Third Order A-hypergeometric Functions

Wen Xu

Department of Mathematics Florida State University

November 16, 2017

How to solve a differential equation L_{input} ?

• To solve it: find a sequence of transformations, from an equation *L* with known solutions, to *L*_{input}.

Example

Suppose L_{input} has a solution $(x^{\frac{1}{4}} \cdot B_{\nu}(x^2 + 1))'$ where B_{ν} is the Bessel function. Finding such solutions = finding transformations: $L_{Bessel} \longrightarrow L_1 \longrightarrow L_2 \longrightarrow L_{input}$ $\uparrow (i) \uparrow (ii) \uparrow (iii) \uparrow$ $B_{\nu}(x) \rightarrow B_{\nu}(x^2 + 1) \rightarrow x^{\frac{1}{4}} \cdot B_{\nu}(x^2 + 1) \rightarrow (x^{\frac{1}{4}} \cdot B_{\nu}(x^2 + 1))'$

- (i) change of variables transformation: $S(x) \mapsto S(x^2 + 1)$.
- (ii) exp-product transformation $S(x) \mapsto x^{\frac{1}{4}} \cdot S(x)$.
- (iii) gauge transformation $S(x) \mapsto S(x)'$.

Transformations

Transformations preserving the order

- (i) Change of variables transformation: $S(x) \mapsto S(f)$ with $f \in \mathbb{C}(x) \mathbb{C}$. (Pullback function).
- (ii) Exp-product transformation: $S \mapsto \exp(\int r) \cdot S$ with $r \in \mathbb{C}(x)$.
- (iii) Gauge transformation: $S \mapsto G(S)$ where $\operatorname{GCRD}(G, L) = 1$ and $G(y) = r_0 y + r_1 y' + \ldots + r_{n-1} y^{(n-1)}$ with $r_0, r_1, \ldots, r_{n-1} \in \mathbb{C}(x)$.
- There are transformations that may increase the order and we have algorithm for them.

Transformations (i)(ii)(iii) send S to:

$$\exp(\int r dx)(r_0 S(f) + r_1 S(f)' + \ldots + r_{n-1} S(f)^{(n-1)}).$$

Solve differential equations in terms of well-known functions S.

Globally Bounded

Let $y \in \mathbb{C}[[x]] - \{0\}$, if y has a positive radius of convergence and there exist $c_1, c_2 \in \mathbb{C} - \{0\}$ such that $c_1 \cdot y(c_2x) \in \mathbb{Z}[[x]]$, then y(x) is called *globally bounded*. An irreducible differential equation is called *globally bounded* if it has a globally bounded solution.

Globally bounded order 2 equations are very common, and so far they all turn out to have $_2F_1$ -type solutions. \rightsquigarrow Conjecture

Conjecture 1 (van Hoeij, Kunwar)

Every globally bounded order 2 equation has a $_2F_1$ -type solution or an algebraic solution.

The $_2F_1$ function, also called Gauss hypergeometric function, is:

$$_{2}F_{1}(a,b;c | x) := \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}k!} x^{k}$$

with $(\lambda)_k = \lambda(\lambda + 1) \cdots (\lambda + k - 1)$. It satisfies: x(1-x)y'' + (c - (a+b+1)x)y' - aby = 0.

The univariate generalization of $_2F_1$ is $_pF_q$:

$${}_{p}F_{q}\left(\begin{array}{c}\alpha_{1}\ldots\alpha_{p}\\\beta_{1}\ldots\beta_{q}\end{array}|x\right):=\sum_{k=0}^{\infty}\frac{(\alpha_{1})_{k}\cdot(\alpha_{2})_{k}\cdots(\alpha_{p})_{k}}{(\beta_{1})_{k}\cdot(\beta_{2})_{k}\cdots(\beta_{q})_{k}k!}x^{k}.$$

- p = q + 1: the equation is regular singular. With suitable parameters, pFq function → globally bounded functions.
- $p \neq q + 1$: the equation is irregular singular. Bessel, Airy, Kummer, Whittaker: solvers from Quan Yuan.

Appell's F_1 function is a multivariate generalization of $_2F_1$:

$$F_1(a, b_1, b_2, c \mid x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b_1)_m(b_2)_n}{(c)_{m+n}m!n!} x^m y^n.$$

It satisfies following equations: $\begin{aligned} x(1-x)\partial_x^2F_1 + y(1-x)\partial_x\partial_yF_1 + (c-(a+b_1+1)x)\partial_xF_1 - b_1y\partial_yF_1 - ab_1F_1 = 0, \\ y(1-y)\partial_y^2F_1 + x(1-y)\partial_x\partial_yF_1 + (c-(a+b_2+1)y)\partial_yF_1 - b_2x\partial_xF_1 - ab_2F_1 = 0. \end{aligned}$

- There are many other multivariate generalizations.
- Fortunately, there is a framework to classify all of them in terms of polytopes – called "GKZ" or "A-hypergeometric functions".

Question

- Closed form solutions are very common → good solvers are useful → Fang, Kunwar, Imamoglu: ₂F₁-solver.
- Is this conjecture also true for higher order equations? How about order 3 globally bounded equations?
- The univariate generalization of $_2F_1$ is $_3F_2 \rightsquigarrow$ Question 1:

Question 1

Does every globally bounded order 3 equation have a ${}_{3}F_{2}$ -type solution, or a square of ${}_{2}F_{1}$ -type solution, or an algebraic solution?

To find such solutions,

- Algebraic solution ~> Liouvillian solution
- $_2F_1$ -type solutions: $_2F_1$ -solver from Imamoglu.
- ${}_{3}F_{2}$ -type solutions $\rightsquigarrow {}_{3}F_{2}$ -solver (partial) \rightsquigarrow degree 1 pullback functions.

Question 1: Solving order 3 globally bounded equations

- From OEIS, we didn't find a counter example of Question 1.
- We constructed a counter example of Question 1 using Appell's F₁ function, a multivariate hypergeometric function (substitution → univariate)

So:

- Univariate hypergeometric functions are not enough for solving globally bounded univariate equations of order 3.
- To correct Question 1, at least F₁ should be added → a partial F₁-solver (degree 1 pullback functions).
- Other functions for order 3 may be needed as well:

Univariate	Multivariate
₃ <i>F</i> ₂	$F_1, G_1, G_2, G_3, H_3, H_6$

Table: A-Hypergeometric Functions of Order 3

A-Hypergeometric Functions

- Do we need to add all A-hypergeometric functions in the table to Question 1?
- Do we need solvers for each of them?
- Investigate their relations ~>> Develop multivariate tools:
 - recover transformation (iii) between two multivariate systems
 - recover transformation (ii)+(iii)

More Questions

- Question 2: are globally bounded equations solvable in terms of A-hypergeometric functions?
- Question 3: can we restrict Question 2 to irreducible systems? (are factors of reducible A-hypergeometric systems again A-hypergeometric?)
 - With ₂*F*₁-solver and multivariate tools, we verified Question 3 for order 3 systems.
 - To study order 4 systems, one can use ${}_{3}F_{2}$ -solver and F_{1} -solver.

Outline

- Preliminaries
- $_{3}F_{2}$ -solver
- F_1 -solver
- Multivariate tools
- Applications

Let $L_1, L_2 \in \mathbb{C}(x)[\partial]$ with $\partial = \frac{d}{dx}$. If L_1, L_2 differ by just one transformation, (i),(ii) or (iii), then recovering this transformation is:

(i)	Easy
(ii)	Trivial
(iii)	DEtools[Homomorphisms]

Table: Recover $L_1 \rightarrow L_2$

But if L_1, L_2 differ by two transformations, $L_1 \rightarrow L_2$, then recovering the transformations is much more difficult than using Table twice because the intermediate operator is not known. Operators $L_1, L_2 \in \mathbb{C}(x)[\partial]$ are projectively equivalent if there exist some $r \in \mathbb{C}(x)$ and $G \in \mathbb{C}(x)[\partial]$ s.t. $y \mapsto e^{\int r} \cdot G(y)$ sends solutions of L_1 to solutions of L_2 :

$$L_1 \xrightarrow{(ii)} \xrightarrow{(iii)} L_2.$$

For order 3, to recover (ii)+(iii):

- First recover (ii) (r)
- Then the intermediate operator *M* is known:

$$L_1 \xrightarrow{(ii)} M \xrightarrow{(iii)} L_2.$$

• Use "Homomorphisms" in Maple to compute (iii).

To recover $r \rightsquigarrow$ use data invariant under (iii) \rightsquigarrow generalized exponents modulo "integers"

Let L_2 be an irreducible order 3 operator in $\mathbb{C}(x)[\partial]$. To find its ${}_{3}F_{2}$ -type solutions $e^{\int r} \cdot G({}_{3}F_{2}(a_{1}, a_{2}, a_{3}, b_{1}, b_{2} | f))$ is to find parameters $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$ in ${}_{3}F_{2}$ and transformations from L_1 to L_2 :

 $L_1 \xrightarrow{(i)} \xrightarrow{(ii)+(iii)} L_2$

where L_1 is the minimal operator of ${}_3F_2(a_1, a_2, a_3, b_1, b_2 | x)$.

- It suffices to recover f (degree 1) in (i) and parameters in $_{3}F_{2}$.
- L₁ (i) (ii),(iii) L₂ sends non-removable singularities of L₁ (0,1,∞) to roots of {f,1-f, 1/f}: non-removable singularities of L₂.
- Non-removable singularities of L_2 are known if L_2 is known.

- $\stackrel{(i)}{\longrightarrow}$ preserves generalized exponents when $\deg(f) = 1$.
- ⁽ⁱⁱ⁾(iii)</sup>→ preserves the generalized exponents differences modulo integers.

To recover a_1, a_2, a_3, b_1, b_2 in ${}_3F_2 \rightarrow$ data invariant under (i)+(ii)+(iii) \rightarrow generalized exponents differences mod \mathbb{Z} at non-removable singularities.

F_1 -solver

Let L_2 be an irreducible order 3 operator in $\mathbb{C}(x)[\partial]$. To find its F_1 -type solution $e^{\int r} \cdot F_1(a, b_1, b_2, c \mid u, v)$ is to find parameters a, b_1, b_2, c in F_1 and the transformation from L_1 to L_2 :

$$L_1 \xrightarrow{(ii)} L_2$$

where L_1 is the minimal operator of $F_1(a, b_1, b_2, c | u, v)$ with two pullback functions $u, v \in \mathbb{C}(x)$. We restrict u, v to degree 1.

To recover pullback functions $u, v \rightsquigarrow Non-removable singularities.$

 Non-removable singularities of L₁: roots of {u, 1 - u, ¹/_u, v, 1 - v, ¹/_v, u - v}.

Suppose the set of non-removable singularities of L_2 is A, then

- Candidates for u and v: Mobius transformation f with {0,1,∞} ⊆ f(A).
- Candidates for pairs [u, v]: Roots of $\{u, 1-u, \frac{1}{u}, v, 1-v, \frac{1}{v}, u-v\} = A$.

Divide pairs [u, v] into orbits

Following functions satisfy the same differential equations

•
$$F_1(a, b_1, b_2, c \mid u, v)$$

• $r_1 \cdot F_1(c - a, b_1, b_2, c \mid \frac{u}{u-1}, \frac{v}{v-1})$
• $r_2 \cdot F_1(a, c - b_1 - b_2, b_2, c \mid \frac{u}{u-1}, \frac{v-u}{1-u})$
• $r_3 \cdot F_1(a, b_1, c - b_1 - b_2, c \mid \frac{v-u}{v-1}, \frac{v}{v-1})$
• $F_1(a, b_1, b_2, b_1 + b_2 + a + 1 - c \mid 1 - u, 1 - v)$
where $r_1 = (1 - u)^{-b_1}(1 - v)^{-b_2}, r_2 = (1 - u)^{-a}, r_3 = (1 - v)^{-a}.$

Let $G = \langle R_1, R_2, R_3, R_4 \rangle \subseteq Aut(\mathbb{Q}(u, v))$ where:

•
$$R_1([u, v]) = [\frac{u}{u-1}, \frac{v}{v-1}]$$

• $R_2([u, v]) = [\frac{u}{v-u}]$

•
$$R_2([u, v]) = [\frac{u-1}{u-1}, \frac{v}{1-u}]$$

• $R_3([u, v]) = [\frac{v-u}{u-1}, \frac{v}{1-u}]$

•
$$R_3([u, v]) = [\frac{1}{v-1}, \frac{1}{v-1}]$$

• $R_4([u, v]) = [1 - u, 1 - v].$

Divide all pairs [u, v] into orbits under group $G \cong S_5$.

Now u, v are known, need to find a, b_1, b_2, c in F_1 and transformation:

$L_1 \xrightarrow{(ii)} L_2$

where L_1 is the minimal operator of $F_1(a, b_1, b_2, c | u, v)$.

To recover a_1, a_2, a_3, b_1, b_2

- As in ₃*F*₂-solver, match exponents differences of *L*₁ to *L*₂ and solve for parameters.
- Different relations of *u*, *v* generates different exponents → many cases to consider.

(Projective) Homomorphism

Let $D = \mathbb{C}(x)[\partial]$ and $L_1 \in D - \{0\}$ be the minimal operator of y, $Dy := \{L(y) \mid L \in D\}$. Then $Dy \cong D/DL_1$ is a left *D*-module.

- Transformation $\xrightarrow{(iii)}$ corresponds to a *D*-module isomorphism from $D/DL_1 \rightarrow D/DL_2$.
- Transformation $L_1 \xrightarrow{(ii)(iii)} L_2$ corresponds to an isomorphism from $D/DL_1 \otimes D/D(\partial r) \rightarrow D/DL_2$.
- Task 1. Given *D*-modules M_1 and M_2 , find $\operatorname{Hom}_D(M_1, M_2)$.
- Task 2. Given *D*-modules M_1 and M_2 , find a 1-dimensional module *I* for which there is a non-trivial homomorphism *h* from $M_1 \otimes I$ to M_2 . (Call *h* a projective homomorphism)

Task 1: algorithm for univariate case.

Task 2: algorithm for univariate order 2. Have extended it to univariate order 3.

Now want to extend both tasks to multivariate.

D-modules

- All multivariate order 3 A-hypergeometric functions are bivariate, so let K = C(x, y), D = K[∂_x, ∂_y].
- A *D*-module is a finitely dimensional *K*-vector space on which *D* acts. To turn *Kⁿ* into a *D*-module, take two *n* × *n* matrices *M_x* and *M_y* over *K* and define

$$\partial_{x} \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} = M_{x} \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} + \begin{bmatrix} \partial_{x}(a_{1}) \\ \vdots \\ \partial_{x}(a_{n}) \end{bmatrix},$$
$$\partial_{y} \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} = M_{y} \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} + \begin{bmatrix} \partial_{y}(a_{1}) \\ \vdots \\ \partial_{y}(a_{n}) \end{bmatrix}.$$

- Matrices M_x and M_y satisfy "integrability" $(\partial_x \partial_y = \partial_y \partial_x)$.
- A-hypergeometric functions satisfy differential equations, which could be presented by *D*-modules.

Task 1: Homomorphisms between two *D*-modules

•
$$K = \mathbb{C}(x, y), D = K[\partial_x, \partial_y].$$

- $D_x = K[\partial_x], D_y = K[\partial_y].$
- Let M, M' be D-modules. As K-vector spaces, $M \cong K^n$ and $M' \cong K^{n'}$.
- Goal: compute homomorphisms between M and M' as D-modules. Idea: multivariate \rightarrow univariate.

Theorem

$$\operatorname{Hom}_{D}(M, M') = \operatorname{Hom}_{D_{x}}(M, M') \cap \operatorname{Hom}_{D_{y}}(M, M').$$

Theorem reduces our goal to two tasks.

- Compute $V_1 := \operatorname{Hom}_{D_x}(M, M')$ and $V_2 := \operatorname{Hom}_{D_y}(M, M')$.
- Given two vector spaces V₁, V₂ ⊆ Mat_{n',n}(K), where V₁ is a C(y)-vector space and V₂ is a C(x)-vector space, compute their intersection V₁ ∩ V₂ (a C-vector space).

Compute $\operatorname{Hom}_{D_x}(M, M')$

- Every G ∈ Homomorphisms(L'_x, L_x) in Maple corresponds a homomorphism φ ∈ Hom_{D_x}(M, M').
- An element m ∈ M is a cyclic vector w.r.t. x if D_xm = M.
 Cyclic vector theorem ensures the existence of cyclic vectors.
- Given a D-module and a variable, "CycVec" returns a cyclic vector and its minimal operator w.r.t that variable (L_x, L'_x).
- Hom_{D_x}(M, M') ⊆ Hom_K(M, M') = Mat_{n',n}(K) could be computed from G applying on a basis of M' and the change of basis matrix.
- $\operatorname{Hom}_{D_x}(M, M')$ is a $\mathbb{C}(y)$ -vector space.
- $\operatorname{Hom}_{D_{Y}}(M, M')$ is a $\mathbb{C}(x)$ -vector space.

$\operatorname{Hom}_{D_x}(M, M') \cap \operatorname{Hom}_{D_y}(M, M')$ – Algorithm "Hom"

Let *M* be the *D*-module of $F_1(1, b_1, b_2, c | x, y)$, *I* be the *D*-module of $(y - x)^{1-b_1-b_2}(1 - y)^{b_1-2}(1 - x)^{c-b_1}x^{b_1+b_2-c}$ and *M'* be the *D*-module of $_2F_1(1 - b_1, c - b_1 - b_2, c - b_1 | \frac{y(x-1)}{x(y-1)})$ tensor *I*. Then the $h_1 \in \text{Hom}_{D_x}(M, M')$ and $h_2 \in \text{Hom}_{D_y}(M, M')$ are:

$$h_1 = \begin{bmatrix} \frac{1}{x-1} & -\frac{((b_1+b_2-1)y-c+b_1+1)x+(c-2b_1-b_2)y}{b_1(x-1)^2(x-y)} & \frac{((b_1+b_2+1)y-b_2)x+(1-b_1)y}{b_2(x-y)(x-1)(y-1)} \\ 0 & -\frac{(b_1-1)(b_1+b_2-c)y}{b_1(b_1-c)x(x-1)(y-1)} & \frac{(b_1-1)(b_1+b_2-c)y}{b_2(b_1-c)x(y-1)^2} \end{bmatrix},$$

$$h_{2} = \begin{bmatrix} y - 1 & -\frac{(y - 1) \cdot (((b_{1} + b_{2} - 1)y - c + b_{1} + 1)x + (c - 2b_{1} - b_{2})y)}{b_{1}(x - 1)(x - y)} & \frac{((b_{1} + b_{2} + 1)y - b_{2})x + (1 - b_{1})y}{b_{2}(x - y)} \\ 0 & -\frac{(b_{1} - 1)(b_{1} + b_{2} - c)y}{b_{1}(b_{1} - c)x} & \frac{(b_{1} - 1)(b_{1} + b_{2} - c)(x - 1)y}{b_{2}(b_{1} - c)x(y - 1)} \end{bmatrix}$$

Now $(y-1) \cdot h_1 = \frac{h_2}{x-1}$, recall h_1 is unique up to $\mathbb{C}(y)$ and h_2 is unique up to $\mathbb{C}(x)$. So $(y-1) \cdot h_1 \in \operatorname{Hom}_D(M, M')$.

Task 2: Compute Projective Homomorphisms "projHom"

Goal: Input: D-modules M, M'. Find a 1-dimensional module I for which there is a non-trivial homomorphism from $M \otimes I$ to M'.

- Generalized exponents w.r.t x \rightsquigarrow candidates for I as D_x -module.
- Generalized exponents w.r.t y \rightsquigarrow candidates for I as D_y -module.
- A large set of candidates for *I*: any generalized exponent difference from *M* to *M'* is a candidate.
- Options "injective" and/or "surjective" drastically reduce the number. For example, "surjective" implies: for every generalized exponent of *M*', there must be a generalized exponent of *M* matching it.

Suppose there exists a projective homomorphism from M_1 to M_2 :

• M_1 irreducible \rightsquigarrow injective; M_2 irreducible \rightsquigarrow surjective.

Example

Let M_1 be the *D*-module of $F_1(1, b_1, b_2, c \mid x, y)$ and M_2 be the *D*-module of ${}_2F_1(1 - b_1, c - b_1 - b_2, c - b_1 \mid \frac{y(x-1)}{x(y-1)})$.

- Algorithm "projHom" gives 243 candidates for I.
- But *M*₂ is irreducible. The number of candidates *I* drops to 1 after adding "surjective" option.

Reducible F_1

Let $F_1^D(a, b_1, b_2, c | x, y)$ be the *D*-module of $F_1(a, b_1, b_2, c | x, y)$. It is reducible if and only if

 $a \in \mathbb{Z} \text{ or } b_1 \in \mathbb{Z} \text{ or } b_2 \in \mathbb{Z} \text{ or } c - a \in \mathbb{Z} \text{ or } c - b_1 - b_2 \in \mathbb{Z}.$

D-modules of following functions are projectively equivalent

•
$$F_1(a, b_1, b_2, c \mid u, v)$$

• $F_1(c - a, b_1, b_2, c \mid \frac{u}{u-1}, \frac{v}{v-1})$
• $F_1(a, c - b_1 - b_2, b_2, c \mid \frac{u}{u-1}, \frac{v-u}{1-u})$
• $F_1(a, b_1, c - b_1 - b_2, c \mid \frac{v-u}{v-1}, \frac{v}{v-1})$
• $F_1(a, b_1, b_2, b_1 + b_2 + a + 1 - c \mid 1 - u, 1 - v)$

All reducible $F_1^D(a, b_1, b_2, c \mid x, y) \rightsquigarrow F_1^D(a' \in \mathbb{Z}, b'_1, b'_2, c' \mid x', y')$ with $\mathbb{C}(x', y') = \mathbb{C}(x, y)$.

Reducible F_1

- Algorithm "Hom" gives a homomorphism from $F_1^D(a, b_1, b_2, c \mid x, y) \text{ to } F_1^D(a + 1, b_1, b_2, c \mid x, y):$ $H = \begin{bmatrix} a - b_1 - b_2 & \frac{b_1 + b_2 - c + 1}{x - 1} & \frac{b_1 + b_2 - c + 1}{y - 1} \\ b_1 & -\frac{a + b_1 - c + 1}{x - 1} & -\frac{b_1}{y - 1} \\ b_2 & \frac{-b_2}{x - 1} & -\frac{a + b_2 - c + 1}{y - 1} \end{bmatrix}.$
- *H* is an isomorphism when $a \neq 0 \Rightarrow F_1^D(a \in \mathbb{Z}, b_1, b_2, c \mid x, y)$ $\rightsquigarrow F_1^D(0, b_1, b_2, c \mid x, y)$ and $F_1^D(1, b_1, b_2, c \mid x, y)$.
- "Hom" gives a homomorphism between the dual module of $F_1(1-a, 1-b_1, 1-b_2, 3-c \mid x, y)$ and $F_1^D(a, b_1, b_2, c \mid x, y)$.
- $F_1^D(0, b_1, b_2, c | x, y)$ and $F_1^D(1, b_1, b_2, c | x, y)$ reduce to each other under the dual.

"projHom" gives a projective homomorphism from $F_1^D(1, b_1, b_2, c \mid x, y)$ to the *D*-module of ${}_2F_1(1 - b_1, c - b_1 - b_2, c - b_1 \mid \frac{y(x-1)}{x(y-1)})$.

Theorem

Any irreducible 2^{nd} order submodule or quotient module of $F_1^D(a, b_1, b_2, c | x, y)$ comes from ${}_2F_1$.

A-hypergeometric Horn G_1 , G_2 , H_3 and H_6 relate to F_1 . From their relations, one can obtain the same conclusion of their reducible submodules and quotient modules.

One Reducible Case of G_3

The reducible $G_3(1-2b, b | x, y)$ satisfies the same differential equations as

$$(3y+1)^{\frac{3b}{2}-1}y^{1-2b} \cdot {}_{2}F_{1}(\frac{1}{3}-\frac{1}{2}b,\frac{2}{3}-\frac{1}{2}b,\frac{1}{2}|\frac{(27xy^{2}-9y-2)^{2}}{4(3y+1)^{3}}).$$

How did we find this relation?

- Use ${}_2F_1$ -solver to recover the pullback function and parameters in ${}_2F_1$.
- Use "projHom" to compute projective homomorphisms between D-modules of G_3 and ${}_2F_1$.

Thank You