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Motivation

How to solve a differential equation Linput?

To solve it: find a sequence of transformations, from an
equation L with known solutions, to Linput .

Example

Suppose Linput has a solution (x
1
4 · Bv (x2 + 1))′ where Bv is the

Bessel function. Finding such solutions = finding transformations:
LBessel −→ L1 −→ L2 −→ Linput
l (i) l (ii) l (iii) l

Bv (x) → Bv (x2 + 1) → x
1
4 · Bv (x2 + 1) → (x

1
4 · Bv (x2 + 1))′

(i) change of variables transformation: S(x) 7→ S(x2 + 1).

(ii) exp-product transformation S(x) 7→ x
1
4 · S(x).

(iii) gauge transformation S(x) 7→ S(x)′.
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Transformations

Transformations preserving the order

(i) Change of variables transformation: S(x) 7→ S(f ) with
f ∈ C(x)− C. (Pullback function).

(ii) Exp-product transformation: S 7→ exp(
∫
r) · S with

r ∈ C(x).

(iii) Gauge transformation: S 7→ G (S) where
GCRD(G , L) = 1 and G (y) = r0y + r1y

′ + . . .+ rn−1y
(n−1)

with r0, r1,. . ., rn−1 ∈ C(x).

There are transformations that may increase the order and we
have algorithm for them.

Transformations (i)(ii)(iii) send S to:

exp(

∫
rdx)(r0S(f ) + r1S(f )′ + . . .+ rn−1S(f )(n−1)).

Solve differential equations in terms of well-known functions S .
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Globally Bounded Equations

Globally Bounded

Let y ∈ C[[x ]]− {0}, if y has a positive radius of convergence and
there exist c1, c2 ∈ C− {0} such that c1 · y(c2x) ∈ Z[[x ]], then
y(x) is called globally bounded. An irreducible differential equation
is called globally bounded if it has a globally bounded solution.

Globally bounded order 2 equations are very common, and so far
they all turn out to have 2F1-type solutions.  Conjecture

Conjecture 1 (van Hoeij, Kunwar)

Every globally bounded order 2 equation has a 2F1-type solution or
an algebraic solution.
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Hypergeometric Functions

The 2F1 function, also called Gauss hypergeometric function, is:

2F1(a, b; c | x) :=
∞∑
k=0

(a)k(b)k
(c)kk!

xk

with (λ)k = λ(λ+ 1) · · · (λ+ k − 1). It satisfies:

x(1− x)y ′′ + (c − (a + b + 1)x)y ′ − aby = 0.

The univariate generalization of 2F1 is pFq:

pFq

(
α1 . . . αp

β1 . . . βq
|x
)

:=
∞∑
k=0

(α1)k · (α2)k · · · (αp)k
(β1)k · (β2)k · · · (βq)kk!

xk .

p = q + 1: the equation is regular singular. With suitable
parameters, pFq function  globally bounded functions.
p 6= q + 1: the equation is irregular singular. Bessel, Airy,
Kummer, Whittaker: solvers from Quan Yuan. 5 / 30



Preliminaries: A-hypergeometric Functions

Appell’s F1 function is a multivariate generalization of 2F1:

F1(a, b1, b2, c | x , y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn.

It satisfies following equations:
x(1− x)∂2xF1 + y(1− x)∂x∂yF1 + (c − (a + b1 + 1)x)∂xF1 − b1y∂yF1 − ab1F1 = 0,

y(1− y)∂2yF1 + x(1− y)∂x∂yF1 + (c − (a + b2 + 1)y)∂yF1 − b2x∂xF1 − ab2F1 = 0.

There are many other multivariate generalizations.

Fortunately, there is a framework to classify all of them in
terms of polytopes – called “GKZ” or “A-hypergeometric
functions”.

6 / 30



Question

Closed form solutions are very common  good solvers are
useful  Fang, Kunwar, Imamoglu: 2F1-solver.

Is this conjecture also true for higher order equations? How
about order 3 globally bounded equations?

The univariate generalization of 2F1 is 3F2  Question 1:

Question 1

Does every globally bounded order 3 equation have a 3F2-type
solution, or a square of 2F1-type solution, or an algebraic solution?

To find such solutions,

Algebraic solution  Liouvillian solution

2F1-type solutions: 2F1-solver from Imamoglu.

3F2-type solutions  3F2-solver (partial)  degree 1 pullback
functions.
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Question 1: Solving order 3 globally bounded equations

From OEIS, we didn’t find a counter example of Question 1.

We constructed a counter example of Question 1 using
Appell’s F1 function, a multivariate hypergeometric function
(substitution  univariate)

So:

Univariate hypergeometric functions are not enough for
solving globally bounded univariate equations of order 3.

To correct Question 1, at least F1 should be added  a
partial F1-solver (degree 1 pullback functions).

Other functions for order 3 may be needed as well:

Univariate Multivariate

3F2 F1, G1, G2, G3, H3, H6

Table: A-Hypergeometric Functions of Order 3
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A-Hypergeometric Functions

Do we need to add all A-hypergeometric functions in the table
to Question 1?
Do we need solvers for each of them?

Investigate their relations  Develop multivariate tools:

recover transformation (iii) between two multivariate systems
recover transformation (ii)+(iii)

More Questions

Question 2: are globally bounded equations solvable in terms
of A-hypergeometric functions?

Question 3: can we restrict Question 2 to irreducible systems?
(are factors of reducible A-hypergeometric systems again
A-hypergeometric?)

With 2F1-solver and multivariate tools, we verified Question 3
for order 3 systems.
To study order 4 systems, one can use 3F2-solver and F1-solver.

9 / 30



Outline

Preliminaries

3F2-solver

F1-solver

Multivariate tools

Applications
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Preliminaries: Recover one type of Transformations

Let L1, L2 ∈ C(x)[∂] with ∂ = d
dx . If L1, L2 differ by just one

transformation, (i),(ii) or (iii), then recovering this transformation
is:

(i) Easy

(ii) Trivial

(iii) DEtools[Homomorphisms]

Table: Recover L1 → L2

But if L1, L2 differ by two transformations, L1 →→ L2, then
recovering the transformations is much more difficult than using
Table twice because the intermediate operator is not known.
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Projective Algorithm

Operators L1, L2 ∈ C(x)[∂] are projectively equivalent if there exist
some r ∈ C(x) and G ∈ C(x)[∂] s.t. y 7→ e

∫
r · G (y) sends

solutions of L1 to solutions of L2:

L1
(ii)−−→ (iii)−−→ L2.

For order 3, to recover (ii)+(iii):

First recover (ii) (r)

Then the intermediate operator M is known:

L1
(ii)−−→ M

(iii)−−→ L2.

Use “Homomorphisms” in Maple to compute (iii).

To recover r  use data invariant under (iii)  generalized
exponents modulo “integers”
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3F2-solver

Let L2 be an irreducible order 3 operator in C(x)[∂]. To find its

3F2-type solutions e
∫
r · G (3F2(a1, a2, a3, b1, b2 | f )) is to find

parameters a1, a2, a3, b1, b2 in 3F2 and transformations from L1 to
L2:

L1
(i)−→ (ii)+(iii)−−−−−→ L2

where L1 is the minimal operator of 3F2(a1, a2, a3, b1, b2 | x).

It suffices to recover f (degree 1) in (i) and parameters in 3F2.

L1
(i)−→
f

(ii),(iii)−−−−→ L2 sends non-removable singularities of L1

(0, 1,∞) to roots of {f , 1− f , 1f }: non-removable singularities
of L2.

Non-removable singularities of L2 are known if L2 is known.
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To recover a1, a2, a3, b1, b2

(i)−→ preserves generalized exponents when deg(f ) = 1.

(ii)(iii)−−−−→ preserves the generalized exponents differences modulo
integers.

To recover a1, a2, a3, b1, b2 in 3F2  data invariant under
(i)+(ii)+(iii)  generalized exponents differences mod Z at
non-removable singularities.
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F1-solver

Let L2 be an irreducible order 3 operator in C(x)[∂]. To find its
F1-type solution e

∫
r · F1(a, b1, b2, c | u, v) is to find parameters

a, b1, b2, c in F1 and the transformation from L1 to L2:

L1
(ii)−−→ L2

where L1 is the minimal operator of F1(a, b1, b2, c | u, v) with two
pullback functions u, v ∈ C(x). We restrict u, v to degree 1.

To recover pullback functions u, v  Non-removable singularities.

Non-removable singularities of L1:
roots of {u, 1− u, 1u , v , 1− v , 1v , u − v}.

Suppose the set of non-removable singularities of L2 is A, then

Candidates for u and v :
Mobius transformation f with {0, 1,∞} ⊆ f (A).

Candidates for pairs [u, v ] :
Roots of {u, 1− u, 1u , v , 1− v , 1v , u − v} = A. 15 / 30



Divide pairs [u, v ] into orbits

Following functions satisfy the same differential equations

F1(a, b1, b2, c | u, v)

r1 · F1(c − a, b1, b2, c | u
u−1 ,

v
v−1)

r2 · F1(a, c − b1 − b2, b2, c | u
u−1 ,

v−u
1−u )

r3 · F1(a, b1, c − b1 − b2, c | v−uv−1 ,
v

v−1)

F1(a, b1, b2, b1 + b2 + a + 1− c | 1− u, 1− v)

where r1 = (1− u)−b1(1− v)−b2 , r2 = (1− u)−a, r3 = (1− v)−a.

Let G =< R1,R2,R3,R4 >⊆ Aut(Q(u, v)) where:

R1([u, v ]) = [ u
u−1 ,

v
v−1 ]

R2([u, v ]) = [ u
u−1 ,

v−u
1−u ]

R3([u, v ]) = [ v−uv−1 ,
v

v−1 ]
R4([u, v ]) = [1− u, 1− v ].

Divide all pairs [u, v ] into orbits under group G ∼= S5.
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Recover parameters in F1 and r  Exponents differences

Now u, v are known, need to find a, b1, b2, c in F1 and
transformation:

L1
(ii)−−→ L2

where L1 is the minimal operator of F1(a, b1, b2, c | u, v).

To recover a1, a2, a3, b1, b2

As in 3F2-solver, match exponents differences of L1 to L2 and
solve for parameters.

Different relations of u, v generates different exponents  
many cases to consider.
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(Projective) Homomorphism

Let D = C(x)[∂] and L1 ∈ D − {0} be the minimal operator of y ,
Dy := {L(y) | L ∈ D}. Then Dy ∼= D/DL1 is a left D-module.

Transformation
(iii)−−→ corresponds to a D-module isomorphism

from D/DL1 → D/DL2.

Transformation L1
(ii)(iii)−−−−→
r ,G

L2 corresponds to an isomorphism

from D/DL1 ⊗ D/D(∂ − r)→D/DL2.

Task 1. Given D-modules M1 and M2, find HomD(M1,M2).

Task 2. Given D-modules M1 and M2, find a 1-dimensional
module I for which there is a non-trivial homomorphism h
from M1 ⊗ I to M2. (Call h a projective homomorphism)

Task 1: algorithm for univariate case.
Task 2: algorithm for univariate order 2. Have extended it to
univariate order 3.
Now want to extend both tasks to multivariate.
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D-modules

All multivariate order 3 A-hypergeometric functions are
bivariate, so let K = C(x , y), D = K [∂x , ∂y ].
A D-module is a finitely dimensional K -vector space on which
D acts. To turn Kn into a D-module, take two n× n matrices
Mx and My over K and define

∂x

a1...
an

 = Mx

a1...
an

+

∂x(a1)
...

∂x(an)

 ,

∂y

a1...
an

 = My

a1...
an

+

∂y (a1)
...

∂y (an)

 .
Matrices Mx and My satisfy “integrability” (∂x∂y = ∂y∂x).
A-hypergeometric functions satisfy differential equations,
which could be presented by D-modules.
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Task 1: Homomorphisms between two D-modules

K = C(x , y), D = K [∂x , ∂y ].

Dx = K [∂x ], Dy = K [∂y ].

Let M,M ′ be D-modules. As K -vector spaces, M ∼= Kn and
M ′ ∼= Kn′ .

Goal: compute homomorphisms between M and M ′ as
D-modules. Idea: multivariate → univariate.

Theorem

HomD(M,M ′) = HomDx (M,M ′) ∩HomDy (M,M ′).

Theorem reduces our goal to two tasks.

Compute V1 := HomDx (M,M ′) and V2 := HomDy (M,M ′).

Given two vector spaces V1,V2 ⊆ Matn′,n(K ), where V1 is a
C(y)-vector space and V2 is a C(x)-vector space, compute
their intersection V1 ∩ V2 (a C-vector space).
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Compute HomDx
(M ,M ′)

Every G ∈ Homomorphisms(L′x , Lx) in Maple corresponds a
homomorphism φ ∈ HomDx (M,M ′).

An element m ∈ M is a cyclic vector w.r.t. x if Dxm = M.
Cyclic vector theorem ensures the existence of cyclic vectors.

Given a D-module and a variable, “CycVec” returns a cyclic
vector and its minimal operator w.r.t that variable (Lx , L

′
x).

HomDx (M,M ′) ⊆ HomK (M,M ′) = Matn′,n(K ) could be
computed from G applying on a basis of M ′ and the change
of basis matrix.

HomDx (M,M ′) is a C(y)-vector space.

HomDy (M,M ′) is a C(x)-vector space.

21 / 30



HomDx
(M ,M ′) ∩ HomDy

(M ,M ′) – Algorithm “Hom”

Let M be the D-module of F1(1, b1, b2, c | x , y), I be the D-module
of (y − x)1−b1−b2(1− y)b1−2(1− x)c−b1xb1+b2−c and M ′ be the

D-module of 2F1(1− b1, c − b1 − b2, c − b1 | y(x−1)x(y−1)) tensor I .

Then the h1 ∈ HomDx (M,M ′) and h2 ∈ HomDy (M,M ′) are:

h1 =

[
1

x−1 − ((b1+b2−1)y−c+b1+1)x+(c−2b1−b2)y
b1(x−1)2(x−y)

((b1+b2+1)y−b2)x+(1−b1)y
b2(x−y)(x−1)(y−1)

0 − (b1−1)(b1+b2−c)y
b1(b1−c)x(x−1)(y−1)

(b1−1)(b1+b2−c)y
b2(b1−c)x(y−1)2

]
,

h2 =

[
y − 1 − (y−1)·(((b1+b2−1)y−c+b1+1)x+(c−2b1−b2)y)

b1(x−1)(x−y)
((b1+b2+1)y−b2)x+(1−b1)y

b2(x−y)
0 − (b1−1)(b1+b2−c)y

b1(b1−c)x
(b1−1)(b1+b2−c)(x−1)y

b2(b1−c)x(y−1)

]
.

Now (y − 1) · h1 = h2
x−1 , recall h1 is unique up to C(y) and h2 is

unique up to C(x). So (y − 1) · h1 ∈ HomD(M,M ′).
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Task 2: Compute Projective Homomorphisms “projHom”

Goal: Input: D-modules M,M ′. Find a 1-dimensional module I for
which there is a non-trivial homomorphism from M ⊗ I to M ′.

Generalized exponents w.r.t x  candidates for I as
Dx -module.

Generalized exponents w.r.t y  candidates for I as
Dy -module.

A large set of candidates for I : any generalized exponent
difference from M to M ′ is a candidate.

Options “injective” and/or “surjective” drastically reduce the
number. For example, “surjective” implies: for every
generalized exponent of M ′, there must be a generalized
exponent of M matching it.

Suppose there exists a projective homomorphism from M1 to M2:

M1 irreducible  injective; M2 irreducible  surjective.
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Example of “projHom”

Example

Let M1 be the D-module of F1(1, b1, b2, c | x , y) and M2 be the

D-module of 2F1(1− b1, c − b1 − b2, c − b1 | y(x−1)x(y−1)).

Algorithm “projHom” gives 243 candidates for I .

But M2 is irreducible. The number of candidates I drops to 1
after adding “surjective” option.
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Reducible F1

Let FD
1 (a, b1, b2, c | x , y) be the D-module of F1(a, b1, b2, c | x , y).

It is reducible if and only if
a ∈ Z or b1 ∈ Z or b2 ∈ Z or c − a ∈ Z or c − b1 − b2 ∈ Z.

D-modules of following functions are projectively equivalent

F1(a, b1, b2, c | u, v)

F1(c − a, b1, b2, c | u
u−1 ,

v
v−1)

F1(a, c − b1 − b2, b2, c | u
u−1 ,

v−u
1−u )

F1(a, b1, c − b1 − b2, c | v−uv−1 ,
v

v−1)

F1(a, b1, b2, b1 + b2 + a + 1− c | 1− u, 1− v)

All reducible FD
1 (a, b1, b2, c | x , y)  FD

1 (a′ ∈ Z, b′1, b′2, c ′ | x ′, y ′)
with C(x ′, y ′) = C(x , y).
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Reducible F1

Algorithm “Hom” gives a homomorphism from
FD
1 (a, b1, b2, c | x , y) to FD

1 (a + 1, b1, b2, c | x , y):

H =

a− b1 − b2
b1+b2−c+1

x−1
b1+b2−c+1

y−1
b1 −a+b1−c+1

x−1 − b1
y−1

b2
−b2
x−1 −a+b2−c+1

y−1

 .
H is an isomorphism when a 6= 0 ⇒ FD

1 (a ∈ Z, b1, b2, c | x , y)
 FD

1 (0, b1, b2, c | x , y) and FD
1 (1, b1, b2, c | x , y).

“Hom” gives a homomorphism between the dual module of
F1(1− a, 1− b1, 1− b2, 3− c | x , y) and FD

1 (a, b1, b2, c | x , y).

FD
1 (0, b1, b2, c | x , y) and FD

1 (1, b1, b2, c | x , y) reduce to each
other under the dual.

27 / 30



Reducible F1

“projHom” gives a projective homomorphism from
FD
1 (1, b1, b2, c | x , y) to the D-module of

2F1(1− b1, c − b1 − b2, c − b1 | y(x−1)x(y−1)).

Theorem

Any irreducible 2nd order submodule or quotient module of
FD
1 (a, b1, b2, c | x , y) comes from 2F1.

A-hypergeometric Horn G1, G2, H3 and H6 relate to F1. From
their relations, one can obtain the same conclusion of their
reducible submodules and quotient modules.
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Reducible Horn G3

One Reducible Case of G3

The reducible G3(1− 2b, b | x , y) satisfies the same differential
equations as

(3y + 1)
3b
2
−1y1−2b · 2F1(

1

3
− 1

2
b,

2

3
− 1

2
b,

1

2
| (27xy2 − 9y − 2)2

4(3y + 1)3
).

How did we find this relation?

Use 2F1-solver to recover the pullback function and
parameters in 2F1.

Use “projHom” to compute projective homomorphisms
between D-modules of G3 and 2F1.
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Thank You
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