **normalize the basis at infinity**, which is the analogue of phase 2 in POLRED.

• $L \in \mathbb{C}(x)[\partial]$ be regular singular.

L has a basis of formal solutions at x = s in the form

$$y = t_s^{\nu_s} \sum_{i=0}^{\infty} P_i t_s^i \qquad t_s = \begin{cases} x - s, & \text{if } s \neq \infty \\ \frac{1}{x}, & \text{if } s = \infty \end{cases}$$

where $\nu_s \in \mathbb{C}$ and $P_i \in \mathbb{C}[\log(t_s)]$ with $\deg(P_i) < \operatorname{ord}(L)$ and $P_0 \neq 0$.

• The valuation of y at x = s is

$$v_s(y) = \operatorname{Re}(\nu_s)$$

• Fix $L \in \mathbb{C}(x)[\partial]$, $\operatorname{ord}(L) = n$, and let $G \in \mathbb{C}(x)[\partial]$.

G is called **integral for** L **at** s if

 $v_s(G) = \inf\{v_s(G(y)) \,|\, y \text{ is a solution of } L \text{ at } x = s\} \geq 0$

G is called integral for L if $v_s(G) \ge 0$ for all $s \in \mathbb{C}$.

• Consider the $\mathbb{C}[x]$ -module \mathcal{O}_L

 $\mathcal{O}_L = \{ G \in \mathbb{C}(x)[\partial] \mid G \text{ is integral for } L \text{ and } \operatorname{ord}(G) < n \}$

A basis of \mathcal{O}_L is called an **(global) integral basis** for L.

• Let
$$L \in \mathbb{C}(x)[\partial]$$
, $\operatorname{ord}(L) = n$, and $P \in \mathbb{C}[x]$.

The set $\{b_1, \ldots, b_n\}$ is a **local integral basis** for L at P when

$$\left\{ \begin{aligned} &\frac{A_1}{B_1} b_1 + \dots + \frac{A_n}{B_n} b_n \, | \, A_i, B_i \in \mathbb{C}[x] \text{ and } \gcd(P, B_i) = 1 \\ &= \\ &\{G \, | \, G \text{ is integral for } L \text{ at every root of } P \end{aligned} \right\}$$

A local integral basis at a finite singularity s ∈ C is the local integral basis at P = x - s.

• Question How to compute a local integral basis for an operator at one point?

• Theorem

 $\{b_1,\ldots,b_n\}$ is a local integral basis for $L\in\mathbb{C}(x)[\partial]$ at x=0 \Longleftrightarrow

$$1 \ \forall i,j \in \{1,\ldots,n\}$$
 we have

$$v_0(b_i(y_j)) \ge 0$$
 $(y_j = a \text{ solution of } L \text{ at } x = 0)$

and

2 $\forall (c_1,\ldots,c_n)\in\mathbb{C}^n\setminus(0,\ldots,0)$ there exists $j\in\{1,\ldots,n\}$ such that

$$v_0((c_1b_1 + \dots + c_nb_n)(y_j)) < 1$$

• Let $L_{inp} \in \mathbb{Q}(x)[\partial]$ be regular singular.

- Algorithm Outline (local_basis_at_0)
- Compute $v_j = v_0(y_j)$ of the all formal solutions y_j of L_{inp} at x = 0.
- Let $m = -\lfloor \min(v_j) \rfloor$.
- Let $b_1 = x^m \partial^0$.
- For i from 2 to n do:
 - 1 Let $b_i = x \cdot \partial \cdot b_{i-1}$
 - 2 Make the ansatz $\mathfrak{A} = \frac{1}{x} (u_1 \cdot b_1 + \cdots + u_{i-1} \cdot b_{i-1} + b_i).$
 - 3 Evaluate $\mathfrak{A}(y_j)$ and equate coefficients of the non-integral terms to 0.
 - 4 If there is a solution, find it, update $b_i = \mathfrak{A}$ and return to Step 2.
- Return b_1, \ldots, b_n .

• Improvements (Apparent singularities and algebraic singularities)

1 Apparent Singularities

A local integral basis at an apparent singularity is given by

$$\{b_1 = \partial^{e_1}, \dots, b_n = \partial^{e_n}\}$$

If $e_i \geq \operatorname{ord}(L_{\operatorname{inp}})$, then $b_i = \operatorname{Rem}(\partial^{e_i}, L_{\operatorname{inp}})$.

Our implementation only checks for apparent singularities of the most common type where

$$e_1, e_2, \ldots, e_{n-1}, e_n = 0, 1, \ldots, n-2, n$$

2 Algebraic Singularities

Let s be an algebraic singularity with minimal polynomial P.

We compute a local integral basis $\{b_1, \ldots, b_n\}$ for L at x = s.

We want to scale b_i in such a way that

- $\{c_1b_1, \ldots, c_nb_n\}$ is still an integral basis at x = s,
- $\{c_1b_1, \ldots, c_nb_n\}$ have valuations ≥ 1 at all roots of $\frac{P}{x-s}$.

Let for $i = 1, \ldots, n$

$$c_i = \left(\frac{P}{x-s}\right)^{v_s(b_1)+i}$$

and then

$$\{\operatorname{Tr}(c_1b_1),\ldots,\operatorname{Tr}(c_nb_n)\}\$$

will be a local integral basis at P.

- Let $L_{inp} \in \mathbb{Q}(x)[\partial]$ be regular singular.
- Algorithm Outline (global_integral_basis)
- Let $P_{\rm sing}$ be polynomial whose roots are singularities of $L_{\rm inp}.$
- For each irreducible factor P of $P_{\rm sing}$, compute a local integral bases for $L_{\rm inp}$ at P.
- Combine all local integral bases to form a global integral basis for $L_{\rm inp}.$

• Timings

Comparison of timings of Kauers' and Koutschan's integral basis algorithm and our integral basis algorithm (in seconds) on a computer with a 2.5~GHZ Intel Core i5-3210M CPU and 8~GB RAM.

Example	Kauers-Koutschan	Our algorithm
1	0.185	0.111
2	0.863	0.156
3	0.233	0.182
4	0.592	0.226
5	12.351	0.294
6	66.537	0.377
7	124.197	0.499
8	151.942	0.515
9	175.580	0.569
10	157.484	0.596
11	145.185	0.602
12	230.897	0.688
13	1609.865	0.699
14	> 1600	0.918
15	> 1600	1.133
16	> 1600	1.156
17	> 1600	1.251

- Now, we know how to compute a global integral basis for L_{inp} .
- We have control on finite singularities of $L_{\rm inp}$.
- Question What about the point $x = \infty$?
- Normalization
 Let L_{inp} ∈ ℂ(x)[∂] with ord(L_{inp}) = n.

The set $\{b_1, \ldots, b_n\}$ is called **normalized at** s, if $\exists r_i \in \mathbb{C}(x)$ such that $\{r_1b_1, \ldots, r_nb_n\}$ is a local integral basis for L_{inp} at s.

- We want to normalize a global integral basis at $x = \infty$.
- Normalization of an integral basis at $x = \infty$ for an algebraic function was introduced (Trager, 1984).

• Let $L_{inp} \in \mathbb{Q}(x)[\partial]$ be regular singular and let

 $\{B_1,\ldots,B_n\}$

be a global integral basis for L_{inp} .

- Algorithm Outline (normalization_at_infinity)
- Compute a local integral basis $\{b_1,\ldots,b_n\}$ at ∞ .
- Compute change of basis matrix and follow Trager's method.
- Basis elements of a normalized integral basis for L_{inp} gives us gauge transformations to simplify L_{inp} (to simplify it to its standard form).
 Example Linp[9].

Introduction

2 Formal Solutions, Exponents

3 Quotient Method

Integral Bases

5 Applications

Applications

• Lets return to our problems:

- 1 Simplify a given differential operator (Simplifying \approx Solving).
- 2 Find hypergeometric solutions (generalize find_2f1).
- 1 Simplify a given differential operator:

Goal Given L_1 , find L_2 with small bit-size such that L_1 is gauge equivalent to L_2 .

Solution Idea Imitate POLRED.

Solution standard_forms algorithm:

- Compute a normalized integral basis for L_1 .
- If necessary, search for a better basis element to simplify L_1 .

2 Generalize find_2f1:

Let $L_{inp} \in \mathbb{Q}(x)[\partial]$ be a second order regular singular operator. We want to find hypergeometric solutions of L_{inp} of the form

$$\exp\left(\int r\,dx\right)\left(r_{0}\cdot_{2}\mathsf{F}_{1}(a_{1},a_{2};b_{1};f)+r_{1}\cdot_{2}\mathsf{F}_{1}'(a_{1},a_{2};b_{1};f)\right)$$

- Algorithm Outline (hypergeometricsols)
- Try find_2f1.
- If find_2f1 returns an empty list, use standard_forms to simplify L_{inp} to another operator \tilde{L}_{inp} .
- Feed find_2f1 with \tilde{L}_{inp} .
- If find_2f1 solves \tilde{L}_{inp} , then obtain solutions of L_{inp} from solutions of \tilde{L}_{inp} .

Thank You

- Thanks to my advisor Mark van Hoeij for his continuous support, encouragement, and friendship.
- Thanks to the members of my committee for their time and efforts.