
Closed Form Solutions for Linear Differential and Difference
Equations

Mark van Hoeij*

Dept. of Mathematics, Florida State University
Tallahassee, Florida 32306-3027

hoeij@math.fsu.edu

ABSTRACT

Finding closed form solutions of differential equations has
a long history in computer algebra. For example, the Risch
algorithm (1969) decides if the equation 𝑦′ = 𝑓 can be solved
in terms of elementary functions. These are functions that can
be written in terms of exp and log, where “in terms of” allows
for field operations, composition, and algebraic extensions.
More generally, functions are in closed form if they are written
in terms of commonly used functions. This includes not only
exp and log, but other common functions as well, such as
Bessel functions or the Gauss hypergeometric function. Given
a differential equation 𝐿, to find solutions written in terms
of such functions, one seeks a sequence of transformations
that sends the Bessel equation, or the Gauss hypergeometric
equation, to 𝐿. Although random equations are unlikely to
have closed form solutions, they are remarkably common in
applications. For example, if 𝑦 =

∑︀∞
𝑛=0 𝑎𝑛𝑥

𝑛 has a positive
radius of convergence, integer coefficients 𝑎𝑛 ∈ Z, and satisfies
a second order homogeneous linear differential equation 𝐿
with polynomial coefficients, then 𝐿 is conjectured to be
solvable in closed form. Such equations are common, not only
in combinatorics, but in physics as well. The talk will describe
recent progress in finding closed form solutions of differential
and difference equations, as well as open questions.

CCS CONCEPTS

• Mathematics of computing → Mathematical soft-
ware; • Computing methodologies → Symbolic and
algebraic manipulation;

KEYWORDS

Symbolic Computation, Closed form solutions

A closed form solution of an equation is an exact solution pre-
sented with a finite amount of data. The expression 1.4142 . . .

*Supported by NSF 1618657

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’17, July 25-28, 2017, Kaiserslautern, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5064-8/17/07. . . $15.00
https://doi.org/10.1145/3087604.3087660

is not a closed form solution of equation 𝐸1 : 𝑥2 − 2 = 0
because an exact decimal expansion would be infinitely long.
Likewise, the solution 1 + 1

4
𝑥2 + 1

64
𝑥4 + · · · of the equation

𝐸2 : 𝑥𝑦′′+𝑦′−𝑥𝑦 = 0 is also not in closed form. Approximate
solutions can be made more precise by using more digits or
terms. They are very useful and widely used.

The key novelty of computer algebra systems was com-
puting with exact expressions. A computer can represent
solutions of 𝐸1 exactly as ±

√
2. However, solving 𝐸1 by re-

turning ±
√
2 is a tautology because the expression

√
2 is

defined to be a solution of 𝑥2 − 2 = 0. Likewise, if we ask the
computer for solutions of 𝐸2, then “Bessel functions 𝐼0(𝑥)
and 𝐾0(𝑥)” is a tautological answer because they are by
definition solutions of 𝐸2.

Finding closed form solutions involves:

(1) “Base equations” are solved tautologically by defining
“base functions” to be solutions.

(2) Solve other equations in terms of base functions using
field operations +,−, ·,÷ and other operations such
as composition, differentiation, and in some contexts,
integration and algebraic extensions.

(3) To prevent the problem from becoming trivial:
(a) Only allow base functions that are well known, such

the square root, exp, log, Airy, Bessel, Whittaker,
Gauss hypergeometric, . . .

(b) Only introduce base equations for functions that can
not be expressed in terms of prior base functions.

The Ph.D theses of Yongjae Cha and Giles Levy [5, 6] follow
the above approach for linear difference equations. First one
defines transformations of difference equations that corre-
spond to explicit transformations between their solutions.
These transformations should be as general as possible, in
order to minimize the number of base equations that are
needed, and to maximize the strength of the solver. Next
one implements a program to find such transformations, and
a program that can decide if one of the base equations, for
some values of its parameters, can be transformed to the
input equation.

The same approach can be illustrated with something
as easy as solving quadratic equations. Start for example
with the field Q, and field operations. Then example 𝐸1

is not solvable. To remedy this, introduce 𝑥2 − 𝑑 = 0 as
base equation with one parameter 𝑑, and solve it trivially by
defining

√
𝑑 to be a solution. The equation 𝑎𝑥2 + 𝑏𝑥+ 𝑐 = 0

reduces to 𝑥2 − 𝑑 = 0 via a nearly-trivial transformation and
should thus not be a base equation by item 3(b).

https://doi.org/10.1145/3087604.3087660

Now consider linear differential equations. To solve example

𝐸2, introduce a base equation 𝐿𝐵 : 𝑥𝑦′′ + 𝑦′ − (𝑥+ 𝜈2

𝑥
)𝑦 = 0

with one parameter 𝜈 and define the Bessel functions 𝐼𝜈(𝑥)
and 𝐾𝜈(𝑥) as solutions of 𝐿𝐵 . Then 𝐸2 is solved trivially
because it is 𝐿𝐵 with 𝜈 = 0.

Now consider equation 𝐸3 : 𝑦′′+(2−10𝑥+4𝑥2−4𝑥4)𝑦 = 0.
It can be solved trivially by letting 𝐸3 be a base equation,
but that would be contrary to item 3(a). It is nearly trivial to
reduce 𝐸3 to a triconfluent Heun equation, so we could add
that as a base equation. However, by item 3(b) we should first
check if 𝐸3 is also solvable in terms of the already-introduced
functions. A solution is:

(2𝑥2 + 𝑥− 1)Ai(𝑥2 − 1) + (2𝑥+ 1)Ai′(𝑥2 − 1)

where Ai is the Airy Ai function, and Ai′ is its derivative
(replacing Ai by Bi gives another solution). Airy functions
can be rewritten in terms of Bessel functions with 𝜈 = 1

3
. So

𝐸3 is solvable in terms of Bessel functions. Equivalently, 𝐸3

comes from base equation 𝐿𝐵 with 𝜈 = 1
3
via a sequence of

transformations. So no new base equation is needed for this
example 𝐸3 (of course this may change for other examples).

Item 3(b) raises the main question for closed form solutions:
Given an equation, how do we know if it can be solved in
terms of the current set of base functions? Suppose we want
to find closed form solutions in the following context 𝐶: linear
differential equations with rational functions as coefficients.
One of the base equations resp. functions is 𝐿𝐵 resp. 𝐵𝜈(𝑥)
above. The only property of 𝐵𝜈(𝑥) that we will use is that
it is a solution of 𝐿𝐵 . We now search for transformations
that we can apply to any solution of an equation in context
𝐶, such that the resulting function is again a solution of
an equation in context 𝐶. The composition 𝐵0(𝐵0(𝑥)) is in
closed form according to item 2. However, it does not satisfy
a non-zero equation in context 𝐶. So for solving equations in
this context, the function 𝐵0(𝐵0(𝑥)) is irrelevant.

The most general expression in terms of 𝐵𝜈(𝑥) that satisfies
a second order equation with rational function coefficients is:

exp(

∫︁
𝑟) · (𝑟1𝜕 + 𝑟0)(𝐵𝜈(

√︀
𝑓))

where 𝑓, 𝑟, 𝑟0, 𝑟1 ∈ C(𝑥) are rational functions. Here 𝑟1𝜕 + 𝑟0
is an operator that sends 𝑦 to 𝑟1𝑦

′ + 𝑟0𝑦.
The Ph.D thesis of Quan Yuan [4] gives a complete algo-

rithm to decide if an equation has a solution in this form.
The same also works for Airy functions, Whittaker functions,
and related functions. The algorithm works by examining the
so-called irregular singularities of the input equation. These
are points where solutions have essential singularities. The
Bessel function has an essential singularity at ∞, in other
words, the Bessel equation 𝐿𝐵 has an irregular singularity
there. These singularities can not disappear under any of the
transformations: (1) composition of 𝐵𝜈 with

√
𝑓 , (2) applying

𝑟1𝜕 + 𝑟0, and (3) multiplying by exp(
∫︀
𝑟). This means that

all poles of 𝑓 are easily found: they are irregular singularities
of the input equation. Moreover, local data at each irregular
singularity 𝑝 provides a portion of the polar part of 𝑓 at 𝑝.
Combined with a small amount of additional data (coming

from regular singularities) this suffices to reconstruct 𝑓 and
𝜈, after which 𝑟0, 𝑟1, 𝑟 can be computed.

Conjecture 0.1. Let 𝛽 be a non-zero constant, let 𝑦 =∑︀∞
𝑛=0 𝑎𝑛𝛽

𝑛𝑥𝑛 with 𝑎𝑛 ∈ Z. Suppose that 𝑦 has a positive
radius of convergence, and satisfies a second order linear
differential equation 𝑃2𝑦

′′ + 𝑃1𝑦
′ + 𝑃0𝑦 = 0 with polynomial

coefficients 𝑃𝑖 = 𝑃𝑖(𝑥), not all zero. Then this equation has
a solution of the form: an algebraic function, or a 2𝐹1-type
solution:

(𝑟1𝜕 + 𝑟0)(2𝐹1(𝑎, 𝑏; 𝑐; 𝑓))

where 2𝐹1 denotes the Gauss hypergeometric function, 𝑎, 𝑏, 𝑐
are rational numbers, 𝑐 = 1, and 𝑟0, 𝑟1, 𝑓 are algebraic func-
tions.

Such differential equations are called “globally bounded”.
They are common in many applications, not only in combi-
natorics where it is natural to have 𝑎𝑛 ∈ Z, but in physics
as well. So according to the conjecture, closed form solutions
should be common for second order equations from many
applications.

Finding 2𝐹1-type solutions turned out to be more com-
plicated than finding Bessel-type solutions. The irregular
singularity of 𝐿𝐵 at 𝑥 = ∞ introduces an irregular singular-
ity at every pole of 𝑓 under transformation (1), and these
can not disappear under transformations (2),(3). However,
this does not hold for the singularities of the Gauss hyperge-
ometric equations, which are all regular singular. Some poles
of 𝑓 may become regular points of the input equation. This
makes it much harder to reconstruct 𝑓 .

Partial algorithms for finding 2𝐹1-type solutions for a
number of different cases were developed in the Ph.D theses
of Tingting Fang and Vijay Kunwar [2, 3]. The recent PhD
thesis of Erdal Imamoglu [1] gave a method that, though not
proven complete, appears to cover essentially all cases for
which 𝑃0, 𝑃1, 𝑃2 ∈ Q[𝑥]. One of the key ideas in this work
is as follows. The POLRED algorithm (Cohen and Diaz Y
Diaz, 1991) tries to reduce a polynomial 𝑃 , which means
find a polynomial 𝑄 that defines the same number field,
and that is close to optimal in size. It turns out that the
same strategy can also be used to reduce regular singular
differential equations. This reduction preserves the order, but
tends to lead to equations that easier to solve, and are close
to optimal in size.

REFERENCES
[1] E. Imamoglu, Algorithms for Solving Linear Differential Equa-

tions with Rational Function Coefficients, Ph.D thesis (2017).
[2] V. Kunwar, Hypergeometric Solutions of Linear Differential

Equations with Rational Function Coefficients, Ph.D thesis
(2014).

[3] T. Fang, Solving Linear Differential Equations in Terms of
Hypergeometric Functions by 2-Descent, Ph.D thesis, (2012).

[4] Q. Yuan, Finding all Bessel type solutions for Linear Differen-
tial Equations with Rational Function Coefficients, Ph.D thesis,
(2012).

[5] Y. Cha, Closed Form Solutions of Linear Difference Equations,
Ph.D thesis, (2010).

[6] G. Levy, Solutions of Second Order Recurrence Relations, Ph.D
thesis, (2009).

	Abstract
	References

