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Motivation

How to solve a differential equation L;n,,:?

@ To solve it: find a sequence of transformations, from an
equation L with known solutions, to Lispyt-

Example

Suppose Ljsput has a solution (x% - B,(x? + 1)) where B, is the
Bessel function. Finding such solutions = finding transformations:
LBessel — Ll — L2 — Linput

NG @) ! (iif) !
B,(x) = B,(x2+1) = xi-B,(x2+1) = (x# - B,(x2 + 1))

v

o (i) change of variables transformation: S(x) + S(x? + 1).
o (ii) exp-product transformation S(x) — x4 - S(x).
o (iii) gauge transformation S(x) — S(x)’.

)
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Transformations

Transformations preserving the order

o (i) Change of variables transformation: S(x) — S(f) with
f € C(x) — C. (Pullback function).

o (ii) Exp-product transformation: S+ exp( [ r)- S with
r € C(x).

o (iii) Gauge transformation: S — G(S) where
GCRD(G,L)=1and G(y) =y +ny + ...+ rp_1y(™b
with rg, ri,. .., rp—1 € C(x).

@ There are transformations that may increase the order and we
have algorithm for them.

Transformations (i)(ii)(iii) send S to:
eXP(/ rdx)(roS(f) + nS(F) + ...+ ra_1S(F)" D).

Solve differential equations in terms of well-known functions S.



Globally Bounded Equations

Globally Bounded

Let y € C[[x]] — {0}, if y has a positive radius of convergence and
there exist c1, ca € C — {0} such that ¢ - y(c2x) € Z[[x]], then
y(x) is called globally bounded. An irreducible differential equation
is called globally bounded if it has a globally bounded solution.

Globally bounded order 2 equations are very common, and so far
they all turn out to have 5 F;-type solutions. ~» Conjecture

Conjecture 1 (van Hoeij, Kunwar)

Every globally bounded order 2 equation has a »F;-type solution or
an algebraic solution.




Hypergeometric Functions

The > F; function, also called Gauss hypergeometric function, is:

2Fi(a,bic|x) =) (?zgii)'kxk
k=0 '

with (A)k = AA+1)--- (A + k — 1). It satisfies:
x(L—=x)y" +(c—(a+ b+ 1)x)y’ — aby = 0.

The univariate generalization of 5 F; is ,Fg:

ar...a o~ ()i - (@2)k -~ (ap)
£ 1.- px):: Vi (@2)ic - (ap)k k.
i q( Bi...Bq | kz_;)(ﬁl)k'(ﬁz)k"'(ﬁq)kk!
@ p = g+ 1: the equation is regular singular. With suitable
parameters, ,F4 function ~ globally bounded functions.

@ p # g+ 1: the equation is irregular singular. Bessel, Airy,
Kummer, Whittaker: solvers from Quan Yuan. 5 /30




Preliminaries: A-hypergeometric Functions

Appell's F; function is a multivariate generalization of »Fy:

S (a)mtn(b1)m(b2)n
Fi(a, b1, by, c|x,y) = E xMy".
1( 1, D2 ‘ .y) ot (C)m+nm!n!

It satisfies following equations:
X(l — X)@EFl +y(1 e x)(?X@yFl =+ (C e (a + b1 =+ l)X)axFl e blyayFl — ab1F1 = 0,
y(1— y)8§F1 +x(1 = y)0x0yF1 + (c — (a+ b2 + 1)y)0y F1 — boxOxF1 — abaF1 = 0.

@ There are many other multivariate generalizations.

e Fortunately, there is a framework to classify all of them in
terms of polytopes — called “GKZ" or “A-hypergeometric
functions”.
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Question

@ Closed form solutions are very common ~» good solvers are
useful ~» Fang, Kunwar, Imamoglu: »Fi-solver.

@ Is this conjecture also true for higher order equations? How
about order 3 globally bounded equations?

@ The univariate generalization of »F; is 3F> ~~ Question 1:

Does every globally bounded order 3 equation have a 3F,-type
solution, or a square of »Fi-type solution, or an algebraic solution?

To find such solutions,
@ Algebraic solution ~» Liouvillian solution
@ o Fi-type solutions: ,Fi-solver from Imamoglu.

@ 3F,-type solutions ~~ 3Fp-solver (partial) ~~ degree 1 pullback
functions.



Question 1: Solving order 3 globally bounded equations

@ From OEIS, we didn't find a counter example of Question 1.

o We constructed a counter example of Question 1 using
Appell's F; function, a multivariate hypergeometric function
(substitution ~~ univariate)

So:
@ Univariate hypergeometric functions are not enough for
solving globally bounded univariate equations of order 3.
@ To correct Question 1, at least F; should be added ~~ a
partial Fi-solver (degree 1 pullback functions).
@ Other functions for order 3 may be needed as well:

Univariate Multivariate
3f F1, G1, Go, G3, H3, Hs

Table: A-Hypergeometric Functions of Order 3



A-Hypergeometric Functions

@ Do we need to add all A-hypergeometric functions in the table
to Question 17
@ Do we need solvers for each of them?
Investigate their relations ~» Develop multivariate tools:
@ recover transformation (iii) between two multivariate systems
@ recover transformation (ii)-+(iii)

More Questions

@ Question 2: are globally bounded equations solvable in terms
of A-hypergeometric functions?

@ Question 3: can we restrict Question 2 to irreducible systems?
(are factors of reducible A-hypergeometric systems again
A-hypergeometric?)

o With »F;-solver and multivariate tools, we verified Question 3
for order 3 systems.
o To study order 4 systems, one can use 3f»-solver and Fi-solver.




Outline

Preliminaries

3Fp-solver

o

o

@ Fi-solver
@ Multivariate tools
o

Applications
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Preliminaries: Recover one type of Transformations

Let Ly, L € C(x)[0] with & = <. If Ly, Ly differ by just one
transformation, (i),(ii) or (iii), then recovering this transformation
is:

(i) Easy
(ii) Trivial
(iii) | DEtools[Homomorphisms]

Table: Recover L1 — L,

But if Ly, L, differ by two transformations, L; — — L, then
recovering the transformations is much more difficult than using
Table twice because the intermediate operator is not known.
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Projective Algorithm

Operators Ly, Ly € C(x)[0] are projectively equivalent if there exist
some r € C(x) and G € C(x)[d] st. y — e/ - G(y) sends
solutions of L1 to solutions of L:

PRUNIONY

For order 3, to recover (ii)+(iii):
e First recover (ii) (r)
@ Then the intermediate operator M is known:
RN VRN
e Use “Homomorphisms” in Maple to compute (iii).

To recover r ~~ use data invariant under (iii) ~> generalized
exponents modulo “integers”
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3F>-solver

Let Ly be an irreducible order 3 operator in C(x)[9]. To find its
3F>-type solutions elr. G(3F2(a1, a2, a3, by, ba | f)) is to find
parameters as, as, a3, b1, by in 3F> and transformations from L; to
LQS

UGG
where L is the minimal operator of 3F,(a1, a2, a3, b1, b | x).

e It suffices to recover f (degree 1) in (i) and parameters in 3F;.

o [y

(0,1,00) to roots of {f,1 — f, +}: non-removable singularities
of L2.
@ Non-removable singularities of L, are known if Ly is known.

% M L> sends non-removable singularities of L;
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To recover ay, ap, az, by, by

° ﬂ> preserves generalized exponents when deg(f) = 1.

° M preserves the generalized exponents differences modulo

integers.

To recover as, ap, as, b1, by in 3F» ~» data invariant under
(i)+(ii)+(iii) ~~ generalized exponents differences mod Z at
non-removable singularities.
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F1-solver

Let Ly be an irreducible order 3 operator in C(x)[9]. To find its
F1-type solution e/ " - Fi(a, b1, b, c| u,v) is to find parameters
a, by, by, c in F1 and the transformation from L; to Ly:

Ly — ) Ly

where L is the minimal operator of Fi(a, b1, by, ¢ | u, v) with two
pullback functions u, v € C(x). We restrict u, v to degree 1.

To recover pullback functions u, v ~

@ Non-removable singularities of L1'
roots of {u,1 —u,+,v,1— v,;,u v}.
Suppose the set of non-removable singularities of L, is A, then
e Candidates for u and v:
Mobius transformation f with {0,100} C f(A).
e Candidates for pairs [u,v] :
Roots of {u,1—u, L v,1—v,2 u—v}=A

7u> I5/30



Divide pairs [u, v] into orbits

e Fi(a, b1, bp,clu,v)

o r-Fi(c—a b1, brc|l g l,v"l)

° rp-Fi(a,c— b1 — by, b2, c| %5, 1=0)

o r3-Fi(a,b1,c— b1 — b, c| =1, 755)

o Fi(a,bi,bp, b1 +bp+a+1—c|l—ul—v)

whererp = (1—u)™ (1 -v) ™2 n=>01-u)"2 rn=(1-v)"

Let G =< R1, Rz, R3, Ra >C Aut(Q(u, v)) where:

o Ri([u, V])—[u 1>V i
° Ro([u,v]) = u”1 T
o Ra([u,v]) = [V 5

@ Ry([u,v]) = [1 —u,1—v].
Divide all pairs [u, v] into orbits under group G = Ss.
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Recover parameters in f; and r ~» Exponents differences

Now u, v are known, need to find a, by, by, c in F; and
transformation:

L g

where L is the minimal operator of Fi(a, b1, ba, c|u,v).

To recover as, ap, as, by, by

@ As in 3F-solver, match exponents differences of Ly to L, and
solve for parameters.

o Different relations of u, v generates different exponents ~~
many cases to consider.
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(Projective) Homomorphism

Let D = C(x)[0] and L; € D — {0} be the minimal operator of y,
Dy :={L(y)|L € D}. Then Dy = D/DL; is a left D-module.

@ Transformation % corresponds to a D-module isomorphism
from D/DL; — D/DL;.
@ Transformation L % L> corresponds to an isomorphism

r,

from D/DL; @ D/D(0 — r)— D/DL;.
e Task 1. Given D-modules My and My, find Homp(My, Ms).
@ Task 2. Given D-modules My and M>, find a 1-dimensional
module / for which there is a non-trivial homomorphism h
from M; ® | to My. (Call h a projective homomorphism)
Task 1: algorithm for univariate case.

Task 2: algorithm for univariate order 2. Have extended it to
univariate order 3.

Now want to extend both tasks to multivariate.
18 /30



D-modules

@ All multivariate order 3 A-hypergeometric functions are
bivariate, so let K = C(x,y), D = K|[0x, 0,].

@ A D-module is a finitely dimensional K-vector space on which
D acts. To turn K" into a D-module, take two n X n matrices
M, and M, over K and define

a1 a1 Ox(a1)
aX = Mx + )

| @n | | 9n | L x(an)_

_al_ _al_ _8y(31)_
Ol =M |:]+ :

| an | | an |0y (an) ]

e Matrices M, and M, satisfy “integrability” (0x0, = 0,0x).
@ A-hypergeometric functions satisfy differential equations,
which could be presented by D-modules.

19/30



Task 1: Homomorphisms between two D-modules

K =C(x,y), D = K[, 0,].

D, = K[o«], D, = K[0,].

Let M, M’ be D-modules. As K-vector spaces, M = K" and
M = K"

Goal: compute homomorphisms between M and M’ as
D-modules. ldea: multivariate — univariate.

Homp(M, M") = Homp, (M, M") N Homp, (M, M').

Theorem reduces our goal to two tasks.
e Compute Vi := Homp, (M, M’) and V; := Homp (M, M").
@ Given two vector spaces Vi, Vo C Mat,y ,(K), where V4 is a
C(y)-vector space and V, is a C(x)-vector space, compute
their intersection V4 N V5 (a C-vector space).
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Compute Homp (M, M")

Every G € Homomorphisms(L’,, L) in Maple corresponds a
homomorphism ¢ € Homp (M, M’).

An element m € M is a cyclic vector w.r.t. x if Dum = M.
Cyclic vector theorem ensures the existence of cyclic vectors.

Given a D-module and a variable, “CycVec" returns a cyclic
vector and its minimal operator w.r.t that variable (L, L}).

Homp (M, M") C Homy (M, M") = Mat, ,(K) could be
computed from G applying on a basis of M’ and the change
of basis matrix.

Homp, (M, M) is a C(y)-vector space.
Homp, (M, M) is a C(x)-vector space.
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Homp, (M, M) " Homp (M, M') — Algorithm “Hom"

Let M be the D-module of Fi(1, by, by, c|x,y), | be the D-module
of (y — x)t=bi=b2(1 — y)b1=2(1 — x)ebixbitba—c and M’ be the
D-module of 3Fy(1 — by, c — by — by, c b1|y( ) tensor /.
Then the h; € Homp (M, M') and hy € HomDy(I\/l M’) are:

T 1 ((bitbe—1)y—ctbi+1)x+(c—2bi—bo)y  ((bi+ba+1)y—bp)x+(1—b1)y
hy = x—1 b1(x—1)2(x—y) by (x—y)(x—1)(y—1)
O _ (b1 1)(b1+b2 C) (blfl)(b1+b27C)y ?
L bi(b1—c)x(x—1)(y—1) ba(b1—c)x(y—1)?
[y —1 =D ((brtbo—l)y—ctbitl)x+(c=2b1=b)y)  ((brtbrt1)y—bo)x+(1—b1)y
h2 — y bi(x—1)(x—y o(x—y
0 _ (bi—1)(b1+by—c)y (b1—1)(b1tbe—c)(x—-1)y
L bi(b1—c)x by(b1—c)x(y—1)

Now (y —1)-hy = h—l recall hy is unique up to C(y) and hy is
unique up to C(x). So (y — 1) - hy € Homp(M, M").



Task 2: Compute Projective Homomorphisms “projHom”

Goal: Input: D-modules M, M’. Find a 1-dimensional module / for
which there is a non-trivial homomorphism from M ® | to M.

o Generalized exponents w.r.t x ~» candidates for | as
D,-module.

@ Generalized exponents w.r.t y ~» candidates for / as
D,-module.

@ A large set of candidates for /: any generalized exponent
difference from M to M’ is a candidate.

e Options “injective” and/or “surjective” drastically reduce the
number. For example, “surjective” implies: for every
generalized exponent of M’, there must be a generalized
exponent of M matching it.

Suppose there exists a projective homomorphism from M; to Ms:

@ M; irreducible ~ injective; M, irreducible ~~ surjective.
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Example of “projHom”

Let My be the D-module of Fi(1, b1, bz, c| x,y) and M, be the
D-module of 2F1(1 — by, c — by — by, c — by | LX=1)),

x(y—1)

@ Algorithm “projHom" gives 243 candidates for /.

@ But M; is irreducible. The number of candidates / drops to 1
after adding “surjective” option.
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(D) — f
(iy el "y

(ii)y = roy + 1y’
o Fy (a,b;c | ) Globally bounded order 2

Conjecture 1: Produce all?

Order3 : 3F2 (i), (iii)

Fy (a, bl, b2, C ’ x, y) Globally bounded order 3
Question 2: Produce all?

D-modules: (iii) Homomorphisms

(ii)+(iii) projective homomorphism
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Reducible F;

Let FlD(a, bi, by, c| x,y) be the D-module of Fi(a, b1, ba, c| x, y).
It is reducible if and only if
acZobie€ZobeZoc—acZorc—>b—beZ.

D-modules of following functions are projectively equivalent

e Fi(a, b1, by, clu,v)

° Fi(c—a, b1, b, c| 55, 75)
oFl(a,c—bl—bg,bz S

e Fi(a,bi,c— by — by, c| =5, - 1)
oFl(a,bl,bz,b1+b2+a+1—c|1—u,l—v)

All reducible FP(a, by, by, c | x,y) ~ FP(a € Z, by, by, c' | X', y')
with C(x',y") = C(x, y).

26
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Reducible F;

o Algorithm "Hom” gives a homomorphism from
FP(a, by, by, c|x,y) to FP(a+ 1, b1, b2, c|x,y):

bi+by—c+1 bi+by—c+1
a—by—by brthoerl b
at+by—c+1 b
H= by — T v-1
b —by a+g C+1
2 x—1

@ H is an isomorphism when a #£ 0 = F1 (a €Z,b1,br,clx,y)
~ FP(0, b1, by, c | x,y) and FP(1, by, ba, c| x, y).

@ “Hom" gives a homomorphism between the dual module of
Fi(1—a,1—b1,1—bp,3—c|x,y) and FP(a, b1, b2, c| x, ).

o FP(0, by, ba, c|x,y) and FP(1, by, by, c| x,y) reduce to each
other under the dual.
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Reducible F;

“projHom" gives a projective homomorphism from

FP(1, b1, b2, c| x,y) to the D-module of
y(Xfl))_

2F1(1 = b1, — by — by, ¢ — by | 5=y

Any irreducible 2" order submodule or quotient module of
FP(a, b1, b2, c|x,y) comes from 2 F;.

A-hypergeometric Horn G, Gy, H3 and Hg relate to ;. From
their relations, one can obtain the same conclusion of their
reducible submodules and quotient modules.
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Reducible Horn G3

One Reducible Case of G3

The reducible G3(1 — 2b, b| x, y) satisfies the same differential
equations as

2 _ gy —92)2
(3y+1)37b_1y1_2b~2F1(1— 2 1,1 (21”9 -2)

1
372037303l 43y +1)3 )

How did we find this relation?

@ Use > F;-solver to recover the pullback function and
parameters in > Fy.

@ Use “projHom" to compute projective homomorphisms
between D-modules of Gz and >F7.
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Thank You



