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What is a closed form solution?

Example: Solve this equation for y = y(x).
;4= x3
T

eX

Definition

A closed form solution is an expression for an exact solution
given with a finite amount of data.

This is not a closed form solution:

22 95
y =4x +6x° + 3X +12 Xt

because making it exact requires infinitely many terms.

The Risch algorithm finds a closed form solution:

2 + x2
1—x

eX
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Risch algorithm (1969)

Previous slide: A closed form solution is an expression for an
exact solution with only a finite amount of data.

Risch algorithm finds (if it exists) a closed form solution y for:
y'=f
To make that well-defined, specify which expressions are allowed:

Define E;, and Egyt such that:
@ Any f € E;, is allowed as input.
@ Output: a solution iff 3 solution y € Eqyt.

Risch: E;, = Eouy = {elementary functions}

= {expressions with C(x) exp log + —

composition and algebraic extensions}.



Liouvillian solutions

Kovacic' algorithm (1986)
@ Solves homogeneous differential equations of order 2

ay" + a1y’ +ay =0

(Risch: inhomogeneous equations of order 1)

@ It finds solutions in a larger class:
Eout = {Liouvillian functions} 2 {elementary functions}
© but it is more restrictive in the input:

ao, a1, a» € {rational functions} C {elementary functions}

3 common functions that are not Liouvillian.

Allow those as closed form ~~ need other solvers.




A non-Liouvillian example

Let
f 2+ x+1 t "
= ex
y y P x—t x2+x+1

Zeilberger’s telescoping algorithm ~~ an equation for y:

(x*—x)y" + (8x*+2x3—3x3—Tx+1)y’ + (6x3—9x*—12x+3)y = 0

Closed form solutions were thought to be rare.

But (for order 2) telescoping equations often (always?) have
closed form solutions:

1
exp(—2x)-<l0 (2 X2+ x+ 1) — Lh (2 x? 4+ x + 1))
x>+ x+1
and

1
exp(—2x)- (Ko <2\/ X2+ x + 1) + \/)%Kl (2\/ x2 4+ x + 1))
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Diagonals of rational functions

Take a rational function in several variables, for example:

1

F=
1—x—2y —3z—4yz — bxyz — bxyz? € Qlxy.2)

and write it as a multivariate power series

(o e ENNe SlNe o]

F=3"3" aux'yiz" € Qllxy.]

i=0 j=0 k=0
The diagonal is

diag(F) = Zaiii x" € Q[«]]
i=0

Fact: Diagonals of rational functions are D-finite (holonomic);
they satisfy a homogeneous linear differential equation with
polynomial coefficients.

Conjecture: If such an equation has order 2 then it has closed

form solutions.
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Diagonals of rational functions

For the example, the diagonal D = diag(F) satisfies:
1 /
D" +a1D" + agD =0
where
ap = x(2x + 1)(40x3 + 4x% — 72x — 5)(500x* — 149x> + 939x% — 1061x + 5)
a; = 120000x% + 32160x” — 288416x% — 74344x> — 341206x* + 135372x> + 93397x% + 10510x — 25
a0 = 40000x” + 10240x® — 210464x° + 4944x* — 58610x> + 15752x> — 3715x + 1225

To solve order 2 equations with ag, a;, a, € Q[x] download:

www.math.fsu.edu/~eimamogl/hypergeometricsols

Result:
15
2h < e f> - (625x* + 140x3 + 1158x% — 196x + 1)~ 1/*
where
¢ _ 1oaare” (2x T 1)%(500x* — 149 +939x® — 1061x + 5)

(625x* + 140x3 + 1158x% — 196x + 1)3



Globally bounded equations

Random equations rarely have closed form solutions.

So-called globally bounded equations are common in:
e combinatorics (Mishna's tutorial)
@ physics (Ising model, Feynman integrals, etc.)

@ Period integrals, creative telescoping, diagonals.

Globally bounded equations (of order 2) have closed form solutions.

In other words: Closed form solutions are common
(for non-random equations of order 2)

If Maple + Mathematica don't find them ~» download our code!



Local to global strategy

Risch: Given elementary function f, solve:
y'=f

{poles of y} C {poles of f} = known

Kovacic: Given polynomials ag, a1, a2 € C[x], solve:
agy” + aly’ 4+ apy =0

{poles of y} C {roots of ay} = known

Local to global strategy
{poles of y} + {terms in polar parts} (+ other data) ~~ 'y




Local data: Classifying singularities

Example:

1 5 3
y =exp(r) where r:;—&-;—i—ﬁ—i—S—i—?X

v has essential singularities at the poles of r.

Definition

y1, y2 # 0 have an equivalent singularity at x = p
when y1/y» is meromorphic at x = p.

Equivalence classof yat x =0, x=1, x=o¢ (local data

~ Polarpartof rat x=0, x=1, x= (local data

)
)
~ X% + 3 % 7x (local data)
)
)

x2

~> r (up to a constant term) (global data

~> y (up to a constant factor) (global data
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Reconstructing solutions from local data

Recall: y1, y» have equivalent singularity at x = p
if y1/y2 is meromorphic at x = p.

Hence:
y1, ¥2 equivalent at every p € C|J{o0o}
<~
y1/y2 meromorphic at every p € C|J{oo}
=

y1/y2 € C(x)
Hence:

{Eq. class of y at all p} <= y up to a rational factor

For a differential equation L can compute:
{generalized exponents of L at p} ~ {Eq. classes of solutions}

Choose the right one at each p ~~ a solution (up to =)
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Example: generalized exponents

Example: let L have singularities {0, 3,4}, order 2, and solutions:

4 €0,1 €3,1 €41
n=(x x+2) exp(/ X +X—3 x—4)
3 €0,2 €32 €42
= 3x — 7) - £0,2
y2 = (x7+3x —7) - exp( 3 x—4)
where e, ; € C| ﬁ] encodes the polar part Xej'; at x = p.

These e, ; are the generalized exponents of L at x = p and can
be computed from L:

Eo ={eo1, ep2}, Ez={e31, &30}, Ea={es1, esn}

To find y; we need to choose the correct element of each E,.

The example has 23 = 8 combinations.
One combination ~» y;, another ~» y», other six ~» nothing.

Can reduce #combinations (e.g. Fuchs' relation) 12/29



Generalized exponents ~~ hyper-exponential solutions:

Let ag,...,an € C[x] and L(y) := apy™ +--- 4+ a1y’ + agy = 0.

Hyper-exponential solution: y = exp( [ r) for some r € C(x).

{generalized exponent of such y at all singularities p of L}
A~

y up to a polynomial factor  (generalized exponent ~ eq. class)

Algorithm hyper-exponential solutions:

@ Compute generalized exponents {ep1,...,€epn} at each
singularity p € C|J{oo} of L.
@ For each combination e, € {e,1,...,e,,} (for all p)

compute polynomial solutions of a related equation.

13 /29



Same strategy for difference equation

Combine generalized exponents ~» hyper-exponential solutions.

To do the same for difference equations we need the difference
analogue of generalized exponents:

Difference case: p = oo is similar to the differential case.
But a finite singularity is not an element p € C.

Instead it is an element of C/Z because
y(x) singular at p <= y(x + 1) singular at p

is only true for p = oco.

1997): Generalized exponents

(

1999): Difference case analogue:

( g
generalized exponents at p = oo and
valuation growths at p € C/Z

~> Algorithm for hypergeometric solutions. e



Closed form solutions of linear differential equations:

Goal: define, then find, closed form solutions of:
any™ 4+ -+ a1y’ + a0y =0 with ag,...,a, € C(x). (1)
The order is n (we assume a, # 0).

Consider closed form expressions in terms of functions that are:
@ well known, and

@ D-finite: satisfies an equation of form (1).

D-finite of order 1 = hyper-exponential function.

Well known D-finite functions of order 2:
@ Airy functions, Bessel functions, Kummer, Whittaker, ...
e Gauss hypergeometric function 2F1(a, b; ¢ | x)

Klein's theorem: Liouvillian solutions are o F; expressible.
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Bessel type solutions:

Idea for constructing a Bessel-solver:

@ Bessel functions have an essential singularity at x = oo.
@ Just like the function exp(x).

@ So the strategy for hyper-exponential solutions may work for
Bessel-type solutions as well.

@ It also works for Airy, Kummer, Whittaker, and
hypergeometric ,Fg functions if p 41 # q.

Later: Other strategies for Gauss hypergeometric »F; function
(to solve globally bounded equations of order 2).

Question: Which Bessel expressions should the solver look for?

Which Bessel expressions are D-finite?
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Bessel type closed form expressions

Let B,(x) be one of the Bessel functions, with parameter v.

Bessel type closed form expressions should allow:
@ algebraic functions
@ exp and log
@ composition
o field operations
o differentiation and integration

e and of course B,(x).

Example: By(exp(x)) is a Bessel type closed form expression

but is not relevant for (1) since it is not D-finite.

Question: which Bessel type expressions are D-finite?
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D-finite functions:

A function y = y(x) is D-finite of order n if it satisfies a
differential equation of order n with rational function coefficients.
Operations that don’t increase the order:

@ y(x) — y(f) for some f € C(x) called pullback function.

Q@ y—roy+ny +-- 4 r_1y" for some r; € C(x).

© y— exp([r)-y for some r € C(x).

Operations that can increase the order:

© Same as (1),(2),(3) but with algebraic functions f, r;, r.

Q yi,yo— Y1+ order ny,npy ~» order < ny + ny
Q yi,y2o—=y1-y order ny,m  ~» order < ni-m
Special case: y — y? order n ~» order < w

Have algorithms to recover any combination of: (2), (3), (5), and
part of (6).
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Bessel type solutions of second order equations

Let B,(x) be one of the Bessel functions.
B, (\/x) is D-finite of order 2. Transformations (1), (2), (3) ~~

exp(/ r)- <ro . B,,(\/?) +n- By(\/?)/> (2)

is D-finite of order 2 for any r, ry, r1, f € C(x).

Theorem (Quan Yuan 2012)

Let k be a subfield of C and let L be a linear homogeneous
differential equation over k(x) of order 2.

If 3 solution of form (2) with algebraic functions r, ry, r1, f
then 3 solution with rational functions r, ry, n, f € k(x).

Bessel-type solutions of higher order equations:
~» Add transformations (4),(5),(6).
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Finding Bessel type solutions

a2y// + 31)// + aoy = 0 Where aop, d1, a2 € (C[X]

Goal: Find Bessel-type solutions.

Idea: Recover the pullback function f in transformation (1) from
data that is invariant under transformations (2),(3).

Hyper-exponential solutions:

Generalized exponents ~» {polar parts of f} ~» f

Bessel-type solutions:
Generalized exponents ~» {[half] of terms of polar parts of f}

~ need more data to find f.
More data: regular singularities ~~ roots of order ¢ denom(v) - Z

Combine data ~~ f except in one case: denom(v) =2
that “happens” to be solvable with Kovacic
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Local to global strategy for difference equations

Use local data that is invariant under the difference analogue of
transformations (2),(3):

@ Giles Levy (Ph.D 2009)
@ Yongjae Cha (Ph.D 2010)

Example: oeis.org/A000179 (Ménage numbers)

Recurrence operator:
(t+1)o (nT®> — (n* +2n)T — n—2)
where T is the shift-operator.
solver ~» ¢ -n-Ilp(=2)+ c2-n- Kn(2) + c3- €(n)

where I,(x) and K,(x) are Bessel functions and ¢(n) is a
complicated expression that converges to 0 as n — 0.

Result: 5
A000179(n) = round (e;' : K,,(2)) (for n > 0)
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»F1-type solutions

The Gauss hypergeometric function is:

where (3), =a-(a+1)---(a+n—1).

If L(y) = 0 is a globally bounded equation of order 2 then it
conjecturally has algebraic or > F;-type solutions:

b b !
YZGXP(/r)'<f0'2F1(a’C ‘f>+f1'2/:1<a7c ‘f>>

Problem: The local to global strategy:
invariant local data ~» pullback function f ~~ y

works for many functions, but 2F; can be problematic because
f can be large even if the amount of local data is small.



»F1 example

Small equation:
4x(x* — 34x + 1)y" + (8x® — 204x + 4)y' 4+ (x — 10)y = 0
The smallest solution:

12
\/3—3x—\/x2—34x+1.2,__1<3 2

x+1

has

(x3+30x% — 24x + 1) — (x®2 = Tx + 1)V/x2 — 34x + 1

F= 2(x + 1)3

How to construct f from a small amount of invariant local data:

@ Exponent-differences: 0, 0, % (mod Z)

@ at the singularities: x =0, x = oo, x2—-34x+1=0
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»F1-type solutions and related topics:

e Tingting Fang (Ph.D 2012)
e Compute D-module automorphisms ~- descent.

(also useful for non 2f; cases and for order > 2)

e Vijay Kunwar (Ph.D 2014)
e Small f: Construct from invariant local data.

o Large f: Tabulate and use combinatorial objects (such as
dessins d’enfant) to prove completeness.

e Erdal Imamoglu (Ph.D 2017)

o If transformation (2) is not needed: quotient method.

o Otherwise: Differential analogue of POLRED
~» simpler equations. Then use quotient method.

e Wen Xu (Ph.D in progress)

e Multivariate generalizations of ,F; such as Appell F;.
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POLRED: Cohen and Diaz Y Diaz (1991)

Algebraic computations often lead to an equation:
f(x)=0
for some irreducible f € Q[x]. Such f defines a number field:
K =QIx]/(f)

In many computations there is no reason to assume that f is the
simplest polynomial that defines K.

Algorithm POLRED
Input: Irreducible f € Q[x].
Output: Monic g € Z[x] for the same field:

K =Q[x]/(8)-

with near-optimal size for max(abs(coefficients of g)).
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Differential analogue of POLRED

The following equation came from lattice path combinatorics
—> globally bounded, conjecturally implies 3 5 Fi-type solutions

x(8x2 —1)(8x2 +1)(896x> — 512x* +832x3 — 127x% — 6x — 12) - y”
—(8x2 +1)(71680x” — 36864x° + 46080x> — 3528x* — 5280x3
+155x2 + 24x + 36) - y’ + (1720320x® — 786432x” + 1078272x°
—183360x° + 48384x* — 12464x> — 4560x2 — 928x — 96) -y = 0

www.math.fsu.edu/~eimamogl/hypergeometricsols

Finds smaller equation by imitating POLRED:

Take the differential module for this equation.

Compute its integral basis.

Construct integral element Y with minimal degree at infinity.
Then Y satisfies a small equivalent equation:

x(8x* —1)(8x% +1)- Y +(320x* —1) - Y/ +192x>- Y =0

® 6 6 ¢

Quotient method ~» closed form for Y ~~ closed form for y. 26,20



Example from the Ising model

x(1=11x)(1+4x2)y" +(1-22x+8x>—132x3)y'+(—3+x—33x2)y = 0

Solutions near x = 0:
Sp=1+43x+3Ix2+--
S>=Inx+@BInx+5)x+ (LInx+ Z)x%+ -

Solutions near x = 1/11:

lel—%(x—ﬁ)-i--“
T2:In(ﬁ—x)—(%ln(ﬁ—x)—f—%)(x—ﬁ)—i—---

Analytic continuation from x = 0 to x = 1/11 sends S; to a linear

combination of T7, To. Which linear combination? Can always find
an approximate answer (e.g. by evaluating at intermediate points)

www.math.fsu.edu/~eimamogl/hypergeometricsols

~~ closed form solution ~~ exact answer.
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If globally bounded equations of order 2 have ;F;-type solutions,
what about higher order?

Univariate generalization of »2F;: hypergeometric ,F4 functions.

Globally bounded order 3 equations need not be ,Fg-solvable.
Can construct a univariate example from multivariate
hypergeometric functions (substitution ~~ univariate).

There are many multivariate hypergeometric functions.
A particle zoo of functions?

Fortunately, they have been organized in terms of polytopes:

A-hypergeometric functions
Gelfand, Kapranov, Zelevinsky (1990)
Beukers (ISSAC'2012 invited talk and recent papers)

Are globally bounded equations solvable in terms of such functions?
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Order 3, Wen Xu (2017)

Trying to solve order > 2 equations in terms of such functions
leads to many questions, for instance: how they relate to each
other? Do we need reducible A-hypergeometric systems?

Example: The Horn Gs function satisfies a bivariate system of
order 3. In the reducible case a = 1 — 2b this function

G3(1—2b,b|x,y)
satisfies the same bivariate differential equations as:

(27xy? — 9y — 2)?
4(1+3y)3

1_ b
2

b
(1+3Y)%b_1y1_2b'2/:1 < 3 2

2 _
3

)
1
2
Found similar formulas for other reducible order 3 systems.

Thank you
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