
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ALGORITHMS FOR SOLVING LINEAR DIFFERENTIAL EQUATIONS WITH RATIONAL

FUNCTION COEFFICIENTS

By

ERDAL IMAMOGLU

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

2017

Copyright c© 2017 Erdal Imamoglu. All Rights Reserved.

Erdal Imamoglu defended this dissertation on May 25, 2017.
The members of the supervisory committee were:

Mark van Hoeij

Professor Directing Dissertation

Robert A. van Engelen

University Representative

Amod S. Agashe

Committee Member

Ettore Aldrovandi

Committee Member

Paolo B. Aluffi

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

ACKNOWLEDGMENTS

First and foremost I would like to express my gratitude to my academic advisor Mark van Hoeij.

He has dedicated countless time and energy to my research and dissertation. He is full of ideas and

advice. The joy and enthusiasm he has for his research was contagious and motivational for me. I

will be always grateful for his patience and support.

I would like to thank my dissertation committee members Amod S. Agashe, Ettore Aldrovandi,

Paolo B. Aluffi, and Robert A. van Engelen for their time, interest, and helpful comments.

I would like to thank the Turkish Ministry of National Education, Florida State University, and

National Science Foundation for funding my education and research.

I would like to thank my parents, grandparents, aunt, and sister for their support throughout

all of my education. Thank you, all.

Last but not least, I would like to thank my wife Saadet for her unconditional support, under-

standing, and appreciation of my work. Thank you for everything.

iii

TABLE OF CONTENTS

List of Symbols . vi

Abstract . vii

1 Introduction 1
1.1 Closed Form Solutions . 1
1.2 Motivation: CIS Solutions and Globally Bounded Equations 2
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Plan of the Thesis . 4

2 Preliminaries 6
2.1 Differential Operators . 6
2.2 Gauss Hypergeometric Differential Operator and Hypergeometric Function 10
2.3 Transformations Between Differential Operators . 11
2.4 Hypergeometric Solutions . 12

3 Computing Hypergeometric Solutions via Quotient Method 14
3.1 Quotients of Formal Solutions . 14
3.2 General Outline of Quotient Method Algorithm . 17
3.3 Good Prime Numbers . 19
3.4 Degree Bounds . 20

3.4.1 A Degree Bound for Logarithmic Case . 20
3.4.2 A Degree Bound for Non-logarithmic Case . 22

3.5 Riemann-Hurwitz Type Formula For Differential Equations 23
3.6 Candidate Gauss Hypergeometric Differential Operators 25
3.7 Quotient Method . 27

3.7.1 Non-logarithmic Case . 27
3.7.2 Logarithmic Case . 29

3.8 Recovering Pullback Functions and Parameter of Exp-product 31
3.8.1 Lifting for Rational Pullback Functions . 31
3.8.2 Lifting for Algebraic Pullback Functions . 33
3.8.3 Recovering Parameter of Exp-product . 34

4 Integral Bases for Differential Operators and Normalization at Infinity 35
4.1 Standard Form Map . 36
4.2 Integral Bases . 37

4.2.1 Computing a Local Integral Basis at One Point 39
4.2.2 Local Bases at Apparent Singularities . 41
4.2.3 Local Bases at Algebraic Singularities . 42
4.2.4 Integral Basis for a Differential Operator at a Polynomial 43
4.2.5 Combining Two Local Integral Bases . 44

iv

4.2.6 Computation of Global Integral Bases . 46
4.3 Normalization at Infinity . 46

5 Applications of Normalized Integral Bases 50
5.1 Standard Forms of a Differential Operator . 50
5.2 Computing All Hypergeometric Solutions . 52

5.2.1 Examples from Physics . 54
5.2.2 Examples from Combinatorics . 54

Appendix

A Operator Polynomial Definitions 56

Bibliography . 59

Biographical Sketch . 63

v

LIST OF SYMBOLS

The following list of symbols are commonly used throughout this thesis.

R a commutative ring with identity
K a field

∂ a derivation, generally ∂ = d
dx

K(x)[∂] the ring of differential operators over K(x)
GHDO Gauss hypergeometric differential operator

2F1(a1, a2; b1;x) a Gauss hypergeometric function with parameters a1, a2, b1 ∈ Q
L a differential operator
Linp an input differential operator
LB a Gauss hypergeometric differential operator (GHDO)
ts the local parameter of the point s
V (L) the solution space of the operator L
∆(L, p) an exponent-difference of L at p
α0, α1, α∞ the exponent-differences of a GHDO at 0, 1, ∞ respectively
f−→C a change of variable transformation with a pullback function f
r−→E an exp-product transformation with a parameter r
r0,r1,...,rn−1−−−−−−−−→G a gauge transformation with parameters r0, r1, . . . , rn−1

G the operator which corresponds to the gauge transformation
r0,r1,...,rn−1−−−−−−−−→G

L1/x the operator obtained from L via
1/x−−→C

` a good prime number
df the degree of a pullback function f
af the algebraic degree of a pullback function f
afmax a bound for the algebraic degree af of a pullback function f
ep the ramification order of p
TrueSing(L) the set of all non-removable singularities (true singularities) of L
ntrue the number of non-removable singularities of a differential operator
ndiss the number of disappeared singularities of a differential operator
einp a list of exponent-differences of Linp at its non-removable singularities
eapp a list of exponent-differences of Linp at its apparent singularities
vs(y) the valuation of the function y at s
LCLM(L1, L2) the least common left multiple of L1 and L2

GCRD(L1, L2) the greatest common right divisor of L1 and L2

vi

ABSTRACT

This thesis introduces two new algorithms to find hypergeometric solutions of second order regular

singular differential operators with rational function or polynomial coefficients. Algorithm 3.2.1

searches for solutions of type

exp

(∫
r dx

)
· 2F1(a1, a2; b1; f)

and Algorithm 5.2.1 searches for solutions of type

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
where f, r, r0, r1 ∈ Q(x), a1, a2, b1 ∈ Q, and 2F1 denotes the Gauss hypergeometric function. The

algorithms use modular reduction, Hensel lifting, rational function reconstruction, and rational

number reconstruction to do so. Numerous examples from different branches of science (mostly from

combinatorics and physics) showed that the algorithms presented in this thesis are very effective.

Presently, Algorithm 5.2.1 is the most general algorithm in the literature to find hypergeometric

solutions of such operators.

This thesis also introduces a fast algorithm (Algorithm 4.2.4) to find integral bases for arbi-

trary order regular singular differential operators with rational function or polynomial coefficients.

A normalized integral basis for a differential operator (output of Algorithm 4.3.1) provides us trans-

formations that convert the differential operator to its standard forms (output of Algorithm 5.1.1)

which are easier to solve.

vii

CHAPTER 1

INTRODUCTION

1.1 Closed Form Solutions

Linear homogeneous differential equations with rational function or polynomial coefficients are

very common and they play an important role in mathematics, physics, combinatorics, and other

branches of science. Many scientists depend on computer algebra systems (Maple, Mathematica,

Matlab, etc.) to solve the equations that they encounter during their research. Nowadays, computer

algebra systems contain numerous effective procedures to match an equation with a well-known

equation in databases and textbooks such as [19, 29, 30, 48]. A huge advantage of these programs

is that they take much less time than searching the library. Nevertheless, there are also classes

of well-known functions for which current solvers are incomplete. For example, computer algebra

systems often fail to find hypergeometric solutions of differential equations.

Mathematicians and computer scientists have been developing algorithms to find solutions of

linear differential equations with rational function coefficients. Finding closed form solutions, which

are solutions that are expressible in terms of well-studied elementary and special functions, of such

differential equations is a challenging and an intriguing research area in computer algebra and

computational differential algebra. With the virtue of effective factorization and simplification

methods [38, 42, 43], it is a reasonable approach to focus on developing algorithms to solve second

order equations. Through the years, several effective algorithms were developed to find Liouvillian

solutions, Bessel solutions, Kummer solutions, and hypergeometric solutions of second order linear

differential equations with rational function coefficients [17, 18, 20, 21, 32, 33, 34, 35, 44, 46, 50].

Finding hypergeometric solutions of a second order regular singular (Fuchsian) differential equa-

tion with rational function coefficients is an active and interesting research area. Although a general

algorithm is still lacking, there are powerful algorithms to find hypergeometric solutions under some

restrictions. For example, [20, 21] find hypergeometric solutions if there is a so-called 2-descent,

[35] finds hypergeometric solutions if the so-called pullback function has degree 3, [44] finds hy-

1

pergeometric solutions if the input equation has four singularities, and [34] finds hypergeometric

solutions if the input equation has five singularities with at least one of them being logarithmic.

In this thesis, we present two new algorithms to find hypergeometric solutions of second order

regular singular differential equations with rational function coefficients. Algorithm 3.2.1 searches

for hypergeometric solutions of type

exp

(∫
r dx

)
· 2F1(a1, a2; b1; f)

and Algorithm 5.2.1 searches for hypergeometric solutions of type

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
where f, r, r0, r1 ∈ Q(x) and a1, a2, b1 ∈ Q. Algorithm 5.2.1 is more general than previous algo-

rithms [20, 21, 34, 35, 44] due to the fact that it has no restrictions neither on the degree of the

pullback function f nor the number of singularities of the input equation.

Paper [31] introduced the notion of integral bases for differential equations. In this thesis, we also

introduce a fast algorithm (Algorithm 4.2.4) to find an integral basis for an arbitrary order regular

singular differential equation with rational function coefficients and an algorithm (Algorithm 4.3.1)

to normalize an integral basis at infinity. Normalization procedure is a new addition and it was not

mentioned in [31]. A normalized integral basis for a differential equation gives us transformations

which simplify the original differential equation to, what we called, its standard forms (Algorithm

5.1.1). It helped us to generalize Algorithm 3.2.1. Algorithm 5.2.1 is a combination of Algorithms

3.2.1, 4.2.4, 4.3.1, and 5.1.1.

1.2 Motivation: CIS Solutions and Globally Bounded Equations

Definition 1.2.1.

• A Convergent Integer power Series solution (CIS solution) of a differential equation is a

solution y =
∑

n u(n)xn ∈ Z[x] with a positive radius of convergence.

• A differential equation with rational function coefficients which (after a simple scaling) has a

CIS solution is called a globally bounded equation [14].

Example 1.2.1. The differential equation

x (1 + x) (8x− 1)
d2

dx2
y(x) +

(
24x2 + 14x− 1

) d

dx
y(x) + (2 + 8x)y(x) = 0 (1.1)

2

is a globally bounded equation because it has a CIS solution

y(x) = 1 + 2x+ 10x2 + 56x3 + 346x4 + 2252x5 + 15184x6 + 104960x7 + 739162x8 + . . .

where the coefficients of y(x) are “Franel numbers” (A000172 in the on-line encyclopedia of integer

sequences [1]). Note that (1.1) also admits a hypergeometric solution,

y(x) =
1

1− 2x
· 2F1

(
1

3
,
2

3
; 1;

27x2

(1− 2x)3

)
.

Mark van Hoeij and Vijay J. Kunwar observed that many (all?) second order globally bounded

equations (coming from [1] and many other sources) have hypergeometric solutions or algebraic

solutions. This significant observation gave rise to the following conjecture.

Conjecture 1.2.1. Every second order globally bounded equation has a hypergeometric solution or

an algebraic solution.

Algebraic solutions of second order globally bounded equations can be found using Kovacic’s

algorithm [32]. Therefore, it is natural to ask how to find hypergeometric solutions. Currently,

the answer of this question is not known. However, there are methods to search hypergeometric

solutions of regular singular equations under some restrictions on the number of singularities of the

equation or the degree of the so-called pullback function.

There is no regular singular differential equation with only one non-removable singularity. Reg-

ular singular equations with two non-removable singularities have Liouvillian solutions and [32]

can find them. Equations with three singularities were treated in [20, 21], four singularities were

discussed in [44], and five singularities (with at least one logarithmic singularity) were examined in

[34]. The paper [35] treats the case where the so-called pullback function has degree 3.

Remark 1.2.1. If we restrict to univariate hypergeometric functions (3F2, 4F3, . . .) then, Conjecture

1.2.1 does not hold for higher orders (there are examples for order three globally bounded equations

[49]). For higher orders, we need to consider A-hypergeometric functions [8].

1.3 Objectives

We want to develop a general procedure, with no restriction on the number of singularities

and the degree of the pullback function, to find hypergeometric solutions of second order regular

3

singular differential equations with rational function coefficients. This is motivated by Conjecture

1.2.1 which says that such solutions are common. In the case that Conjecture 1.2.1 turns out to be

false, our algorithms could be very helpful for finding a counter example.

1.4 Contributions

The main contributions of this thesis are Algorithms 3.2.1 and 5.2.1 which can find hypergeo-

metric solutions of second order differential equations with rational function coefficients. Presently,

Algorithm 5.2.1 is the most general algorithm in the literature. To illustrate the value of hyper-

geometric solutions, the physics paper [4] gave hypergeometric solutions to differential equations

from the Ising Model. At the time, such solutions were hard to find, in fact, their existence was

surprising enough for [4] to end up in the “Journal of Physics A highlights of 2012”. The algorithms

presented in this thesis can solve these equations automatically. Numerous examples coming from

different sources (including [1]) showed that the Algorithms 3.2.1 and 5.2.1 are very effective and

that hypergeometric solutions are very common in many areas of physics (the Ising model [4], the

Feynman diagrams [2]) and combinatorics [12].

Another contribution of this thesis is the fast Algorithm 4.2.2 to compute an integral basis

for an arbitrary order regular singular differential equation and Algorithm 4.3.1 to normalize the

integral basis at the point at infinity. A normalized integral basis for a differential equation gives

us transformations that transforms the equation to another equation (one of its standard forms,

Algorithm 5.1.1) which is easier to solve.

1.5 Plan of the Thesis

The plan of this thesis is as follows: Chapter 2 introduces the notion of differential operators

and investigates the theory developed around their singularities, exponent-differences, solutions,

and transformations between them. Chapter 3 is dedicated to describe our algorithm (Algorithm

3.2.1) to find hypergeometric solutions of second order linear differential equations using quotient of

formal solutions around a non-removable singular point. In Chapter 4, integral bases for arbitrary

order differential operators are investigated and a fast algorithm (Algorithm 4.2.2) is given to

compute these bases. Moreover, Chapter 4 introduces an algorithm (Algorithm 4.3.1) to normalize

integral bases for differential operators at the point at infinity. The last chapter, Chapter 5, presents

4

two applications of the softwares given in Chapters 3 and 4. First part of Chapter 5 introduces

standard forms of a differential operator (Algorithm 5.1.1). Second section of this chapter, Section

5.2, introduces a very efficient algorithm (Algorithm 5.2.1) to find hypergeometric solutions of

second order linear differential equations with rational function coefficients. Maple implementations

of our algorithms [23, 24, 25] accompany this thesis.

5

CHAPTER 2

PRELIMINARIES

Differential operators are the central mathematical objects of interest of this thesis. In this chapter

we briefly recall some fundamental definitions and facts about differential operators. In the first

section, we investigate solutions of differential operators, singularities, and exponent-differences.

The second section is devoted to Gauss hypergeometric differential operator and its solutions. In

the third section, we discuss transformations between two second order differential operators. The

last section defines hypergeometric solutions and states an important theorem (Theorem 2.4.1)

about exponent-differences of a Gauss hypergeometric differential operator and a second order

differential operator which are connected via a change of variables transformation. Omitted proofs

and more comprehensive information can be found at [7, 16, 17, 19, 20, 29, 34, 40, 48, 50]

2.1 Differential Operators

Definition 2.1.1. Let R be ring and ∂ : R −→ R be an additive homomorphism which satisfies

the Leibniz product rule,

∂(rs) = r∂(s) + s∂(r)

for all r, s ∈ R.

• ∂ is called a derivation on R.

• A ring R with a derivation ∂ is called a differential ring.

• A field K with a derivation ∂ : K −→ K is called a differential field.

Definition 2.1.2. Let R be a differential ring or a differential field with a derivation ∂.

• If ∂(c) = 0 for c ∈ R, then c is called a constant of R.

• The set of all constants of R is given by

CR = ker(∂ : R −→ R)

and it forms a ring. CR is called the ring of constants of R.

6

• If R is a differential field, then CR is a field, the field of constants of R.

Example 2.1.1.

1. Let R = Z or R = Q. Then R is a differential ring with the trivial derivation ∂ = 0. This is

the only derivation on R and CR = R.

2. The field of rational functions with complex coefficients C(x) is a differential field with the

derivation ∂ = d
dx . The field of constants are CC(x) = C.

Definition 2.1.3. Let K be a differential field with a derivation ∂.

• A differential operator over K is defined by

L =
n∑
i=0

Ai∂
i

where Ai ∈ K(x). The order of L is given by ord(L) = max(i : Ai 6= 0).

• The set of all differential operators over K form a non-commutative Euclidean domain. It is

denoted by K[∂] and it is called the ring of differential operators over K.

Remark 2.1.1. There is a one-to-one correspondence between elements of K[∂] and ordinary linear

differential equations over K.

Example 2.1.2. Let ∂ = d
dx . An n-th order differential operator L =

∑n
i=0Ai∂

i ∈ C(x)[∂]

corresponds to an n-th order ordinary linear differential equation over C(x), which is

L(y) = An
dn

dxn
y(x) +An−1

dn−1

dxn−1
y(x) + · · ·+A0y(x) = 0.

An n-th order ordinary linear differential equation over C(x) also corresponds to an element of

C(x)[∂]. So, we can use the terms “differential operator” and “differential equation” interchange-

ably.

Notation 2.1.1. For the remaining part of this chapter, K will denote a field such that K ⊆ C

and ∂ will denote the derivation d
dx .

Definition 2.1.4. A universal extension Ω of K(x) is a K(x)[∂]-module such that

1. Ω is a K(x) algebra,

7

2. for every L ∈ K(x)[∂], the differential equation L(y) = 0 has ord(L) linearly independent

solutions in Ω,

3. for every f ∈ Ω there exist a non-zero differential operator L ∈ K(x)[∂] such that L(f) = 0.

Universal extension Ω exists and is unique up to isomorphism if K is algebraically closed [40].

Then, the solution space of L is defined as

V (L) = ker(L : Ω −→ Ω).

V (L) is a vector space over K with dimension ord(L).

Definition 2.1.5. Let L =
∑n

i=0Ai∂
i ∈ K(x)[∂] with ord(L) = n and s ∈ K ∪ {∞}.

• s is called a singularity (or a singular point) of L if An(s) = 0 or s is a pole of one of the

non-leading coefficients of L, which are A1, . . . , An−1.

• If s is not a singularity, then it is called a regular point of L.

• The point s = ∞ is a singularity (respectively regular point) of L if 0 is a singularity (re-

spectively regular point) of L1/x. Here L1/x is the operator obtained from L via substituting

(x, ∂) =
(
x, ddx

)
7→
(

1
x ,

d
d 1
x

)
=
(
1
x ,−x

2∂
)
.

Remark 2.1.2. A singularity of a solution of a differential operator is also a singularity of the

differential operator, however, the converse is in general not true.

Definition 2.1.6. A singularity s of of an operator L ∈ K(x)[∂] is called an apparent singularity

if all solutions of L are analytic at s.

Definition 2.1.7. Let L =
∑n

i=0Ai∂
i ∈ K(x)[∂] and s ∈ K ∪ {∞} be a singularity of L.

• The local parameter of s is defined by

ts =

{
x− s, if s 6=∞
1
x , if s =∞.

• A finite point s is called a regular singularity if

An−i
An

tis

is analytic at s for every i ∈ {1, . . . , n}.

8

• If s =∞, then s is a regular singularity if 0 is a regular singularity of L1/x.

• If s is not a regular singularity, then it is called an irregular singularity.

• A differential operator L which has only regular singularities is called a regular singular

operator or Fuchsian operator.

Remark 2.1.3. For the remaining of this chapter we will only consider second order regular singular

differential operators over K(x).

Theorem 2.1.1 ([17, 20, 34, 48, 50]). Let L ∈ K(x)[∂] be a second order regular singular operator

and s be a regular singularity or a regular point of L. Then, in the neighborhood of s the set {Y1, Y2}

forms a basis of the solution space V (L) as a vector space over K, where:

1.

Y1 = te1s

∞∑
i=0

ait
i
s

Y2 = te2s

∞∑
i=0

bit
i
s

with a0 6= 0, b0 6= 0, e1, e2, ai, bi ∈ K, and e1 6= e2. In this case ∆(L, s) = |e1 − e2| ∈ K, or,

2.

Y1 = te1s

∞∑
i=0

ait
i
s

Y2 = te2s

∞∑
i=0

bit
i
s + Y1 · log (ts)

with a0 6= 0 and e1, e2, ai, bi ∈ K. In this case ∆(L, s) = |e1 − e2| ∈ Z.

3. If s is an apparent singularity or a regular point, then Y1 and Y2 are analytic at s. In this

case, for the corresponding e1 and e2 we have ∆(L, s) = |e1 − e2| ∈ Z.

Definition 2.1.8. In the Theorem 2.1.1,

• e1 and e2 are called the exponents of L at s and the absolute value of the difference of them

∆(L, s) = |e1 − e2|

is called the exponent-difference of L at s.

• In Theorem 2.1.1 Item 2, it is said that Y2 is a logarithmic solution of L.

• If L has a logarithmic solution at a singularity s, then s is called a logarithmic singularity.

9

2.2 Gauss Hypergeometric Differential Operator and
Hypergeometric Function

This section is devoted for Gauss hypergeometric differential operator and its solutions. For

more details see [7, 19, 48].

Definition 2.2.1. Let a1, a2, b1 ∈ Q such that b1 /∈ {0} ∪ Z−.

• The differential operator

LB = ∂2 +
b1 − (a1 + a2 + 1)

x(1− x)
∂ − a1a2

x(1− x)
∈ Q(x)[∂] (2.1)

is called Gauss hypergeometric differential operator (or GHDO in short).

• Since LB is a second order operator, it has two linearly independent solutions in the universal

extension of Q(x). One of the solutions of LB at the regular singular point x = 0 is called

Gauss hypergeometric function and it is given by the infinite Gauss series

2F1(a1, a2; b1;x) =
∞∑
k=0

(a1)k(a2)k
(b1)k

xk

k!
.

Here, for λ ∈ Q the notation (λ)k denotes the Pochhammer Symbol which is defined by raising

factorials,

(λ)k =

{
1, if k = 0

λ(λ+ 1) . . . (λ+ k − 1), if k > 0.

Another solution of LB at x = 0 is

x1−b1 · 2F1(a1 − b1 + 1, a2 − b1 + 1; 2− b1;x).

Remark 2.2.1. GHDO LB in (2.1) is regular singular (Fuchsian) and it has three regular singularities

at 0, 1, and ∞ with exponents {0, 1− b1}, {0, b1 − a1 − a2}, and {a1, a2} respectively. We denote

the exponent-differences of LB as

• α0 = ∆(LB, 0) = |1− b1|,

• α1 = ∆(LB, 1) = |b1 − a1 − a2|,

• α∞ = ∆(LB,∞) = |a2 − a1|.

10

2.3 Transformations Between Differential Operators

Notation 2.3.1. In this section we only consider differential operators in K(x)[∂] where K ⊆ C

and ∂ = d
dx .

Definition 2.3.1. Let L1 ∈ K(x)[∂] be an n-th order differential operator. A transformation is

an operation which converts L1 to another n-th order differential operator L2 ∈ K(x)[∂], with an

equipped map V (L1)→ V (L2).

Definition 2.3.2. There are three known type of order-preserving transformations that can be

expressed in terms of operators as well as in terms of solutions:

1. Change of Variables Transformation:

Suppose f ∈ K(x) and y(x) is a solution of an equation L1(y) = 0 with L1 ∈ K(x)[∂].

Then the composition y(f) is a solution of an operator L2 obtained from L1 by substituting

(x, ∂) 7→
(
f, 1

f ′∂
)

. We denote this change of variables transformation as

L1
f−→C L2.

Here f is called a pullback function.

2. Exp-Product Transformation:

Suppose f ∈ K(x) and y(x) is a solution of an equation L1(y) = 0 with L1 ∈ K(x)[∂]. Then

y(x) · exp (
∫
r dx) is a solution of an operator L2 ∈ K(x)[∂] where L2 is obtained from L1 by

substituting ∂ 7→ ∂ − r. We denote this exp-product transformation as

L2 = L1s (∂ − r)

or

L1
r−→E L2.

3. Gauge Transformation:

Let r0, r1, . . . , rn−1 ∈ K(x) and y(x) be a solution of an equation L1(y) = 0. Let G =

rn−1∂
n−1 + · · · + r0. Then G(y) is a solution of an operator L2 ∈ K(x)[∂] where L2 is

obtained from L1 by right-dividing LCLM(L1,G) by G. We denote this gauge transformation

by

L1
G−→G L2

or

L1
r0,r1,...,rn−1−−−−−−−−→G L2.

We only allow cases with GCRD(L1,G) = 1 so that ord(L1) = ord(L2).

11

Theorem 2.3.1 ([17]).

• Exp-product and gauge transformations are reflexive, symmetric, and transitive.

• Change of variables transformation is reflexive and transitive. If we allow algebraic pullback

functions, then change of variables becomes symmetric.

Theorem 2.3.2 ([17]). Let L1, L2 ∈ K(x)[∂] be of order n such that

L1
r−→E

r0,r1,...,rn−1−−−−−−−−→G L2.

Then, there exist t, t0, t1, . . . , tn−1 ∈ K(x) such that

L1
t0,t1,...,tn−1−−−−−−−→G

t−→E L2.

Theorem 2.3.3 ([17]). Let L1, L2 ∈ K(x)[∂] be of order n such that L2 is obtained from L1 with

change of variables, exp-produt, and gauge transformations in any order, namely

L1−→L2.

Then, there exist f, r ∈ K(x), r0, r1, . . . , rn−1 ∈ K(x) such that

L1
f−→C

r−→E
r0,r1,...,rn−1−−−−−−−−→G L2.

Definition 2.3.3. If a singularity s of L ∈ K(x)[∂] becomes a regular point under a combination of

exp-product or gauge transformations, then s is called a removable singularity (or false singularity).

Otherwise it is called a non-removable singularity (or true singularity).

Remark 2.3.1. Logarithmic singularities are non-removable singularities, they stay singular under

any combination of all three transformations. Apparent singularities are removable singularities.

2.4 Hypergeometric Solutions

Definition 2.4.1. Let L ∈ Q(x)[∂] be a second order operator. If it exists, a hypergeometric

solution of L is a solution of the form

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
where f, r, r0, r1 ∈ Q(x) and a1, a2, b1 ∈ Q.

12

Remark 2.4.1. If a second order L ∈ Q(x)[∂] has a hypergeometric solution, then (by Theorem

2.3.3) there exists a GHDO

LB = ∂2 +
b1 − (a1 + a2 + 1)

x(1− x)
∂ − a1a2

x(1− x)
∈ Q(x)[∂]

such that

LB
f−→C

r−→E
r0,r1−−−→G L

where f, r,∈ Q(x) and r0, r1 ∈ Q(x).

Theorem 2.4.1 ([10]). Let a GHDO LB ∈ Q(x)[∂] have exponent-differences α0 at 0, α1 at 1, and

α∞ at ∞. Suppose

LB
f−→C L.

Let p ∈ C is a point such that f(p) ∈ {0, 1,∞}. Then L has exponent-difference at p

• epα0 if f has a zero at p with multiplicity ep,

• epα1 if f − 1 has a zero at p with multiplicity ep,

• epα∞ if f has a pole at p with order ep.

13

CHAPTER 3

COMPUTING HYPERGEOMETRIC SOLUTIONS

VIA QUOTIENT METHOD

Let ∂ = d
dx . In this chapter we introduce a heuristic algorithm to compute hypergeometric solutions

of a second order regular singular differential operator Linp ∈ Q(x)[∂] in the form of

exp

(∫
r dx

)
· 2F1(a1, a2; b1; f) (3.1)

where f, r ∈ Q(x) and a1, a2, b1 ∈ Q. If a given operator Linp has hypergeometric solutions in the

form of (3.1), then there exists a GHDO LB ∈ Q(x)[∂] such that

LB
f−→C

r−→E Linp. (3.2)

Therefore, finding solutions of Linp in the form of (3.1) is equivalent to finding a GHDO LB and

parameters f , r of the transformations such that (3.2) holds. There are formulas and algorithms

[41] to recover r, so the crucial part is to find LB and the pullback function f .

Remark 3.0.1. The contents of this chapter (apart from some new materials and adoptions) have

been published in [28].

Notation 3.0.1. Throughout this chapter we use ∂ = d
dx .

3.1 Quotients of Formal Solutions

Example 3.1.1 (Rational Pullback Function). The differential operator

Linp = 147x(x− 1)(x+ 1)∂2 + (266x2 − 42x− 98)∂ + 20x− 5 ∈ Q(x)[∂] (3.3)

has a hypergeometric solution in the form of (3.1) and it is

Y (x) = exp

(∫
r dx

)
· 2F1

(
5

42
,
11

42
;
2

3
; f

)
where

exp

(∫
r dx

)
= (x+ 1)−

5
21 (3.4)

14

and

f =
4x

(x+ 1)2
.

Section (3.6) shows how to find the parameters of the 2F1 function, a1, a2, b1 = 5
42 ,

11
42 ,

2
3 . Then f

is computed with the quotient method illustrated in the below remark.

Remark 3.1.1 (Overview of the Quotient Method). The hypergeometric function

y1(x) = 2F1

(
5

42
,
11

42
;
2

3
;x

)
(3.5)

is a solution of the GHDO

LB = ∂2 +
(29x− 14)

21x (x− 1)
∂ +

55

1764x (x− 1)
∈ Q(x)[∂].

LB has two formal solutions at x = 0 and they are

y1(x) = 2F1

(
5

42
,
11

42
;
2

3
;x

)
= 1 +

55

1176
x+

27401

1382976
x2 + . . . ,

y2(x) = x
1
3 · 2F1

(
19

42
,
25

42
;
4

3
;x

)
= x

1
3 ·
(

1 +
475

2352
x+

1941325

19361664
x2 + . . .

)
.

The exponents of LB at 0 are e0,1 = 0 and e0,2 = 1
3 . The minimal operator for y(f) has the

following solutions at x = 0,

y1(f) = 1 +
55

294
x− 4939

86436
x2 + . . . ,

y2(f) = c · x
1
3

(
1 +

83

588
x+

6805

1210104
x2 + . . .

)
for some constant c that depends on f . Here the exponents are again 0 and 1

3 because x = 0 is a

root of f with multiplicity 1 (see Theorem 2.4.1). Let

Y1(x) = exp

(∫
r dx

)
y1(f) = 1− 5

98
x+

439

9604
x2 + . . . , (3.6)

Y2(x) = exp

(∫
r dx

)
y2(f) = c · x

1
3

(
1− 19

196
x+ . . .

)
. (3.7)

(3.6) and (3.7) form a basis of solutions of Linp in (3.3). Here exp(
∫
r dx) is as the same as in (3.4).

Denote the quotients of the formal solutions of LB and Linp by

q(x) =
y1(x)

y2(x)

15

and

Q(x) =
Y1(x)

Y2(x)
=

exp
(∫
r dx

)
y1(f)

exp
(∫
r dx

)
y2(f)

=
y1(f)

y2(f)
= q(f)

respectively. It follows that

q−1(Q(x))

gives an expansion of f at x = 0. Given enough terms of y1, y2, Y1, Y2 we can compute f with

rational function reconstruction.

Remark 3.1.2. The method given in the Remark (3.1.1) works, however, the following questions

are needed to be answered:

1. How many terms are needed to reconstruct the pullback function f? This is equivalent to

finding a degree bound for f .

2. How can we find the parameters a1, a2, b1 (the three rational numbers in (3.5)) that defines

the GHDO LB ∈ Q(x)[∂]? This is the combinatorial part of our algorithm.

3. The exponents 0, 1
3 of Linp at x = 0 only determine Y1

Y2
up to a constant factor. This means

the quotient y1(f)
y2(f)

is only known up to a constant factor c. How to find this constant?

4. What if Linp has a logarithmic solutions at x = 0?

5. What if f is an algebraic function?

6. What if Linp does not have solutions in the form of (3.1), but have solutions in the form of

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
with f, r, r0, r1 ∈ Q(x)?

Answers of the first five questions are given in this chapter. Last question will be discussed in

Chapter 5.2, after the notion of integral bases for differential operators is introduced in Chapter 4.

Example 3.1.2 (Algebraic Pullback Function). The differential operator

Linp = ∂2 +
x4 − 44x3 + 1206x2 − 44x+ 1

4x2 (x2 − 34x+ 1)2

has a hypergeometric solution in the form of (3.1), which is

Y (x) = exp

(
−1

2

∫
r dx

)
· 2F1

(
1

3
,
2

3
; 1; f

)

16

where

r =
−x5 + 22x4 − 55x3 − 343x2 + 58x− 1 + 6x

(
x2 − 7x+ 1

)√
x2 − 34x+ 1

x (x4 − 41x3 + 240x2 − 41x+ 1) (x+ 1)

and

f =
1

2

1 + 30x− 24x2 + x3 −
(
x2 − 7x+ 1

)√
x2 − 34x+ 1

1 + 3x+ 3x2 + x3
.

Here the pullback function f is an algebraic function. Q(x, f) is an algebraic extension of Q(x) of

algebraic degree af = 2. Note that af = 1 if and only if f is a rational function, as in Example

3.1.1.

3.2 General Outline of Quotient Method Algorithm

Problem Statement 3.2.1. Given a second order linear differential operator Linp ∈ Q(x)[∂],

irreducible and regular singular, we want to find a hypergeometric solution of Linp in the form of

(3.1). This problem is equivalent to finding parameters f and r of the change of variables and

exp-product transformations from a specific GHDO LB to Linp such that

LB
f−→C

r−→E Linp.

Therefore, we need to find

1. a Gauss Hypergeometric Differential Operator LB (i.e., the rational numbers a1, a2, b1 ∈ Q),

2. parameters f and r.

Algorithm 3.2.1 ([23]). General Outline of find 2f1.

Input(s):

• Linp ∈ Q(x)[∂] = A second order regular singular irreducible differential operator.

• afmax = A bound for the algebraic degree af of f (if omitted, then afmax = 2 which

means our implementation tries af = 1 and af = 2 only).

Output:

• Solutions of Linp in the form of (3.1), or an empty list.

1. Try Kovacic’s algorithm [32]. This algorithm finds Liouvillian solutions of Linp. If there

exist Liouvillian solutions, then return them. For an irreducible Linp, the algorithm in [45]

computes Liouvillian solutions in form (3.1).

17

2. For each af ∈ {1, . . . , afmax}:

(a) Use Section 3.6 to compute candidates for a GHDO LB and a candidate degree df for

f . This becomes a combinatorial problem and Theorem 3.5.1 helps us to eliminate vast

majority of the candidates.

(b) For a candidate pair (LB, df), compute formal solutions y1, y2 of LB and Y1, Y2 of Linp

at a non-removable singularity up to precision a where

a ≥ (af + 1)(df + 1) + 6.

Here we add six extra terms to reduce the number of false positives. Then take the quo-

tients of the formal solutions, q = y1
y2

and Q = Y1
Y2

, and compute power series expansions

for q−1 and Q in order to compute

f(x) ≡ q−1(c ·Q(x)) (3.8)

in the next step. Here c ∈ C is an unknown constant.

(c) Choose a suitable prime number ` (see Remark 3.2.2) and try to find c modulo ` by

looping c = 1, . . . , `− 1 as explained in Sections 3.7.1 and 3.7.2.

(d) For each c:

i. Compute f mod (xa, `) from equation (3.8) and use it to reconstruct f mod ` (the

image of f in F`(x)) [47]. If it fails for every c, then proceed with the next candidate

GHDO (if any) in Step 2b. If no candidates remain, then return an empty list.

ii. If rational reconstruction in Step 2(d)i succeeds for some c values, then apply Hensel

lifting (Section 3.8) to find f mod a power of `. Then try rational number recon-

struction [47]. If it does not fail for at least one c value, then we have f . If no

solution is found (see Remark 3.8.1 in Section 3.8), then proceed with the next can-

didate GHDO (if any) in Step 2b. If no candidates remain, then return an empty

list.

iii. Use Section 3.8.3 to compute the parameter r of the exp-product transformation.

iv. Return a basis of hypergeometric solutions of Linp in form (3.1).

Remark 3.2.1. If f in (3.8) has non-integer powers of x and af = 2, then Algorithm 3.2.1 separates

f mod (xa, `) into two parts as f = f0 +x
1
2 f1 mod (xa, `). Then it computes the trace Tr(f) = 2f0

of f and the norm N(f) = f20 −xf21 of f . Then it lifts Tr(f) mod ` and N(f) mod ` to a power of `

(Section 3.8). After each lifting it tries rational reconstruction. If rational reconstruction succeeds

for both Tr(f) and N(f), then Algorithm 3.2.1 computes the algebraic pullback function f from its

minimal polynomial y2 − Tr(f)y + N(f).

18

Remark 3.2.2. Numerous examples (which can be found at [23]) verified that Algorithm 3.2.1 is

very effective. For completeness of the algorithm, we still need a theorem for good prime numbers

(a good prime is a prime for which rational reconstructions in Step 2d will work).

3.3 Good Prime Numbers

A good prime number ` is a prime for which rational function and rational number reconstruction

in Step 2d of Algorithm 3.2.1 will work. There are certain prime numbers that we need to avoid.

Algorithm 3.2.1 chooses a good prime number ` with respect to following main criteria:

• We take the quotients q and Q of the formal solutions of LB and Linp in Step 2b and then

we compute q and Q modulo a prime `. If the formal solutions of LB and Linp, computed to

precision O(xa), are undefined modulo `, then ` is not a good prime number.

• For a prime `, if the number of singularities of Linp is not equal to the number of singularities

of Linp modulo `, then ` is not a good prime. Equivalently, if ` divides the discriminant, or

the leading coefficient, of the polynomial whose zeros are the singularities of Linp, then ` is

not a good prime.

Example 3.3.1. Let

Linp = ∂2

+
34553639952x6 − 3934841352x5 + 1197258796x4 − 57806358x3 − 53494036x2 + 2168214x− 1379960

(78x− 1) (1156x2 − 204x+ 49) (11271x2 + 680x+ 362) (34x2 + 1)
∂

+
4335 (78x− 1)

2

(4624x2 − 816x+ 196) (11271x2 + 680x+ 362) (34x2 + 1)
2 .

Algorithm 3.2.1 finds a solution of Linp in the form of (3.1), which is

4

√
34x2+1
x2

12

√
1156x2−204x+49

x2
6

√
578x2+51x+20

x2

· 2F1

(
1

12
,

7

12
; 1;

304317x2 + 18360x+ 9774

(1156x2 − 204x+ 49) (578x2 + 51x+ 20)2

)
.

Finite singularities of Linp are the roots of the polynomial (denominator of Linp)

Psing = 34553639952x7 − 4456012392x6 + 3274278676x5

− 266828498x4 + 114830750x3 − 4596307x2 + 1424092x− 17738.

For this example ` = 19 is not a good prime number because the discriminant of Psing

disc(Psing) = −1 · 229 · 36 · 53 · 716 · 112 · 132 · 1721 · 1913 · 2316

19

vanishes modulo 19. This means that two distinct singularities go to the same singularity modulo

19. Algorithm 3.2.1 avoids these type of prime numbers. For this example, Algorithm 3.2.1 chooses

` = 29, which is the smallest good prime number, reconstructs the pullback function, and finds

hypergeometric solutions.

3.4 Degree Bounds

Theorem 3.4.1 (Riemann-Hurwitz Formula, [22]). Let X and Y be two algebraic curves with

genera gX and gY respectively. If f : X −→ Y is a non-constant morphism, then

2gX − 2 = deg(f)(2gY − 2) +
∑
p∈X

(ep − 1). (3.9)

Here p ∈ X is a branching point and ep is its ramification order. See [22] for more details.

Remark 3.4.1. If we let X = P1 and Y = P1 in the Theorem 3.4.1, then we obtain∑
p∈P1

(ep − 1) = 2deg(f)− 2. (3.10)

3.4.1 A Degree Bound for Logarithmic Case

Let LB ∈ Q(x)[∂] be a GHDO with at least one logarithmic singularity and assume that for

L ∈ Q(x)[∂] we have

LB
f :P1−→P1

−−−−−−→C
r−→E L

and let df = deg(f). Singularities of LB are S = {0, 1,∞}. If there is no ramification, then the

number of elements in the set T := f−1(S) is 3df . So

#T ≤ 3df .

The number of elements in T = f−1(S) can be given as

#T =
∑
p∈T

1

=
∑
p∈T

(ep − (ep − 1))

=
∑
p∈T

ep −
∑
p∈T

(ep − 1)

= 3df −
∑
p∈T

(ep − 1) (3.11)

20

where ep is the ramification order of p. From the Riemann-Hurwitz formula (3.9) we have∑
p∈T

(ep − 1) ≤
∑
p∈P1

(ep − 1) = 2df − 2. (3.12)

Therefore, from (3.11) and (3.12),

#T ≥ 3df − (2df − 1) = df + 2.

Hence,

df + 2 ≤ #T ≤ 3df .

Let TrueSing(L) be the set of all non-removable singularities (true singularities) of L. Then

TrueSing(L) is a subset of T . In general these two sets are not equal. All of the points in T

come from (p comes from s if f(s) = p) the points S = {0, 1,∞}. Let p ∈ T comes from 0 and LB

has exponents 0 and 1
3 at 0. If p is a root of f with multiplicity ep = 3, then L has exponents 0

and 1 = 3 · 13 at p. So p is a regular point of L. Such a point is called a disappeared singularity.

The set of all disappeared singularities of L is T \ TrueSing(L). Logarithmic singularities never

disappear. If s ∈ S is a logarithmic singularity of LB, then every point p ∈ T which come from s

is a logarithmic singularity of L. Let ndiss be the number of disappeared singularities of L, namely

ndiss := # (T \ TrueSing(L)). For a GHDO LB with exponent-differences α0 = 0, α1 = 1
2 , and

α∞ = 1
3 , we have

ndiss ≤
1

2
df +

1

3
df . (3.13)

Here equality occurs if and only if every point p coming from 1 and ∞ disappears. So, the total

number of non-removable singularities ntrue of L is

ntrue = #T − ndiss

=

3df −
∑
p∈T

(ep − 1)

− ndiss
≥ (3df − (2df − 2)− ndiss)

≥ (df + 2)− ndiss

≥ (df + 2)−
(

1

2
df +

1

3
df

)
≥ 1

6
df + 2

21

and therefore

df ≤ 6ntrue − 12. (3.14)

This inequality is an upper bound for df in all cases with at least one logarithmic singularity. This

is because (3.13) is an upper bound for the number of disappeared singularities in the logarithmic

case. An irreducible GHDO LB can not have two singularities with exponent-differences 1
2 . This

gives (3.13).

3.4.2 A Degree Bound for Non-logarithmic Case

Consider a GHDO LB ∈ Q(x)[∂] with no logarithmic singularity and assume that for L ∈

Q(x)[∂] we have

LB
f :P1−→P1

−−−−−−→C
r−→E L

where f, r ∈ Q(x) and let df = deg(f). In this case one could have all disappeared singularities

coming from the singularities 0, 1, and∞ of LB. In the non-logarithmic case, the maximum degree

bound is achieved the GHDO LB having exponent-differences α0 = 1
2 , α1 = 1

3 , and α∞ = 1
7 . All of

the other GHDO’s are reducible or appear in Schwarz’s list [37] which means they admit Liouvillian

solutions. The maximum number ndiss of disappeared singularities for an LB with α0 = 1
2 , α1 = 1

3 ,

and α∞ = 1
7 is not 1

2df + 1
3df + 1

7df . This is because it contradicts the formula (3.10). If we use

the formula (3.10) to compute an upper for ndiss, then we obtain that

ndiss ≤
(

1

2
+

1

3

)
df +

1

7− 1

(
2df − 2−

(
2− 1

2
df +

3− 1

3
df

))
=

35

36
df −

1

3
.

This bound on ndiss leads to

ntrue ≥
1

36
df +

7

3

which gives

df ≤ 36ntrue − 84. (3.15)

Therefore, combining inequalities (3.14) and (3.15), we can state an a-priori degree bound for a

rational pullback function f ,

df ≤

{
3ntrue − 12 logarithmic case

36ntrue − 84 non-logarithmic case .
(3.16)

Algorithm (3.2.1) uses this bound as a starting point. Several additional restrictions computed in

the run-time may lower the degree bound on df .

22

3.5 Riemann-Hurwitz Type Formula For Differential Equations

Remark 3.5.1. Let X be an algebraic curve with function field C(X). The ring DC(X) := C(X)[∂t]

is the ring of differential operators on the curve X. Here t ∈ C(X) \ C. An element of L ∈ DC(X)

is a differential operator defined on X.

Theorem 3.5.1 (Lemma 1.5 in [6]). Let X and Y be two algebraic curves with genera gX and

gY , function fields C(X) and C(Y) respectively. Let f : X −→ Y be a non-constant morphism.

The morphism f corresponds a homomorphism C(Y) −→ C(X), which in turn corresponds a

homomorphism DC(Y) −→ DC(X). If L1 ∈ DC(Y) is a second order operator and L2 ∈ DC(X) is the

corresponding operator, then

Covol(L2, X) = deg(f) · Covol(L1, Y) (3.17)

where

Covol(L,X) := 2gX − 2 +
∑
p∈X

(1−∆(L, p)).

Here note that ∆(L, p) is the exponent-difference of L at p.

Proof. As in [6], take finite sets S ⊆ Y and T := f−1(S) ⊆ X in such a way that

1. all singularities of L1 are in S,

2. all singularities of L2 are in T ,

3. all branching points in X are in T .

#T =
∑
p∈T

1

=
∑
p∈T

ep −
∑
p∈T

(ep − 1)

= deg(f) ·#S −
∑
p∈X

(ep − 1) (3.18)

= deg(f) ·#S − (2gX − 2− deg(f)(2gY − 2)) . (3.19)

23

From (3.18) to (3.19) we use (3.9). Then,

∑
p∈X

(∆(L2, p)− 1) =
∑
p∈T

(∆(L2, p)− 1)

=
∑
p∈T

∆(L2, p)−
∑
p∈T

1

= deg(f)
∑
s∈S

∆(L1, s)−#T. (3.20)

Then combine (3.19) and (3.20), and get

2− 2gX +
∑
p∈X

(∆(L2, p)− 1) = deg(f)

(
2− 2gY +

∑
s∈Y

(∆(L1, s)− 1)

)
. (3.21)

which is the same as (3.17).

Corollary 3.5.2. Let X = Y = P1 and suppose that LB
f :P1→P1

−−−−−→C
r−→E Linp where LB ∈ C(x)[∂]

is a GHDO with exponent-differences α0, α1, α∞ at {0, 1,∞}. Since an exp-product transformation

does not affect exponent-differences, Theorem 3.5.1 gives the following equation for Covol(Linp,P1):

− 2 +
∑
p∈P1

(1−∆(Linp, p)) = deg(f)

−2 +
∑

i∈{0,1,∞}

(1− αi)

 . (3.22)

Corollary 3.5.3. Let LB and Linp be as in Corollary 3.5.2. Both have rational function coefficients.

This time, suppose that f, r in LB
f−→C

r−→E Linp are algebraic functions. Then f : X → P1 for an

algebraic curve X whose function field C(X) = C(x, f) is an algebraic extension of both C(x) ∼=

C(P1) and C(f) ∼= C(P1). Let af and df denote the degrees of these extensions.

C(x, f)

C(x) C(f)

af df

Applying (3.17) for both field extensions, then we will get

Covol(Linp,P1) =
df
af

−2 +
∑

i∈{0,1,∞}

(1− αi)

 . (3.23)

24

3.6 Candidate Gauss Hypergeometric Differential Operators

Let Linp ∈ Q(x)[∂]. Problem Statement 3.2.1 says that, if Linp has solutions in the form of

(3.1), then there exists a GHDO LB such that LB
f−→C

r−→E Linp. with f, r ∈ Q(x). The following

algorithm finds candidates for such a GHDO LB. In order to find such a candidate, it is enough to

find candidate exponent-differences α0, α1, α∞ at its singularities 0, 1,∞.

Algorithm 3.6.1. General Outline of find expdiffs.

Inputs:

• einp = The list of exponent-differences of Linp at its non-removable singularities.

• erem = The (possibly empty) list of exponent-differences of Linp at its removable singu-

larities.

• af = A candidate algebraic degree.

Output:

• A list of all lists eB = [α0, α1, α∞, d] of integers or rational numbers where [α0, α1, α∞]

is a list of candidate exponent-differences and d is a candidate degree df for f such that:

(a) For every exponent-difference m in einp there exists e ∈ Q with e · af ∈ {1, . . . , d}
such that m = e · αi for some i ∈ {0, 1,∞}.

(b) The multiplicities e are consistent with (3.9), and their sums are compatible with d

(see the last paragraph of Step 2).

1. Let α1, α2, α3 = α0, α1, α∞. After reordering we may assume that α1, . . . , αk ∈ Z and

αk+1, . . . , α3 /∈ Z for k ∈ {0, 1, 2, 3}. For each k ∈ {0, 1, 2, 3} we use CoverLogs in [23] to

compute candidates for α1, . . . , αk ∈ Z.

Algorithm CoverLogs computes candidates that meet these requirements:

(a) Logarithmic singularities are non-removable singularities with integer exponent-differences.

If Linp has at least one logarithmic singularity s with exponent-difference ∆(Linp, s),

then a candidate LB must have at least one logarithmic singularity; at least one of the

α1, α2, α3 must be an integer that divides a ·∆(Linp, s) for some a ∈ {1, . . . , af}, and for

every αi ∈ Z there must be at least one s such that αi divides a ·∆(Linp, s).

(b) ∆(Linp, s) = 0 for some s ⇐⇒ 0 ∈ {α1, α2, α3}.

(c) Theorem 2.4.1.

25

If α1 + · · ·+αk 6= 0, then algorithm CoverLogs also computes the exact degree df of f using

Theorem 2.4.1 which shows that df (α1 + · · · + αk)/af must be the sum of the logarithmic

exponent-differences of Linp. Otherwise, it uses (3.16) to compute a bound for df , and uses

it as df to compute a candidate degree.

2. We will explain only the case af = 1, and only k = 1, which is the case [α1, α2, α3] =

[α0, α1, α∞], where α0 ∈ Z and α1, α∞ /∈ Z.

Let k = 1. Let α0 ∈ Z be one of the candidates from algorithm CoverLogs. We need to find

candidates for α1 and α∞.

The logarithmic singularities of Linp come from the point 0. Non-integer exponent-differences

of Linp must be multiples of α1 or α∞. Let SN be the set of non-logarithmic exponent differ-

ences of Linp and SR be the set of exponent-differences of Linp at its removable singularities.

Consider the set

Γ1 =

{
ΓA = {max (SN)

b : b = 1, . . . , df} if SN 6= ∅,
ΓB = {ab : a ∈ SR ∪ {1}, b = 1, . . . , df} otherwise.

α1 (or α∞, but if so, we may interchange them) must be one of the elements of Γ1. We loop

over all elements of Γ1. Assume that a candidate for α1 is chosen. Let Ω = SN \ α1Z. Now

consider the set

Γ∞ =

{
ΓA ∪ ΓB if Ω = ∅,
{gb : g = gcd (Ω) : b = 1, . . . , df} otherwise.

Now take all pairs (α∞, d) satisfying (3.23), α∞ ∈ Γ∞, 1 ≤ d ≤ df , with additional restrictions

on d, as follows:

(a) For every potential non-zero value v for one of the αi’s we pre-compute a list of integers

Nv by dividing all exponent-differences of Linp by v and then selecting the quotients that

are integers.

(b) Next, let Dv be the set of all 1 ≤ d ≤ df that can be written as the sum of a sublist of

Nv. Each time a non-zero value v is taken for one of the αi, it imposes the restriction

d ∈ Dv. This means that we need not run a loop for α∞ ∈ Γ∞, instead, we run a

(generally much shorter) loop for d (taking values in the intersection of the Dv’s so far)

and then for each such d compute α∞ from (3.23). We also check if d ∈ Dα∞ .

3. Return the list of candidate exponent-differences with a candidate degree, the list of lists

[α0, α1, α∞, d], for candidate GHDOs.

26

3.7 Quotient Method

3.7.1 Non-logarithmic Case

Let the second order differential operator Linp ∈ Q(x)[∂] be given. Let LB be a GHDO such

that LB
f−→C

r−→E Linp. Let f : P1
x 7→ P1

z and L1
f−→C L2. If x = p is a singularity of L2 and z = s is

a singularity of L1, then we say that p comes from s when f(p) = s. After a change of variables we

can assume that x = 0 is a singularity of Linp that comes from the singularity z = 0 of LB. This

means f(0) = 0 and we can write f = c0 · xv0(f) (1 + . . .) where c0 ∈ C, v0(f) is the multiplicity of

0, and the dots refer to an element in x · C[[x]].

Let y1 and y2 be the formal solutions of LB at x = 0. The following diagram shows the effects

of the change of variables and exp-product transformations on the formal solutions of LB:

yi(x)
f−→C yi(f)

r−→E Yi(x) = exp

(∫
rdx

)
· yi(f)

where i ∈ {1, 2} and Yi is a solution of Linp. Let q = y1
y2

be a quotient of formal solutions of LB.

The change of variables transformation sends x to f , and so q to q(f). Therefore, q(f) will be a

quotient of formal solutions of Linp. The effect of exp-product transformation disappears under

taking quotients. In general, a quotient of formal solutions of LB at a point x = p is only unique

up to Moebius transformations
y1
y2
7→ αy1 + βy2

γy1 + ηy2
.

If x = p has a non-integer exponent-difference, then we can choose q uniquely up to a constant

factor c. So if we likewise compute a quotient Q of formal solutions of Linp, then we have

q(f(x)) = c ·Q(x)

for some unknown constant c. Then

f(x) = q−1 (c ·Q(x)) . (3.24)

If we know the value of this constant c, then (3.24) allows us to compute an expansion for the

pullback function f from expansions of q and Q. To obtain c with a finite computation, we take a

prime number `. Then, for each c ∈ {1, . . . , ` − 1} we try to compute f modulo ` in F`(x) using

series-to-rational function reconstruction. If this succeeds, then we lift f modulo a power of `, and

try to find f ∈ Q(x) with rational number reconstruction. Details of lifting are given in Sections

3.8.1 and 3.8.2.

27

Remark 3.7.1. We compute formal solutions up to a precision a ≥ (af + 1)(df + 1) + 6. This

suffices to recover the correct pullback function with a few extra terms to reduce the number of

false positives.

Algorithm 3.7.1. General Outline of case 1 (non-logarithmic case).

Inputs:

• Linp = A second order regular singular differential operator.

• LB = A candidate GHDO.

• df = A candidate degree for f .

• af = A candidate algebraic degree for f .

Outputs:

• f = Pullback function.

• r = Parameter of exp-product transformation.

1. Compute formal solutions y1, y2 of LB and Y1, Y2 of Linp up to precision a ≥ (af+1)(df+1)+6.

2. Compute q = y2
y1

, Q = Y2
Y1

, and q−1.

3. Select a prime ` for which these expansions can be reduced mod `.

4. For each c0 in {1, . . . , `− 1}:

(a) Evaluate f1,c0 = q−1(c0 ·Q) ∈ Z[x]/(`, xa).

(b) If af = 1 then try rational function reconstruction for f1,c0 (the case af > 1 is explained

in Section 3.8.2).

i. If rational function reconstruction succeeds and produces f1,c0 , then store c0 and

f1,c0 .

ii. If rational function reconstruction fails for every c0, then return 0.

5. For n from 2 (see Remark 3.8.1 in Section 3.8):

(a) For each stored c0:

(b) Using the techniques explained in Sections 3.8.1 and 3.8.2 lift fn−1,c0 to fn,c0 .

(c) fn,c0 is a candidate for f mod `n. Try to obtain f from this with rational number

reconstruction. If this succeeds, compute M such that LB
f−→C M . Compute r such that

M
r−→E Linp, if it exists (see Section 3.8.3). If so, return f and r.

28

3.7.2 Logarithmic Case

A logarithm may occur in one of the formal solutions of Linp ∈ Q(x)[∂] at x = p if exponents at

x = p differ by an integer. We may assume that Linp has a logarithmic solution at the singularity

x = 0.

Let y1, y2 be the formal solutions of LB at x = 0. Let y1 be the non-logarithmic solution (it is

unique up to a multiplicative constant). Then

y2
y1

= c1 · log(x) + h

for some c1 ∈ C and h ∈ C[[x]]. We can choose y2 such that

c1 = 1 and constant term of h = 0. (3.25)

That makes y2
y1

unique. If h does not contain negative powers of x then define

g = exp

(
y2
y1

)
= x · (1 + . . .) (3.26)

where the dots refer to an element of x · C[[x]].

Remark 3.7.2. If we choose y2 differently, then we obtain another g̃ = exp
(
y2
y1

)
that relates to g in

(3.26) by g̃ = c1g
c2 for some constants c1, c2. If h contains negative powers of x, then the formula

for g is slightly different (we did not implement this case, instead we use Section 4 to transform

differential equations).

We do likewise for the formal solutions Y1, Y2 of Linp and denote

G = exp

(
Y2
Y1

)
= x · (1 + . . .) . (3.27)

Write f ∈ C(x) as c0 · xv0(f) (1 + . . .). Then

g(f) = c · xv0(f) (1 + . . .) .

Note that g, G are not intrinsically unique, the choices we made in (3.25) implies that

g(f) = c1 ·Gc2 (3.28)

for some constants c1, c2. Here c1 = c and c2 = v0(f). If ∆(Linp, 0) 6= 0, then find v0(f) from

∆(LB, 0)v0(f) = ∆(Linp, 0). Otherwise we loop over v0(f) = 1, 2, . . . , df . That leaves one unknown

29

constant c. We address this problem as before, choose a good prime number `, try c = 1, 2, . . . , `−1.

Then calculate an expansion for f with the formula

f = g−1
(
c ·Gv0(f)

)
. (3.29)

Algorithm 3.7.2. General Outline of case 2 (logarithmic case).

Inputs:

• Linp = A second order regular singular differential operator.

• LB = A candidate GHDO.

• df = A candidate degree for f .

• af = A candidate algebraic degree for f .

Outputs:

• f = Pullback function.

• r = Parameter of exp-product transformation.

1. Compute the exponents of Linp and LB. If ∆(Linp, 0) = 0, then replace Linp with L defined

in Remark (3.7.2) above. Otherwise let L = Linp.

2. Compute formal solutions y1, y2 of LB and Y1, Y2 of L up to precision a ≥ (af +1)(df +1)+6.

3. Compute q = y2
y1

, Q = Y2
Y1

. Compute g, G from (3.28) and (3.29) respectively, and g−1.

4. Same as in Algorithm 3.7.1 Step 3.

5. Compute v0(f) and search for c0 value(s) such that c could be ≡ c0 mod ` by looping over

c0 = 1, . . . , ` − 1. If ∆(Linp, 0) = 0, then also simultaneously loop over v0(f) = 1, . . . , df to

find v0(f).

6. For each c0 in {1, . . . , `− 1}:

(a) Evaluate f1,c0 = g−1
(
c0 ·Gv0(f)

)
∈ Z[x]/(`, xa).

(b) Try rational function or algebraic function reconstruction for f1,c0 as in Algorithm 3.7.1

Step 4b.

7. Same as in Algorithm 3.7.1 Step 5.

30

3.8 Recovering Pullback Functions and Parameter of
Exp-product

3.8.1 Lifting for Rational Pullback Functions

By using the formula (3.24), which is f(x) = q−1 (c ·Q(x)), we can recover the rational pullback

function f , if we know the value of the constant c. We do not have a direct formula for c. However,

if we know c0 such that

c ≡ c0 mod `

for a good prime number `, then we can recover the pullback function f . This can be done via

Hensel lifting techniques.

Let ` be a good prime number and consider

h : Q −→ Q[x]/(xa)

h(c) ≡ q−1 (c ·Q(x)) mod xa.

By looping on c0 = 1, . . . , ` − 1 and trying rational function reconstruction for h(c0) mod (`, xa),

we can compute the image of f ∈ F`(x) from its image in F`[x]/(xa). If a is high enough, then for

correct value(s) of c0, rational function reconstruction will succeed and return a rational function

A0
B0

mod `. This c0 is the one satisfying

c ≡ c0 mod `.

Write

c ≡ c0 + `c1 mod `2

for 0 ≤ c1 ≤ `− 1. Taylor series expansion of h gives us

h(c) = h(c0 + `c1) ≡ h(c0) + `c1h
′(c0) mod (`2, xa). (3.30)

Substitute c1 = 0, c1 = 1, respectively, in (3.30) and compute

h(c0) mod (`2, xa), (3.31)

h(c0 + `) ≡ h(c0) + `h′(c0) mod (`2, xa). (3.32)

Subtracting (3.31) from (4.8) gives

`h′(c0) ≡ [h(c0 + `)− h(c0)] mod (`2, xa).

31

Let

Ec1 = h(c0) + c1`h
′(c0) (3.33)

where c1 is an unknown constant. Suppose f = A
B in characteristic 0. We do not know what A and

B are. However, from applying rational function reconstruction for h(c0), we obtain A0, B0 with

f ≡ A0
B0

mod (`, xa). It follows that

f =
A

B
≡ A0

B0
≡ Ec1 mod (`, xa).

From this equation we have

A ≡ BEc1 mod (`, xa). (3.34)

Now let

f =
A

B
≡ A0 + `A1

B0 + `B1
mod (`2, xa) (3.35)

where

A1 = a0 + a1x+ · · ·+ adeg(A0)x
deg(A0)

B1 = b1x+ · · ·+ bdeg(B0)x
deg(B0)

are unknown polynomials. Here we are fixing the constant term of B. We need values of {ai, bj}

to find f mod (`2, xa). From (3.34), we have

(A0 + `A1) ≡ (B0 + `B1) · Ec1 mod (`2, xa). (3.36)

Now, solve the linear system (3.36) for unknowns {ai, bj , c1} in F`. From (3.35) find f mod (`2, xa)

and c ≡ c0+`c1 mod `2. Try rational number reconstruction after each Hensel lifting. If it succeeds,

then check if this rational function is the one that we are looking for as in the last step of Algorithm

3.7.1. If it is not, then lift f mod (`2, xa) to mod (`3, xa) (or (`4, xa) if an implementation for solving

linear equations mod `n is available). After a (finite) number of steps, we can recover the rational

pullback function f .

Remark 3.8.1. Our implementation gives up when the prime power becomes “too high” (a proven

bound is still lacking, but would be needed for a rigorous algorithm).

32

3.8.2 Lifting for Algebraic Pullback Functions

We can recover algebraic pullback functions in a similar way. However, we need to know

af = [C(x, f) : C(x)].

The idea is to recover the minimal polynomial of f . Let

df = [C(x, f) : C(f)].

Consider the polynomial in y
af∑
j=0

Ajy
j mod (`, xa) (3.37)

with unknown polynomials

Aj =

df∑
i=0

ai,jx
i

where j = 0, . . . , af . First we need to find the value of c0 such that c0 ≡ c mod `. As before, by

looping on c0 = 1, . . . , `− 1, we can compute the corresponding fc0 which is a candidate for f mod

(xa, `) in F`[x]/(xa). The polynomial (3.37) should be congruent to 0 mod (`, xa) if we plug in fc0

for y. Solve the system
af∑
j=0

Ajf
j
c0 ≡ 0 mod (`, xa)

over F` and find the unknown polynomials Aj mod `. Then let

c ≡ c0 + `c1 mod `2.

Now let Ec0 be as in (3.33) and consider the system

af∑
j=0

(Aj + `Ãj)E
j
c0 ≡ 0 mod (`2, xa).

Solve it over F` to find c1 and the unknown polynomials Ãj . After a finite number of lifting steps

and rational reconstruction, we will have the minimal polynomial

af∑
j=0

Ajy
j

of f in Q[x, y].

33

3.8.3 Recovering Parameter of Exp-product

After finding f , we can compute the differential operator M , such that LB
f−→C M

r−→E Linp.

Then we can compare the second highest terms of M and Linp to find the parameter r of the

exp-product transformation. If M = ∂2 +B1∂ +B0 and Linp = ∂2 +A1∂ +A0, then

r =
B1 −A1

2
.

We can also use the implementation in [41] to find the parameter r ∈ Q(x).

34

CHAPTER 4

INTEGRAL BASES FOR DIFFERENTIAL

OPERATORS AND NORMALIZATION AT

INFINITY

In this chapter, we investigate the notion of integral bases for differential operators (first introduced

in [31] and further developed in [13, 26, 27]), give a fast algorithm to compute integral bases, and

an algorithm to normalize these bases at the point at infinity.

Why compute a normalized integral basis? Suppose a computation, say Feynman diagrams,

leads to a differential equation L(y) = 0 with L ∈ D = C(x)[∂] where ∂ = d
dx . The operator L is

gauge equivalent to many other operators; for any cyclic vector G ∈ D/DL the annihilator L̃ of G

is gauge equivalent to L. In many computation it is not likely that the computation happened to

produce the “smallest/nicest” operator L. In such situation, the natural question becomes: Given

L, how to find gauge equivalent L̃ with “small” (close to optimal as in Remark 4.1.1) coefficients?

Suppose L ∈ D is a differential operator with “large” coefficients and L is gauge equivalent to

another operator L̃ with “small” coefficients. If we can find this gauge transformation and L̃, then

it reduces a large problem to a smaller one. A gauge transformation is a D-module isomorphism

D/DL̃ → D/DL. To find it we need the image G ∈ D/DL of the generator 1 ∈ D/DL̃. How to

find G ∈ D/DL with “small” annihilator L̃?

An analogous situation is the problem of finding an element G ∈ Q[x]/(L) (for given L ∈ Q[x])

whose minimal polynomial over Q has “small” coefficients. An algebraic number like G = x
101000

∈

Q[x]/(L), although “small” viewed as a complex number, is “large” in terms of bit-size. However, if

G is integral over Z and has small absolute values (“small” at ∞), then the bit-size of the minimal

polynomial of G will be small.

In analogy, we search for G ∈ D/DL that is “integral” and simultaneously “small at ∞”. This

way we obtain G whose annihilator L̃ has “small” coefficients.

Remark 4.0.1. Some of the contents of this chapter (apart from some new materials and adoptions)

have been published in [26, 27].

35

Notation 4.0.1. Throughout this chapter we use ∂ = d
dx .

4.1 Standard Form Map

Definition 4.1.1. Let A be non-empty set, ∼ be an equivalence relation on A, and B be the set of

non-empty finite subsets of A. A map Φ : A −→ B is called a standard form map if the following

is true:

1. For all a1, a2 ∈ A, Φ(a1) = Φ(a2) if and only if a1 ∼ a2.

2. For all a ∈ A and for all b ∈ Φ(a), a ∼ b.

Remark 4.1.1. A standard form map Φ is useful if Φ(a) gives elements of the equivalence class of a

that are close to optimal in some sense (small bit-size, height, or number of apparent singularities).

Example 4.1.1. Let A = {f ∈ Q[x] | f is irreducible}. Let for f1, f2 ∈ Q[x],

f1 ∼ f2 ⇐⇒ Q[x]/(f1) ∼= Q[x]/(f2).

Given f1 it is easy to find many f2 ∈ A with f1 ∼ f2 (just pick the minimal polynomial of a

randomly chosen element of Q[x]/(f1) − Q). However, random choices tend to give polynomials

with large bit-size.

Goal: For given f1, find f2 ∈ A with small bit-size (small height) such that f1 ∼ f2.

Solution: POLRED algorithm [15]:

1. Compute a basis for algebraic integers of Q[x]/(f1), and

2. Apply LLL [36] to this basis to find an algebraic integer with small absolute values.

Application: Reduce computations in Q[x]/(f1) to computations in Q[x]/(f2) where the

bit-size of f2 is close to optimal.

Example 4.1.2. Let ∂ = d
dx , D = Q(x)[∂], and A = {L ∈ D |L is irreducible}. Let for L1, L2 ∈ D,

L1 ∼ L2 ⇐⇒ D/DL1
∼= D/DL2 as D-modules.

Goal: Given L1 ∈ A, find one or more L2 ∈ A with small height such that L1 ∼ L2.

Solution: Imitate POLRED algorithm:

36

1. Chapter 4, analog of the first step of POLRED, and

2. Chapter 5.1, analog of the second step of POLRED.

Application: Reduce solving an operator L1 ∈ Q(x)[∂] with many apparent singularities to

solving another operator L2 ∈ Q(x)[∂] with few apparent singularities (see Example 5.1.1).

For another recent application of integral bases [13].

4.2 Integral Bases

Remark 4.2.1. Let L ∈ C(x)[∂] be a differential operator and ts be the local parameter (Definition

2.1.7) of a point s ∈ C∪{∞}. If L ∈ C(x)[∂] is regular singular of order n, then, by Theorem 2.1.1,

L has a basis of formal solutions at a point x = s in the form

y = tνss

∞∑
i=0

Pit
i
s (4.1)

where νs ∈ C and Pi ∈ C[log (ts)] with deg(Pi) < ord(L) and P0 6= 0.

Definition 4.2.1. Let y be as in (4.1) with P0 6= 0. Then the valuation of y at x = s is defined as

vs(y) = Re(νs).

Remark 4.2.2. It can be seen from Definition 4.2.1 that,

• vs(y) > 0 if and only if y converges to 0 as x approaches s,

• vs(y1y2) = vs(y1) + vs(y2).

Definition 4.2.2. Fix L ∈ C(x)[∂] and let G ∈ C(x)[∂]. The operator G is called integral for L at

s if

vs(G) = inf{vs(G(y)) | y is a solution of L at x = s} ≥ 0.

Remark 4.2.3. In Definition 4.2.2, without loss of generality, we may assume that ord(G) < ord(L)

because using division with remainder we can write G = QL+R for some Q,R ∈ C(x)[∂] such that

ord(R) < ord(L) and G(y) = R(y) for all solutions y of L.

Definition 4.2.3. Fix L ∈ C(x)[∂]. An operator G ∈ C(x)[∂] is called integral for L if vs(G) ≥ 0

for all s ∈ C.

37

Definition 4.2.4. Let L ∈ C(x)[∂] with ord(L) = n, and let

OL = {G ∈ C(x)[∂] |G is integral for L and ord(G) < n}.

A basis of OL, as a C[x]-module, is called an (global) integral basis for L.

Definition 4.2.5. Let L ∈ C(x)[∂] of order n and P ∈ C[x]. We say that {b1, . . . , bn} is a local

integral basis for L at P when{
A1

B1
b1 + · · ·+ An

Bn
bn |Ai, Bi ∈ C[x] and gcd(P,Bi) = 1

}
=

{G |G is integral for L at every root of P} .

Remark 4.2.4. A local integral basis for L at a finite singularity s ∈ C is a local integral basis at

P = x− s.

Remark 4.2.5. To compute a local integral basis for L at infinity, apply a change of variables

transformation x 7→ 1
x and compute a local integral basis for the resulting operator L1/x at 0.

Applying change of variables transformation to this local basis elements with parameter 1
x gives a

local integral basis for L at infinity.

Lemma 4.2.1. If {b1, . . . , bn} is an integral basis for L ∈ C(x)[∂] at s ∈ C and c1, . . . , cn ∈ C(x)

such that vs(ci) = 0 for all i ∈ {1, . . . , n}, then {c1b1, . . . , cnbn} is also an integral basis for L at

s ∈ C.

Theorem 4.2.2.

A {b1, . . . , bn} is a local integral basis for L ∈ C(x)[∂] at x = 0

if and only if

B for all i, j ∈ {1, . . . , n} we have v0(bi(yj)) ≥ 0 (here {y1, . . . , yn} is a basis of solutions of L

at x = 0, each yi is of the form (4.1)).

and

C for all (c1, . . . , cn) ∈ Cn \ (0, . . . , 0) there exists j ∈ {1, . . . , n} such that v0((c1b1 + · · · +
cnbn)(yj)) < 1.

Proof.

38

1. A⇒ B and C

B is a part of Definition 4.2.5. If ¬C, then for (c1, . . . , cn) ∈ Cn \ (0, . . . , 0) we have v0((c1b1 +

· · ·+ cnbn)(yj)) ≥ 1 for all j. Then 1
x(c1b1 + · · ·+ cnbn) is integral at 0 contradicting A.

2. A⇐ B and C

B says that b1, . . . , bn are integral for L at 0. We will first show that C implies that they are

linearly independent over C[x]. Assume for C1, . . . , Cn ∈ C[x] with constant terms c1, . . . , cn

such that (c1, . . . cn) 6= (0, . . . , 0) we have C1b1 + · · ·+ Cnbn = 0. Then,∑
i

Cibi −
∑
i

cibi = x ·
∑
i

aibi

for some ai ∈ C[x]. Then for every solution yj of L at x = 0,

v0

((∑
i

Cibi −
∑
i

cibi

)
(yj)

)
= v0

((
x ·
∑
i

aibi

)
(yj)

)
≥ 1.

because v0(bi(yj)) ≥ 0 for all i since
∑

iCibi = 0. This implies v0 ((c1b1 + · · ·+ cnbn)(yj)) ≥ 1

which contradicts C. Therefore, b1, . . . , bn are C[x]-linearly independent. This means that any

integral G can be written as G =
∑

i cibi for some ci ∈ C(x). Suppose mini{v0(ci)} < 0. After

multiplying by a power of x we may assume that mini{v0(ci)} = −1. Let ri be the residue of

ci. Then

G =
1

x

∑
i

ribi +
∑
i

c̃ibi.

with v0(c̃i) ≥ 0. This implies 1
x

∑
i ribi is integral for L at 0. This implies for each yj ,

v0((
1
x

∑
i ribi)(yj)) ≥ 0, so v0((

∑
i ribi)(yj)) ≥ 1 which contradicts C. Therefore, G =

∑
i cibi

with v0(ci) ≥ 0 and hence A.

4.2.1 Computing a Local Integral Basis at One Point

Let Linp ∈ Q(x)[∂] be a given (i.e., input) regular singular differential operator with ord(Linp) =

n, and let s ∈ C be a singularity of Linp. We can always move the point s to 0 via a change of

variables transformation x 7→ x+ s. So, without loss of generality, we may assume that s = 0. So,

to compute a local integral basis at s it is enough to have a procedure to compute a local integral

basis at 0. We compute a local integral basis {b1, . . . , bn} for Linp at x = 0 as follows: First of all

we need to compute the valuations

vj = v0(yj)

39

of the formal solutions yj of Linp at x = 0 in order to see that how far they are from being integral

at x = 0. Here j = 1, . . . , n. Then we find the integer

m = −bmin(vj)c. (4.2)

The first element of the local integral basis for Linp at 0 is given by

b1 = xm. (4.3)

This basis element, b1, shifts all of the valuations vj by m and makes all of the valuations of

b1(yj) = xmyj non-negative. Then, for i = 2, . . . , n, we set the initial value for the local basis

element bi,

bi = x · ∂ · bi−1.

At this point, b1, . . . , bn are linearly independent and are integral. For an integral basis there is

more requirement, namely Theorem 4.2.2 part C. So we make the ansatz

A =
1

x
(u1 · b1 + · · ·+ ui−1 · bi−1 + bi) (4.4)

where c1, . . . , ci−1 are unknown constants. For every formal solution yj of Linp at x = 0 we evaluate

A(yj).

This A(yj) may be integral or non-integral at x = 0. If it is non-integral, then finitely many terms

of A(yj) are non-integral at x = 0, i.e., have negative valuations. Find the non-integral terms of

A(yj) and equate their coefficients to 0. This process will give us a linear system of equations

with unknown constants c1, . . . , ci−1. If this linear system admits a solution, then replace bi by A

evaluated at that solution. We repeat this process until the system no longer has a solution. Then

{b1, . . . , bn}

satisfies condition C and will be a local integral basis for Linp at x = 0 by Theorem 4.2.2.

Remark 4.2.6. The method explained in Section 4.2.1 works and it is not so different than the

method given in the paper [31]. However, one can speed up it by dealing with apparent singularities

and algebraic singularities separately. These two cases are discussed in Sections 4.2.2 and 4.2.3

respectively.

40

Algorithm 4.2.1 ([25]). General Outline of local basis at 0.

Input:

• Linp ∈ Q(x)[∂] = A regular singular differential operator of order n.

Output:

• A local integral basis for Linp at x = 0 (P = x).

1. Let b1 = xm as in (4.3), where m = −bmin(vk)c as in (4.2).

2. For 1 < i ≤ n do:

(a) Set bi = x · ∂ · bi−1.

(b) Make the ansatz A as in (4.4) with unknown constants c1, . . . , ci−1.

(c) For every solution y of Linp at x = 0 compute A(y). Equate the coefficients1 of all non-

integral terms of A(y) to 0 and form a system of equations with unknowns c1, . . . , ci−1.

(d) Find the solution (if there is one), update bi as bi = A, and go back to Step 2b. Otherwise,

go to the next i in the loop.

3. Return {b1, . . . , bn}.

Theorem 4.2.3. Algorithm 4.2.1 terminates.

Proof. The proof of Theorem 4.2.3 is very similar to the proof of Theorem 18 in [31].

4.2.2 Local Bases at Apparent Singularities

Definition 4.2.6. Let s be a singularity of L ∈ Q(x)[∂] where ord(L) = n. If formal solutions of L

at s have no logarithms and have non-negative integer valuations 0 ≤ e1 < e2 < · · · < en at s, then

s is called an apparent singularity. Equivalently, this means that all solutions of L are analytic at

s.

To compute a local integral basis for a regular singular operator Linp ∈ Q(x)[∂] with ord(Linp) =

n, at an apparent singularity s, we do not need to use Algorithm 4.2.1. By Theorem 4.2.2 a local

integral basis at an apparent singularity is given by

{b1 = ∂e1 , . . . , bn = ∂en}. (4.5)

1yj in 4.1 contains an infinite power series, but it is not hard to bound how many terms are actually needed, see
the implementation at [24] for the precise bound.

41

Here note that if ei ≥ ord(Linp), then take the remainder bi = Rem(∂ei , Linp) to bring bi in standard

form (see Remark 4.2.3 and Definition 4.2.4). For efficiency reasons, our implementation (Algorithm

4.2.2) only checks for apparent singularities of the most common type where (e1, e2, . . . , en−1, en) =

(0, 1, . . . , n−2, n). These are covered by (4.5) in our implementation while everything else is covered

by Algorithm 4.2.1.

4.2.3 Local Bases at Algebraic Singularities

Definition 4.2.7. Let Q(s) be an algebraic number field of degree d over Q. There are field

embeddings σi : Q(s)→ C for i = 1, . . . , d.

• The trace of an element α ∈ Q(s) is

Tr(α) =
d∑
i=1

σi(α).

• The numbers si = σi(s) are called the conjugates of s, they are the roots of the minimal

polynomial P of s.

Let Linp ∈ Q(x)[∂] be a regular singular operator with ord(Linp) = n. Let s be an algebraic

singularity of Linp with minimal polynomial P ∈ Q[x] and let [Q(s) : Q] = d. Each conjugate of s

(each root of P) is also a singularity of Linp. We could compute a local integral basis for Linp at

every conjugate of s with Algorithm 4.2.1. The primary reason of the huge time differences, given

in Table 4.1, between our algorithm and the algorithm in paper [31] is that, while the algorithm

in paper [31] computes at every conjugate of s in Q(s1, . . . , sd), we only2 compute a local integral

basis at s and then modify this basis in such a way that it becomes an integral basis for Linp at

every conjugate of s. To do that, first we scale the local integral basis and then we use the trace

map. Details are as follows: First, we compute a local integral basis for Linp

{b1, . . . , bn} ⊂ Q[x,
1

x− s
][∂]

at the algebraic singularity s by using Algorithm 4.2.1. Here ord(bi) = i − 1. We want to scale bi

to b̃i = cibi in such a way that

1. b̃1, . . . , b̃n is still an integral basis at x = s (Lemma 4.2.1),

2Computations over Q(s) (degree d) take much less time than computations over Q(s1, . . . , sd) (degree ≤ d!).

42

2. b̃1, . . . , b̃n have valuations at least 1 at all roots of P
x−s .

After that

{Tr(b̃1), . . . ,Tr(b̃n)} ⊂ Q(x)[∂]

is a local integral basis at all conjugates of s, by Theorem 4.2.2. This scaling factor is

ci =

(
P

x− s

)a+i
where

a = vs(b1).

4.2.4 Integral Basis for a Differential Operator at a Polynomial

Sections 4.2.1, 4.2.2, and 4.2.3 lead to the following algorithm:

Algorithm 4.2.2 ([25]). General Outline of local basis minpoly.

Inputs:

• Linp ∈ Q(x)[∂] = A monic regular singular differential operator of order n.

• P ∈ Q[x] = An irreducible factor of Psing.

• Psing = Denominator of Linp ({roots of Psing} = {singularities of Linp} − {∞}).
• ∆ = Greatest common divisor of Psing and the denominator of LCLM(Linp, ∂− r) where

r is a random integer.

Output:

• A local integral basis for Linp at P .

1. Let s be a root of P .

(a) If P - ∆ (then s is an apparent singularity) and P 2 - Psing, then s is an apparent

singularity of the most common type where (e1, e2, . . . , en−1, en) = (0, 1, . . . , n − 2, n).

Now, use Section 4.2.2 and return

{1, ∂, . . . , ∂n−2, Rem(∂n, Linp)}.

Otherwise, compute a local integral basis {b1, . . . , bn} of Linp at s with Algorithm 4.2.1.

(b) If deg(P) = 1, then return {b1, . . . , bn}. Otherwise let

a = vs(b1) (4.6)

and return {
Tr

((
P

x− s

)a+1

b1

)
, . . . ,Tr

((
P

x− s

)a+n
bn

)}
. (4.7)

43

4.2.5 Combining Two Local Integral Bases

Theorem 4.2.4 (The Classification Theorem, [3]). Let R be a principal ideal domain (PID) and

M be a finitely generated R-module. Then there exist non-zero, non-unit ideals (a1), . . . , (am) such

that (a1) ⊇ · · · ⊇ (an) and

M ∼= Rrank(M) ⊕ (R/(a1)⊕ · · · ⊕R/(an)) .

Let Linp ∈ C(x)[∂] be a differential operator with ord(Linp) = n. Let

{b1, . . . , bn} (4.8)

be a local integral basis for Linp at P1,

{β1, . . . , βn} (4.9)

be a local integral basis for Linp at P2, and gcd(P1, P2) = 1. Assume ord(bi) = ord(βi) = i− 1, i.e.,

(4.8) and (4.9) are in triangular form. Let

M1 = SPANC[x]{b1, . . . , bn},

M2 = SPANC[x]{β1, . . . , βn}.

M1 + M2 is a module over C[x], which is a PID, and M1 + M2 ⊆ V where V is the C(x)-vector

space

V = {G ∈ C(x)[∂] | ord(G) < n}.

M1+M2 is torsion-free because M1+M2 ⊆ V . Moreover, rank(M1+M2) = n because dimC(x)(V) =

n. Then, from the Classification Theorem (Theorem 4.2.4), M1 + M2 is a free module and has a

C[x]-module basis {B1, . . . , Bn}. We want to find this basis because it is a local integral basis at

P1P2, provided that (4.8) is integral at P2 and (4.9) is integral at P1. Algorithm 4.2.2 does not

guarantee this condition, so we need to multiply (4.8) by suitable powers of P2:

b̃i = P i−12 · β1 · bi

is integral at all roots of P2 and the set

{b̃1, . . . , b̃n} (4.10)

44

is still a local integral basis at P1 (Lemma 4.2.1). Similarly, we need to multiply (4.9) by suitable

powers of P1:

β̃i = P i−11 · b1 · βi

is integral at all roots of P1 and the set

{β̃1, . . . , β̃n} (4.11)

is still a local integral basis at P2 (Lemma 4.2.1). We want to find a basis of the C[x]-module

generated by (4.10) and (4.11). Let Bi = combine diff ops(b̃i, β̃i) be the output of the Algorithm

4.2.3 below for inputs b̃i and β̃i. The set

{B1, . . . , Bn}

is a local integral basis for Linp at P1P2 in triangular form. To see this, we can use Condition b of

the output of Algorithm 4.2.3 below and apply induction on i.

Algorithm 4.2.3 ([25]). General Outline of combine diff ops.

Inputs:

• L1, L2 ∈ C(x)[∂] = Two operators of order i.

Output:

• An operator L ∈ C(x)[∂] such that

(a) L = TL1 + SL2 for some T, S ∈ C[x],

(b) For any Q1, Q2 ∈ C[x] there is R ∈ C[x] such that Q1L1 +Q2L2−RL has order less

than i.

1. Let f and g be the leading coefficients of L1 and L2 with respect to ∂. Let D be the least

common multiple of the denominators of f and g. So f = A
D and g = B

D with A,B,D ∈ C[x].

2. Write gcd(A,B) = SA+TB for some S, T ∈ C[x] found by the Extended Euclidean Algorithm.

3. Return L = SL1 + TL2.

45

4.2.6 Computation of Global Integral Bases

We can compute a global integral basis for an Linp ∈ Q(x)[∂] as follows:

Algorithm 4.2.4 ([25]). General Outline of global integral basis.

Input:

• Linp ∈ Q(x)[∂] = A regular singular differential operator of order n.

Output:

• A global integral basis for Linp.

1. If Linp is monic, then let Psing be the common denominator of Linp. If Linp ∈ C[x][∂], let

Psing be the leading coefficient of Linp. Psing is the polynomial whose zeros are the finite

singularities of Linp.

2. For each irreducible factor P of Psing, use Algorithm 4.2.2 to compute local integral bases for

Linp at P .

3. Use Section 4.2.5 to combine all local bases for Linp at P and return a global integral basis

for Linp.

4.3 Normalization at Infinity

Definition 4.3.1. Let L ∈ C(x)[∂] be a differential operator with ord(L) = n. The set {b1, . . . , bn}

is called normalized at x = s, if there exist rational functions ri ∈ C(x) such that {r1b1, . . . , rnbn}

is a local integral basis at x = s.

Definition 4.3.2. Let G, L ∈ C(x)[∂] be differential operators. The degree of G at infinity (for L)

is the smallest m ∈ Z such that 1
xmG is integral for L at infinity.

Remark 4.3.1. Let L ∈ C(x)[∂] with ord(L) = n.

1. If {b1, . . . , bn} is a local integral basis for L at infinity, then the degree of G = r1b1 + · · ·+rnbn

(ri ∈ C(x)) at infinity is equal to maxi{−bv∞(ribi)c}.

2. G ∈ C(x)[∂] is integral for L at infinity if and only if the degree of G at infinity is ≤ 0.

46

Let Linp ∈ Q(x)[∂] be a given regular singular operator of order n. Let {B1, B2, . . . , Bn} be an

integral basis for Linp. The basis {B1, B2, . . . , Bn} is normalized at every finite singularity of Linp.

We want to normalize it at x = ∞. The process of normalizing an integral basis in an algebraic

function field at infinity was introduced in [39] as one of the steps in the integration of algebraic

functions. We can normalize a global integral basis for Linp at infinity as follows:

Algorithm 4.3.1 ([25]). General Outline of normalize at infinity.

Inputs:

• Linp ∈ Q(x)[∂] = A regular singular differential operator,

• {B1, B2, . . . , Bn} = An integral basis for Linp.

Output:

• A normalized global integral basis for Linp and a list of integers (degrees of the basis

elements at infinity).

1. Compute a local integral basis {b1, b2, . . . , bn} for Linp at x = ∞ with Remark 4.2.5 and

Algorithm 4.2.1

2. Write

Bi =

n∑
j=1

ri,jbj

where ri,j ∈ Q(x).

3. Let D ∈ Q[x] be a non-zero polynomial for which

ai,j := Dri,j ∈ Q[x]

for all i, j.

4. (a) For each i ∈ {1, 2, . . . , n} let mi be the maximum of the degrees of ai,1, ai,2, . . . , ai,n. Let

Vi ∈ Qn be the vector whose j-th entry is the xmi-coefficient of ai,j . Let

di := mi − deg(D), “di = degree of Bi at infinity”. (4.12)

(b) If V1, . . . , Vn are linearly independent, then compute

Bi =
1

D

n∑
j=1

ai,jbj . (4.13)

47

and return

[B1, . . . , Bn] and [d1, . . . , dn]

sorted in such a way that d1 ≤ · · · ≤ dn.

Otherwise, take c1, . . . , cn such that c1V1 + · · ·+ cnVn = 0.

(c) Among those i ∈ {1, 2, . . . , n} for which ci 6= 0, choose one for which di is maximal. For

this i, update ai,j as

ai,j ←
n∑
k=1

ckx
di−dkak,j . (4.14)

Then go back to Step 4a. Assignment in (4.14) lowers the degree of the corresponding

coefficient ai,j in (4.13). Algorithm updates ai,j (4.14) if degree reduction is possible.

The {B1, B2, . . . , Bn} remains an integral basis of Linp throughout Algorithm 4.3.1 because the

Bi in (4.13) in Step 6.1 can be written as a non-zero rational number times the old Bi plus a

Q[x]-linear combination of the Bj with j 6= i. When we go back to Step 4a the non-negative mi

decreases while mj (i 6= j) stays the same. Hence Algorithm 4.3.1 must terminate.

Definition 4.3.3. Let L ∈ Q(x)[∂] be an operator of order n. Let {B1, . . . , Bn} be a normalized

integral basis for L such that di is the degree of Bi at infinity for all i ∈ {1, . . . , n} and d1 ≤ · · · ≤ dn.

We say d1 ≤ · · · ≤ dn is the degree sequence for L.

Lemma 4.3.1. Let L ∈ Q(x)[∂] be an operator of order n. Let {B1, . . . , Bn} be a normalized

integral basis for L with the degree sequence d1 ≤ · · · ≤ dn.

• Let G = r1B1 + · · · + rnBn where r1, . . . , rn ∈ Q(x). The degree of G at infinity equals the

maximum of the degrees of the terms riBi at infinity.

• Let G = r1B1 + · · · + rnBn where r1, . . . , rn ∈ Q[x]. The degree of G at infinity equals the

maximum of deg(ri) + di where i = 1, . . . , n and deg(0) = −∞.

Proof. Follows from Definition 4.3.2 and Remark 4.3.1.

Definition 4.3.4. Let L ∈ Q(x)[∂] be an operator of order n. Let {B1, . . . , Bn} be a normalized

integral basis for L with the degree sequence d1 ≤ · · · ≤ dn. For m ∈ Z, define

OL(m) = {G | G is integral for L and the degree of G at infinity is ≤ m}

= {r1B1 + · · ·+ rnBn | ri ∈ Q[x] with deg(ri) ≤ m− dj}

where deg(ri) < 0 means ri = 0.

48

Table 4.1: Comparison of timings of Kauers’ and Koutschan’s integral basis algorithm [31]
and our integral basis algorithm (in seconds) on a computer with a 2.5 GHZ Intel Core
i5-3210M CPU and 8 GB RAM.

Example [31] Our algorithm

1 0.185 0.111
2 0.863 0.156
3 0.233 0.182
4 0.592 0.226
5 12.351 0.294
6 66.537 0.377
7 124.197 0.499
8 151.942 0.515
9 175.580 0.569
10 157.484 0.596
11 145.185 0.602
12 230.897 0.688
13 1609.865 0.699
14 > 1600 0.918
15 > 1600 1.133
16 > 1600 1.156
17 > 1600 1.251

Remark 4.3.2. Let L1, L2 ∈ Q(x)[∂]. If L1 and L2 are gauge equivalent, then the isomorphism

between OL1 and OL2 gives a bijection between OL1(m) and OL2(m). This implies that L1 and L2

have the same degree sequences, since dim(OL1(m)) (for m ∈ Z) determines (and determined by)

the degree sequence.

Remark 4.3.3. The examples used for the comparison in Table 4.1 come from [9, 11, 12] (see the

plain text file named equations17 in [24] for these examples).

49

CHAPTER 5

APPLICATIONS OF NORMALIZED INTEGRAL

BASES

In this chapter, we define standard forms of an arbitrary order regular singular differential oper-

ator. In the last part of this section, we give a general algorithm (Algorithm 5.2.1) to compute

hypergeometric solutions of second order regular singular differential equations. This algorithm is

combination of quotient method algorithm (Algorithm 3.2.1), integral basis algorithm (Algorithm

4.2.4), and normalization algorithm (Algorithm 4.3.1).

Remark 5.0.1. Some of the contents of this chapter (apart from some new materials and adoptions)

have been published in [26].

5.1 Standard Forms of a Differential Operator

The following algorithm is an answer for the problem stated in Example 4.1.2.

Algorithm 5.1.1 ([25]). General Outline of standard forms.

Input:

• Linp ∈ Q(x)[∂] = An irreducible regular singular differential operator of order n.

Output:

• A set of n-th order operators which are gauge equivalent to Linp and have few apparent

singularities.

1. Compute a normalized integral basis {B1, . . . , Bn} for Linp using Algorithm 4.2.4 and Algo-

rithm 4.3.1. For all i ∈ {1, . . . , n}, let di be the degree of Bi at infinity such that d1 ≤ · · · ≤ dn.

2. If d1 < d2 then, find L1 such that Linp
B1−−→G L1. Let S = {L1} and return S.

3. If d1 = d2 = · · · = dk (with dk < dk+1 or k = n), then:

(a) Let S = {}.

50

(b) Make the ansatz

B = c1B1 + · · ·+ ckBk. (5.1)

with unknowns c1, . . . , ck.

(c) For j = 0, . . . , n − 1, compute the remainders Rj when ∂j ·B is right-divided by Linp.

In Maple this means,

Rj := rightdivision
(
mult

(
∂j ,B

)
, Linp

)
[2].

(d) Let

Rj = rj,n−1∂
n−1 + · · ·+ rj,0

and let E be the primitive part1 of the determinant of the matrix r0,0 . . . r0,n−1
...

. . .
...

rn−1,0 . . . rn−1,n−1


with respect to c1, . . . , ck. Here E is the location where the apparent singularities would

be if we use the gauge transformation defined by B in (5.1).

i. Let TrueSing(Linp) be the set of non-removable singularities of Linp. For each s ∈
TrueSing(Linp):

A. If s 6= ∞, then substitute x = s into E, equate it to 0, and get the equation

Es. If s = ∞, then let Es be the eqaution lc(E) = 0 where lc(E) is the leading

coefficient of E.

ii. Let {Es | s ∈ TrueSing(Linp)} be the set of all equations obtained in the previous

step (Step 3(d)i). For each k-element subset S of {Es | s ∈ TrueSing(Linp)}:
A. Try to solve the system S for unknowns c1, . . . , ck. If there is a solution, then

find it. Then update B in (5.1) accordingly and find L such that Linp
B−→G L.

Then update S as S ∪ {L}.

(e) Return S.

Remark 5.1.1. If the above method does not produce sufficiently many equations, then in Step

3(d)i we add more equations (e.g., E′|s = 0 when s 6=∞, and lc(E− lc(E)) = 0 when s =∞).

Definition 5.1.1. If L is an element of the output of Algorithm 5.1.1 for an input Linp ∈ Q(x)[∂],

then we say that L is a standard form of Linp.

1What is computed here is the factor of the Wronskian [29] that depends on c1, . . . , ck.

51

Example 5.1.1. Consider the third order differential operator (15) in [5], which is

N3 = ∂3 +
p2

(4x+ 1)x q2
∂2 +

p1
(4x+ 1)x2 t0 q0

∂ +
p0

(4x+ 1)x3 t02 q0
.

Here polynomials p0, p1, p2, q0 , q2, and t0 are given at Appendix A. Maple’s dsolve command

can not find solutions of N3. Algorithm 5.1.1 gives us a standard form of N3, which is

Ñ3 = ∂3 +
12
(
32x2 + 3

)
x

(4x− 1) (4x2 + 1) (4x+ 1)
∂2

+
432x4 + 16x2 − 1

(4x− 1)x2 (4x2 + 1) (4x+ 1)
∂ +

48x4 + 1

(4x− 1)x3 (4x2 + 1) (4x+ 1)
.

This operator Ñ3 which is gauge equivalent to N3, is easier to solve and Maple’s dsolve command

finds its solutions in less than 1 second. We obtain solutions of N3 from solutions of Ñ3.

5.2 Computing All Hypergeometric Solutions

Let ∂ = d
dx . In this chapter we introduce a heuristic algorithm to compute hypergeometric

solutions of a second order regular singular differential operators Linp ∈ Q(x)[∂] in the form of

exp

(∫
r dx

)(
r0 · 2F1(a1, a2; b1; f) + r1 · 2F′1(a1, a2; b1; f)

)
(5.2)

where f, r, r0, r1 ∈ Q(x) and a1, a2, b1 ∈ Q. Our algorithm tries to transform Linp to a simpler

operator L̃inp (which hopefully has a solution in form (3.1)). The key idea is to follow the strategy

of the POLRED algorithm in [15].

Example 5.2.1 (Finding Solutions in the form of (5.2) using a Normalized Integral Basis). Con-

sider the differential operator2

Linp = ∂2 − 512x5 + 384x4 − 64x3 − 88x2 − 10x− 1

x (4x− 1) (4x+ 1) (16x3 + 24x2 + 5x+ 1)
∂

+
512x5 + 64x4 − 128x3 − 60x2 − 8x− 1

x2 (4x− 1) (4x+ 1) (16x3 + 24x2 + 5x+ 1)
.

Algorithm 3.2.1 can not solve Linp. We try to transform Linp to simpler operator L̃inp. First

we compute an integral basis. Then we normalize the basis at infinity and obtain {B1, B2} where

B1 =
16x4 − x2

(16x3 + 24x2 + 5x+ 1)x
∂

+
−34359738400x3 − 51539607556x2 − 10737418241x− 2147483648

(16x3 + 24x2 + 5x+ 1)x

2Prof. Jean-Marie Maillard sent us this differential operator [5].

52

and

B2 =
16x3 − x

(16x3 + 24x2 + 5x+ 1)x
∂ +

−32x2 − 4x− 1

(16x3 + 24x2 + 5x+ 1)x
.

with d1 = −2 and d2 = 0. We try to find a suitable G ∈ Q(x)[∂]/Q(x)[∂]Linp. For this example, we

take G = B1 because it is the unique (up to constant factors) integral element of minimal degree

at infinity, leading to a unique standard form. This G gives us a gauge transformation which maps

solutions of Linp to solutions of

L̃inp = ∂2 +
48x2 − 1

x (16x2 − 1)
∂ +

16

16x2 − 1
.

L̃inp is a standard form of Linp and it has a solution in the form of (5.2), which is

y(x) = 2F1

(
1

2
,
1

2
; 1; 16x2

)
and easy to find with Algorithm 3.2.1. Then we apply the inverse gauge transformation (inverse of

G = B1) and obtain a solution of Linp in the form of (5.2), which is

Y (x) =
(

4x3 + x2 +
x

2

)
· 2F1

(
1

2
,
1

2
; 1; 16x2

)
+
(
32x5 − 2x3

)
· 2F1

(
3

2
,
3

2
; 2; 16x2

)
.

Algorithm 5.2.1 ([24]). General Outline of hypergeometricsols.

Inputs:

• Linp = A second order regular singular irreducible operator,

• afmax = A bound for the algebraic degree af . If omitted, then afmax = 2 which means

our implementation tries af = 1 and af = 2.

Output:

• Solutions of Linp in the form of (3.1) or (5.2), or an empty list.

1. Try to find solutions of Linp in the form of (3.1) by using Algorithm 3.2.1 in Section 3. If

none are found go to Step 2.

2. (a) Use Algorithm 5.1.1 to compute standard forms of Linp and store the gauge transforma-

tions that give the standrad forms of Linp.

(b) Let L̃inp be a standard form of Linp and G be the gauge transformation that transforms

Linp to L̃inp. For each (L̃inp,G):

i. Try to find solutions of L̃inp in the form of (3.1) by using Algorithm 3.2.1.

53

ii. If Step 2(b)i succeeds, then apply the inverse of the gauge transformation G to the

solutions of L̃inp. This will give us the solutions Linp in the form of (5.2). Then,

return these solutions. Otherwise, proceed with the next candidate (if any). If no

candidates remain, return an empty list.

5.2.1 Examples from Physics

Example 5.2.2 (The Feynman Diagrams). Consider the equation (2.14) in [2], which is

0 =
d2

dx2
Y (x) +

(
5x4 − 30x2 + 9

)
x (x2 − 1) (−x2 + 9)

d

dx
Y (x) +

−8 (x2 − 3)

(−x2 + 9) (x2 − 1)
Y (x)

+
−32x2 (ln (x))3

(−x2 + 9) (x2 − 1)
+

12
(
2x4 + 13x2 − 9

)
(ln (x))2

(−x2 + 9) (x2 − 1)

−
6
(
x6 + x4 + 62x2 − 54

)
ln (x)

(−x2 + 9) (x2 − 1)
+

9x6 + 61x4 + 251x2 − 1161

2 (−x2 + 9) (x2 − 1)
. (5.3)

The operator which corresponds to the homogeneous part of the equation (5.3) is

Linp = ∂2 +

(
5x4 − 30x2 + 9

)
x (x2 − 1) (−x2 + 9)

∂ +
−8 (x2 − 3)

(−x2 + 9) (x2 − 1)
. (5.4)

Algorithm 3.2.1 can not find a hypergeometric solution of (5.4). Algorithm 5.2.1 finds an hyperge-

ometric solution of (5.4) and it reads

Y (x) =
x2 (x− 1) (x+ 3)2

−2
√
x+ 1 (x− 3)3/2

· 2F1

(
1

2
,
1

2
; 1;

−16x3

(x+ 1) (x− 3)3

)
+
x3 (x− 1)

(
x2 + 3

)
(x+ 3)3

2 (x− 3)9/2 (x+ 1)3/2
· 2F1

(
3

2
,
3

2
; 2;

−16x3

(x+ 1) (x− 3)3

)
.

Solutions of inhomogeneous equations (5.3) can be derived from solutions of its homogeneous part

(5.4) [2]. Algorithm 5.2.1 plays an important role to find solutions of (5.3).

5.2.2 Examples from Combinatorics

We tested Algorithm 3.2.1 on many examples, including from the On-line Encyclopedia of

Integer Sequences [1]. Another source of examples comes from [9, 11, 12] (see the plain text file

named equations17 in [24] for these operators). Four of them have solutions in the form of (3.1) and

Algorithm 3.2.1 finds these solutions. However, Algorithm 3.2.1 does not solve the other thirteen

operators from that list. We know from [11, 12] that these operators do have solutions in the form

of (5.2). It means that these operators must be gauge equivalent to operators with solutions in the

form of (3.1). As mentioned in the beginning of this section the key idea is to follow [15] POLRED’s

54

strategy; compute an integral basis and then normalize it at infinity. Algorithm 5.2.1 computes

their normalized integral bases, finds their standard forms, and finds hypergeometric solutions in

the form of (5.2) of the remaining thirteen equations.

Example 5.2.3. Consider the differential equation Linp[9] in the file equations17 in [24], which

is

∂2 +
A

B
∂ +

C

B
(5.5)

where

A = 2752512x12−2473984x11+1345536x10+497216x9−2492736x8+997104x7−136176x6+

56533x5 − 3285x4 − 2741x3 − 27x2 − 228x+ 60,

B = 172032x13−155648x12 +20480x11 +78016x10−188224x9 +78144x8−6528x7 +701x6 +

2131x5 − 1183x4 + 97x3 − 30x2 + 12x,

C = 9633792x11−8601600x10+7953408x9−552960x8−6703296x7+2567040x6−414624x5+

231579x4 − 60420x3 + 12561x2 − 2184x− 300.

The unique standard form (up to constant factors) of (5.5) is

∂2 +
320x4 − 1

64x5 − x
∂ +

192x2

64x4 − 1
. (5.6)

Algorithm 5.2.1 obtains hypergeometric solutions of (5.5) from hypergeometric solutions of (5.6).

55

APPENDIX A

OPERATOR POLYNOMIAL DEFINITIONS

p0 = 273690768629642986782720x37 − 211359767643880613904384x36

+ 783972504748826595672064x35 − 798202280307771391610880x34

+ 529828395288499148986368x33 − 404444091888046259051520x32

+ 228209038204604432213504x31 − 87336151574531227459584x30

+ 50153229940291807271936x29 − 39982094900964694180032x28

+ 24384549315393061440864x27 − 11788010919590396492272x26

+ 4902330084007966551208x25 − 1589963053121052166560x24

+ 304744587512802289232x23 + 16506284162934483376x22

− 41000039398409867868x21 + 20742149600984969600x20

− 7212005436663336980x19 + 1852871276944889952x18 − 333772782940373404x17

+ 28423554873971452x16 + 7532729171676060x15 − 4293988070154760x14

+ 986843365675252x13 − 89915103220404x12 − 9436839756874x11

+ 3809320554856x10 − 564751409700x9 + 49607139664x8 + 356966776x7

− 632334612x6 + 31450724x5 + 1326944x4 + 272064x3 − 18408x2 − 2696x+ 72 (A.1)

56

p1 = 85318623580461465600x31 − 59127554256274538496x30 + 218447262242557816832x29

− 208501578105846007808x28 + 112611198423443284992x27 − 49264549140959806976x26

+ 5363044383950807040x25 + 9908091314931060224x24 − 6004424721650285504x23

+ 1626875693444819872x22 − 222594258778946672x21 − 105820382901860152x20

+ 109213685415135432x19 − 41945444103056288x18 + 8021551526743336x17

− 113658269629740x16 − 679274249487472x15 + 368537977098520x14

− 107672107809992x13 + 16030172387980x12 − 130330811308x11 − 456469811472x10

+ 121723656358x9 − 19315052396x8 + 696949584x7 + 343267454x6

− 40979606x5 − 1504616x4 + 240988x3 + 10236x2 + 392x− 92 (A.2)

p2 =1103269952225280x24 − 228305326678016x23 + 2331485726244864x22

− 1249271454269440x21 + 549381083516928x20 − 225290952722816x19

− 39003496295360x18 + 46746500840896x17 − 10249554621312x16

+ 1973847887848x15 + 157900491180x14 − 637108022672x13

+ 233984558200x12 − 24645390372x11 − 4177273140x10

+ 2621821288x9 − 942904492x8 + 195411966x7 + 1609130x6

− 6956791x5 + 515168x4 + 60240x3 − 2676x2 − 256x− 20 (A.3)

q0 = 91939162685440x24 − 79628753641472x23 + 202946718879744x22

− 207932599859712x21 + 135671205331456x20 − 75320543530112x19

+ 30199474895552x18 − 7567681417120x17 + 1089997410032x16

+ 167043589576x15 − 213500102028x14 + 56207492972x13 + 6076506627x12

− 8171378448x11 + 3438773202x10 − 1089652708x9 + 215327593x8

− 8698490x7 − 6071267x6 + 1203089x5 − 37292x4 − 8220x3 + 314x2 + 20x+ 2 (A.4)

57

q2 = 22984790671360x23 − 14160990742528x22 + 47196432034304x21

− 40184041956352x20 + 23871790843776x19 − 12862188171584x18

+ 4334321680992x17 − 808339934032x16 + 70414369000x15

+ 59364489644x14 − 38533903096x13 + 4418397469x12

+ 2623726024x11 − 1386913106x10 + 512965024x9 − 144171921x8

+ 17788918x7 + 2272607x6 − 949665x5 + 63356x4

+ 6516x3 − 426x2 − 28x− 2 (A.5)

t0 = 6874x6 − 2913x5 + 660x4 − 230x3 + 60x2 + 6x− 2 (A.6)

58

BIBLIOGRAPHY

[1] OEIS Foundation Inc. (2017). The On-Line Encyclopedia of Integer Sequences. http://oeis.
org.

[2] J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C. G. Raab, C.-S. Radu,
and C. Schneider. Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams.
arXiv:1706.01299 [hep-th].

[3] P. Aluffi. Algebra: chapter 0, volume 104. American Mathematical Soc., 2009.

[4] M. Assis, S. Boukraa, S. Hassani, M. van Hoeij, J-M. Maillard, and B. M. McCoy. Diagonal
Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations. Journal of
Physics A: Mathematical and Theoretical, 2012.

[5] M. Assis, M. van Hoeij, and J-M. Maillard. The perimeter generating functions of three-
choice, imperfect, and one-punctured staircase polygons. Journal of Physics A: Mathematical
and Theoretical, 49(21):214002, 2016.

[6] F. Baldassari and B. Dwork. On Second Order Linear Differential Equations with Algebraic
Solutions. American Journal of Mathematics, 101(1):42–76, 1979.

[7] F. Beukers. Gauss’ Hypergeometric Function. In Arithmetic and Geometry Around Hyperge-
ometric Functions, pages 23–42. Springer, 2007.

[8] F. Beukers. Notes on A-hypergeometric Functions. Arithmetic and Galois theories of differ-
ential equations, Sémin. Congr, 23:25–61, 2011.

[9] A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech. Explicit Differentiably Finite
Generating Functions of Walks with Small Steps in the Quarter Plane, 2014.

[10] A. Bostan, F. Chyzak, M. van Hoeij, and L. Pech. Explicit Formula for Generating Series of
Diagonal 3d Rook Paths. Seminaire Lotharingien de Combinatorie, 2011.

[11] A. Bostan and M. Kauers. Automatic Classification of Restricted Lattice Walks. FPSAC’09
Proceedings, 2009.

[12] M. Bousquet-Mélou and M. Mishna. Walks with Small Steps in the Quarter Plane. Contemp.
Math, 520:1–40, 2010.

[13] S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan. Reduction-Based Creative Telescoping
for Fuchsian D-finite Functions. arXiv:1611.07421 [cs.SC].

59

http://oeis.org
http://oeis.org

[14] G. Christol. Globally bounded solutions of differential equations. In Analytic number theory,
pages 45–64. Springer, 1990.

[15] H. Cohen and F. Diaz Y Diaz. A Polynomial Reduction Algorithm. Journal de théorie des
nombres de Bordeaux, 3(2):351–360, 1991.

[16] T. Crespo and Z. Hajto. Algebraic groups and differential Galois theory, volume 122. American
Mathematical Society Providence, RI, 2011.

[17] R. Debeerst. Solving Differential Equations in terms of Bessel Functions. Master’s thesis,
Universität Kassel, 2007.

[18] R. Debeerst, M. van Hoeij, and W. Koepf. Solving Differential Equations in Terms of Bessel
Functions. In Proceedings of the Twenty-first International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’08, pages 39–46, New York, NY, USA, 2008. ACM.

[19] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-
12-21. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[20] T. Fang. Solving Linear Differential Equations in terms of Hypergeometric Functions by 2-
Descent. PhD thesis, Florida State University, 2012.

[21] T. Fang and M. van Hoeij. 2descent for Second Order Linear Differential Equations. In
Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation,
ISSAC ’11, pages 107–114, New York, NY, USA, 2011. ACM.

[22] R. Hartshorne. Algebraic Geometry, volume 52. Springer Science & Business Media, 2013.

[23] E. Imamoglu. A Maple Implementation of find 2f1. http://www.math.fsu.edu/~eimamogl/
find_2f1.

[24] E. Imamoglu. A Maple Implementation of hypergeometricsols. http://www.math.fsu.

edu/~eimamogl/hypergeometricsols.

[25] E. Imamoglu. A Maple Implementation of integral basis. http://www.math.fsu.edu/

~eimamogl/integral_basis.

[26] E. Imamoglu and M. van Hoeij. Computing Hypergeometric Solutions of Second Order Linear
Differential Equations using Quotients of Formal Solutions and Integral Bases. https://doi.
org/10.1016/j.jsc.2016.11.014. Accepted for Journal of Symbolic Computation.

[27] E. Imamoglu and M. van Hoeij. Fast Computation of Integral Bases and Normalization at
Infinity. In Progress.

60

http://www.math.fsu.edu/~eimamogl/find_2f1
http://www.math.fsu.edu/~eimamogl/find_2f1
http://www.math.fsu.edu/~eimamogl/hypergeometricsols
http://www.math.fsu.edu/~eimamogl/hypergeometricsols
http://www.math.fsu.edu/~eimamogl/integral_basis
http://www.math.fsu.edu/~eimamogl/integral_basis
https://doi.org/10.1016/j.jsc.2016.11.014
https://doi.org/10.1016/j.jsc.2016.11.014

[28] E. Imamoglu and M. van Hoeij. Computing Hypergeometric Solutions of Second Order Linear
Differential Equations Using Quotients of Formal Solutions. In Proceedings of the 2015 ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 235–242,
New York, NY, USA, 2015. ACM.

[29] E. L. Ince. Ordinary Differential Equations. Dover Publications, Inc., New York, 1926.

[30] E. Kamke. Differentialgleichungen: Lösungsmethoden und Lösungen, volume 2. American
Mathematical Soc., 1971.

[31] M. Kauers and C. Koutschan. Integral D-Finite Functions. In Proceedings of the 2015 ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 251–258,
New York, NY, USA, 2015. ACM.

[32] J. J. Kovacic. An Algorithm for Solving Second Order Linear Homogeneous Differential Equa-
tions. Journal of Symbolic Computation, 2(1):3–43, January 1986.

[33] E. E. Kummer. Über die hypergeometrische reihe. Journal für die reine und angewandte
Mathematik, 15:39–83, 1836.

[34] V. J. Kunwar. Hypergeometric Solutions of Linear Differential Equations with Rational Func-
tion Coefficients. PhD thesis, Florida State University, 2014.

[35] V. J. Kunwar and M. van Hoeij. Second Order Differential Equations with Hypergeometric
Solutions of Degree Three. In Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’13, pages 235–242, New York, NY, USA, 2013. ACM.

[36] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, 1982.

[37] H. A. Schwarz. Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine
algebraische Function ihres vierten Elementes darstellt. Journal für die Reine und Angewandte
Mathematik, pages 292–335, 1873.

[38] M. F. Singer. Solving Homogeneous Linear Differential Equations in terms of Second Order
Linear Differential Equations. American Journal of Mathematics, 107(3):663–696, 1985.

[39] B. M. Trager. Integration of Algebraic Functions. PhD thesis, Massachusetts Institute of
Technology, 1984.

[40] M. van der Put and M. F. Singer. Galois Theory of Linear Differential Equations, volume 328
of Grundlehren der mathematischen Wissenschaften. Springer, 2003.

[41] M. van Hoeij. Implementation for Finding Equivalence Map. http://www.math.fsu.edu/

~hoeij/files/equiv.

61

http://www.math.fsu.edu/~hoeij/files/equiv
http://www.math.fsu.edu/~hoeij/files/equiv

[42] M. van Hoeij. Factorization of Differential Operators with Rational Functions Coefficients.
Journal of Symbolic Computation, 24(5):537–561, 1997.

[43] M. van Hoeij. Solving Third Order Linear Differential Equations in Terms of Second Order
Equations. In Proceedings of the 2007 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’07, pages 355–360, New York, NY, USA, 2007. ACM.

[44] M. van Hoeij and R. Vidūnas. Belyi functions for hyperbolic hypergeometric-to-Heun trans-
formations. Journal of Algebra, 441:609–659, 2015.

[45] M. van Hoeij and J. A. Weil. Solving Second Order Linear Differential Equations with Klein’s
Theorem. In Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’05, pages 340–347, New York, NY, USA, 2005. ACM.

[46] M. van Hoeij and Q. Yuan. Finding All Bessel Type Solutions for Linear Differential Equations
with Rational Function Coefficients. In Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’10, pages 37–44, New York, NY, USA, 2010.
ACM.

[47] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge university press,
2013.

[48] Z. X. Wang and D. R. Guo. Special Functions. World Scientific, 1989.

[49] W. Xu. Third Order A-Hypergeometric Functions. PhD thesis, Florida State University, In
Progress.

[50] Q. Yuan. Finding All Bessel Type Solutions for Linear Differential Equations with Rational
Function Coefficients. PhD thesis, Florida State University, 2012.

62

BIOGRAPHICAL SKETCH

Erdal Imamoglu was born in Shumen, Bulgaria. He attended Pertevniyal High School, Istanbul,

Turkey. He completed his B.Sc. degree in mathematics in 2009 at Yildiz Technical University,

Istanbul, Turkey. He started to pursue his Ph.D. degree in mathematics in 2011 at Florida State

University, Tallahassee, FL, under the supervision of Mark van Hoeij.

63

	Title Page
	Table of Contents
	List of Symbols
	Abstract

	Introduction
	Closed Form Solutions
	Motivation: CIS Solutions and Globally Bounded Equations
	Objectives
	Contributions
	Plan of the Thesis

	Preliminaries
	Differential Operators
	Gauss Hypergeometric Differential Operator and Hypergeometric Function
	Transformations Between Differential Operators
	Hypergeometric Solutions

	Computing Hypergeometric Solutions via Quotient Method
	Quotients of Formal Solutions
	General Outline of Quotient Method Algorithm
	Good Prime Numbers
	Degree Bounds
	A Degree Bound for Logarithmic Case
	A Degree Bound for Non-logarithmic Case

	Riemann-Hurwitz Type Formula For Differential Equations
	Candidate Gauss Hypergeometric Differential Operators
	Quotient Method
	Non-logarithmic Case
	Logarithmic Case

	Recovering Pullback Functions and Parameter of Exp-product
	Lifting for Rational Pullback Functions
	Lifting for Algebraic Pullback Functions
	Recovering Parameter of Exp-product

	Integral Bases for Differential Operators and Normalization at Infinity
	Standard Form Map
	Integral Bases
	Computing a Local Integral Basis at One Point
	Local Bases at Apparent Singularities
	Local Bases at Algebraic Singularities
	Integral Basis for a Differential Operator at a Polynomial
	Combining Two Local Integral Bases
	Computation of Global Integral Bases

	Normalization at Infinity

	Applications of Normalized Integral Bases
	Standard Forms of a Differential Operator
	Computing All Hypergeometric Solutions
	Examples from Physics
	Examples from Combinatorics

	Appendix
	Operator Polynomial Definitions
	Bibliography
	Biographical Sketch

