Third Order A-hypergeometric Functions

Wen Xu

Department of Mathematics
Florida State University

November 16, 2017

Motivation

How to solve a differential equation $L_{\text {input }}$?

- To solve it: find a sequence of transformations, from an equation L with known solutions, to $L_{\text {input }}$.

Example

Suppose $L_{\text {input }}$ has a solution $\left(x^{\frac{1}{4}} \cdot B_{v}\left(x^{2}+1\right)\right)^{\prime}$ where B_{v} is the Bessel function. Finding such solutions $=$ finding transformations:

$B_{v}(x) \rightarrow B_{v}\left(x^{2}+1\right) \rightarrow x^{\frac{1}{4}} \cdot B_{v}\left(x^{2}+1\right) \rightarrow\left(x^{\frac{1}{4}} \cdot B_{v}\left(x^{2}+1\right)\right)^{\prime}$

- (i) change of variables transformation: $S(x) \mapsto S\left(x^{2}+1\right)$.
- (ii) exp-product transformation $S(x) \mapsto x^{\frac{1}{4}} \cdot S(x)$.
- (iii) gauge transformation $S(x) \mapsto S(x)^{\prime}$.

Transformations

Transformations preserving the order

- (i) Change of variables transformation: $S(x) \mapsto S(f)$ with $f \in \mathbb{C}(x)-\mathbb{C}$. (Pullback function).
- (ii) Exp-product transformation: $S \mapsto \exp \left(\int r\right) \cdot S$ with $r \in \mathbb{C}(x)$.
- (iii) Gauge transformation: $S \mapsto G(S)$ where $\operatorname{GCRD}(G, L)=1$ and $G(y)=r_{0} y+r_{1} y^{\prime}+\ldots+r_{n-1} y^{(n-1)}$ with $r_{0}, r_{1}, \ldots, r_{n-1} \in \mathbb{C}(x)$.
- There are transformations that may increase the order and we have algorithm for them.
Transformations (i)(ii)(iii) send S to:

$$
\exp \left(\int r \mathrm{~d} x\right)\left(r_{0} S(f)+r_{1} S(f)^{\prime}+\ldots+r_{n-1} S(f)^{(n-1)}\right)
$$

Solve differential equations in terms of well-known functions S.

Globally Bounded Equations

Globally Bounded

Let $y \in \mathbb{C}[[x]]-\{0\}$, if y has a positive radius of convergence and there exist $c_{1}, c_{2} \in \mathbb{C}-\{0\}$ such that $c_{1} \cdot y\left(c_{2} x\right) \in \mathbb{Z}[[x]]$, then $y(x)$ is called globally bounded. An irreducible differential equation is called globally bounded if it has a globally bounded solution.

Globally bounded order 2 equations are very common, and so far they all turn out to have ${ }_{2} F_{1}$-type solutions. \rightsquigarrow Conjecture

Conjecture 1 (van Hoeij, Kunwar)

Every globally bounded order 2 equation has a ${ }_{2} F_{1}$-type solution or an algebraic solution.

Hypergeometric Functions

The ${ }_{2} F_{1}$ function, also called Gauss hypergeometric function, is:

$$
{ }_{2} F_{1}(a, b ; c \mid x):=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} x^{k}
$$

with $(\lambda)_{k}=\lambda(\lambda+1) \cdots(\lambda+k-1)$. It satisfies:

$$
x(1-x) y^{\prime \prime}+(c-(a+b+1) x) y^{\prime}-a b y=0 .
$$

The univariate generalization of ${ }_{2} F_{1}$ is ${ }_{p} F_{q}$:

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
\alpha_{1} \ldots \alpha_{p} \\
\beta_{1} \ldots \beta_{q}
\end{array} \right\rvert\, x\right):=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdot\left(\alpha_{2}\right)_{k} \cdots\left(\alpha_{p}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdot\left(\beta_{2}\right)_{k} \cdots\left(\beta_{q}\right)_{k} k!} x^{k} .
$$

- $p=q+1$: the equation is regular singular. With suitable parameters, ${ }_{p} F_{q}$ function \rightsquigarrow globally bounded functions.
- $p \neq q+1$: the equation is irregular singular. Bessel, Airy, Kummer, Whittaker: solvers from Quan Yuan.

Preliminaries: A-hypergeometric Functions

Appell's F_{1} function is a multivariate generalization of ${ }_{2} F_{1}$:

$$
F_{1}\left(a, b_{1}, b_{2}, c \mid x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}\left(b_{1}\right)_{m}\left(b_{2}\right)_{n}}{(c)_{m+n} m!n!} x^{m} y^{n}
$$

It satisfies following equations:
$x(1-x) \partial_{x}^{2} F_{1}+y(1-x) \partial_{x} \partial_{y} F_{1}+\left(c-\left(a+b_{1}+1\right) x\right) \partial_{x} F_{1}-b_{1} y \partial_{y} F_{1}-a b_{1} F_{1}=0$,
$y(1-y) \partial_{y}^{2} F_{1}+x(1-y) \partial_{x} \partial_{y} F_{1}+\left(c-\left(a+b_{2}+1\right) y\right) \partial_{y} F_{1}-b_{2} x \partial_{x} F_{1}-a b_{2} F_{1}=0$.

- There are many other multivariate generalizations.
- Fortunately, there is a framework to classify all of them in terms of polytopes - called "GKZ" or "A-hypergeometric functions".

Question

- Closed form solutions are very common \rightsquigarrow good solvers are useful \rightsquigarrow Fang, Kunwar, Imamoglu: ${ }_{2} F_{1}$-solver.
- Is this conjecture also true for higher order equations? How about order 3 globally bounded equations?
- The univariate generalization of ${ }_{2} F_{1}$ is ${ }_{3} F_{2} \rightsquigarrow$ Question 1 :

Question 1

Does every globally bounded order 3 equation have a ${ }_{3} F_{2}$-type solution, or a square of ${ }_{2} F_{1}$-type solution, or an algebraic solution?

To find such solutions,

- Algebraic solution \rightsquigarrow Liouvillian solution
- ${ }_{2} F_{1}$-type solutions: ${ }_{2} F_{1}$-solver from Imamoglu.
- ${ }_{3} F_{2}$-type solutions $\rightsquigarrow{ }_{3} F_{2}$-solver (partial) \rightsquigarrow degree 1 pullback functions.

Question 1: Solving order 3 globally bounded equations

- From OEIS, we didn't find a counter example of Question 1.
- We constructed a counter example of Question 1 using Appell's F_{1} function, a multivariate hypergeometric function (substitution \rightsquigarrow univariate)

So:

- Univariate hypergeometric functions are not enough for solving globally bounded univariate equations of order 3.
- To correct Question 1 , at least F_{1} should be added \rightsquigarrow a partial F_{1}-solver (degree 1 pullback functions).
- Other functions for order 3 may be needed as well:

Univariate	Multivariate
${ }_{3} F_{2}$	$F_{1}, G_{1}, G_{2}, G_{3}, H_{3}, H_{6}$

Table: A-Hypergeometric Functions of Order 3

A-Hypergeometric Functions

- Do we need to add all A-hypergeometric functions in the table to Question 1?
- Do we need solvers for each of them?

Investigate their relations \rightsquigarrow Develop multivariate tools:

- recover transformation (iii) between two multivariate systems
- recover transformation (ii)+(iii)

More Questions

- Question 2: are globally bounded equations solvable in terms of A-hypergeometric functions?
- Question 3: can we restrict Question 2 to irreducible systems? (are factors of reducible A-hypergeometric systems again A-hypergeometric?)
- With ${ }_{2} F_{1}$-solver and multivariate tools, we verified Question 3 for order 3 systems.
- To study order 4 systems, one can use ${ }_{3} F_{2}$-solver and F_{1}-solver.

Outline

- Preliminaries
- ${ }_{3} F_{2}$-solver
- F_{1}-solver
- Multivariate tools
- Applications

Preliminaries: Recover one type of Transformations

Let $L_{1}, L_{2} \in \mathbb{C}(x)[\partial]$ with $\partial=\frac{d}{d x}$. If L_{1}, L_{2} differ by just one transformation, (i),(ii) or (iii), then recovering this transformation is:

(i)	Easy
(ii)	Trivial
(iii)	DEtools[Homomorphisms]

Table: Recover $L_{1} \rightarrow L_{2}$

But if L_{1}, L_{2} differ by two transformations, $L_{1} \rightarrow \rightarrow L_{2}$, then recovering the transformations is much more difficult than using Table twice because the intermediate operator is not known.

Projective Algorithm

Operators $L_{1}, L_{2} \in \mathbb{C}(x)[\partial]$ are projectively equivalent if there exist some $r \in \mathbb{C}(x)$ and $G \in \mathbb{C}(x)[\partial]$ s.t. $y \mapsto e^{\int r} \cdot G(y)$ sends solutions of L_{1} to solutions of L_{2} :

$$
L_{1} \xrightarrow{(i i)} \xrightarrow{(i i i)} L_{2} .
$$

For order 3, to recover (ii)+(iii):

- First recover (ii) (r)
- Then the intermediate operator M is known:

$$
L_{1} \xrightarrow{(i i)} M \xrightarrow{(i i i)} L_{2} .
$$

- Use "Homomorphisms" in Maple to compute (iii).

To recover $r \rightsquigarrow$ use data invariant under (iii) \rightsquigarrow generalized exponents modulo "integers"

${ }_{3} F_{2}$-solver

Let L_{2} be an irreducible order 3 operator in $\mathbb{C}(x)[\partial]$. To find its ${ }_{3} F_{2}$-type solutions $e^{\int r} \cdot G\left({ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2} \mid f\right)\right)$ is to find parameters $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$ in ${ }_{3} F_{2}$ and transformations from L_{1} to L_{2} :

$$
L_{1} \xrightarrow{(i)} \xrightarrow{(i i)+(i i i)} L_{2}
$$

where L_{1} is the minimal operator of ${ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2} \mid x\right)$.

- It suffices to recover f (degree 1) in (i) and parameters in ${ }_{3} F_{2}$.
- $L_{1} \xrightarrow[f]{(i)} \xrightarrow{(i i),(i i i)} L_{2}$ sends non-removable singularities of L_{1} $(0,1, \infty)$ to roots of $\left\{f, 1-f, \frac{1}{f}\right\}$: non-removable singularities of L_{2}.
- Non-removable singularities of L_{2} are known if L_{2} is known.

To recover $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$

$\xrightarrow{(i)}$ preserves generalized exponents when $\operatorname{deg}(f)=1$.

- $\xrightarrow{(i i)(i i i)}$ preserves the generalized exponents differences modulo integers.

To recover $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$ in ${ }_{3} F_{2} \rightsquigarrow$ data invariant under (i) $+($ ii $)+($ iii $) \rightsquigarrow$ generalized exponents differences $\bmod \mathbb{Z}$ at non-removable singularities.

F_{1}-solver

Let L_{2} be an irreducible order 3 operator in $\mathbb{C}(x)[\partial]$. To find its F_{1}-type solution $e^{\int r} \cdot F_{1}\left(a, b_{1}, b_{2}, c \mid u, v\right)$ is to find parameters a, b_{1}, b_{2}, c in F_{1} and the transformation from L_{1} to L_{2} :

$$
L_{1} \xrightarrow{(i i)} L_{2}
$$

where L_{1} is the minimal operator of $F_{1}\left(a, b_{1}, b_{2}, c \mid u, v\right)$ with two pullback functions $u, v \in \mathbb{C}(x)$. We restrict u, v to degree 1 .

To recover pullback functions $u, v \rightsquigarrow$

- Non-removable singularities of L_{1} : roots of $\left\{u, 1-u, \frac{1}{u}, v, 1-v, \frac{1}{v}, u-v\right\}$.

Suppose the set of non-removable singularities of L_{2} is A, then

- Candidates for u and v :

Mobius transformation f with $\{0,1, \infty\} \subseteq f(A)$.

- Candidates for pairs $[u, v]$:

Roots of $\left\{u, 1-u, \frac{1}{u}, v, 1-v, \frac{1}{v}, u-v\right\}=A$.

Divide pairs $[u, v]$ into orbits

Following functions satisfy the same differential equations

- $F_{1}\left(a, b_{1}, b_{2}, c \mid u, v\right)$
- $r_{1} \cdot F_{1}\left(c-a, b_{1}, b_{2}, c \left\lvert\, \frac{u}{u-1}\right., \frac{v}{v-1}\right)$
- $r_{2} \cdot F_{1}\left(a, c-b_{1}-b_{2}, b_{2}, c \left\lvert\, \frac{u}{u-1}\right., \frac{v-u}{1-u}\right)$
- $r_{3} \cdot F_{1}\left(a, b_{1}, c-b_{1}-b_{2}, c \left\lvert\, \frac{v-u}{v-1}\right., \frac{v}{v-1}\right)$
- $F_{1}\left(a, b_{1}, b_{2}, b_{1}+b_{2}+a+1-c \mid 1-u, 1-v\right)$
where $r_{1}=(1-u)^{-b_{1}}(1-v)^{-b_{2}}, r_{2}=(1-u)^{-a}, r_{3}=(1-v)^{-a}$.
Let $G=<R_{1}, R_{2}, R_{3}, R_{4}>\subseteq \operatorname{Aut}(\mathbb{Q}(u, v))$ where:
- $R_{1}([u, v])=\left[\frac{u}{u-1}, \frac{v}{v-1}\right]$
- $R_{2}([u, v])=\left[\frac{u}{u-1}, \frac{v-u}{1-u}\right]$
- $R_{3}([u, v])=\left[\frac{v-u}{v-1}, \frac{v}{v-1}\right]$
- $R_{4}([u, v])=[1-u, 1-v]$.

Divide all pairs $[u, v]$ into orbits under group $G \cong S_{5}$.

Recover parameters in F_{1} and $r \rightsquigarrow$ Exponents differences

Now u, v are known, need to find a, b_{1}, b_{2}, c in F_{1} and transformation:

$$
L_{1} \xrightarrow{(i i)} L_{2}
$$

where L_{1} is the minimal operator of $F_{1}\left(a, b_{1}, b_{2}, c \mid u, v\right)$.
To recover $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$

- As in ${ }_{3} F_{2}$-solver, match exponents differences of L_{1} to L_{2} and solve for parameters.
- Different relations of u, v generates different exponents \rightsquigarrow many cases to consider.

(Projective) Homomorphism

Let $D=\mathbb{C}(x)[\partial]$ and $L_{1} \in D-\{0\}$ be the minimal operator of y, $D y:=\{L(y) \mid L \in D\}$. Then $D y \cong D / D L_{1}$ is a left D-module.

- Transformation $\xrightarrow{(\text { iii })}$ corresponds to a D-module isomorphism from $D / D L_{1} \rightarrow D / D L_{2}$.
- Transformation $L_{1} \xrightarrow[r, G]{(i i)(i i i)} L_{2}$ corresponds to an isomorphism from $D / D L_{1} \otimes D / D(\partial-r) \rightarrow D / D L_{2}$.
- Task 1. Given D-modules M_{1} and M_{2}, find $\operatorname{Hom}_{D}\left(M_{1}, M_{2}\right)$.
- Task 2. Given D-modules M_{1} and M_{2}, find a 1-dimensional module I for which there is a non-trivial homomorphism h from $M_{1} \otimes I$ to M_{2}. (Call h a projective homomorphism)
Task 1: algorithm for univariate case.
Task 2: algorithm for univariate order 2. Have extended it to univariate order 3 .
Now want to extend both tasks to multivariate.

D-modules

- All multivariate order 3 A-hypergeometric functions are bivariate, so let $K=\mathbb{C}(x, y), D=K\left[\partial_{x}, \partial_{y}\right]$.
- A D-module is a finitely dimensional K-vector space on which D acts. To turn K^{n} into a D-module, take two $n \times n$ matrices M_{x} and M_{y} over K and define

$$
\begin{aligned}
& \partial_{x}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=M_{x}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
\partial_{x}\left(a_{1}\right) \\
\vdots \\
\partial_{x}\left(a_{n}\right)
\end{array}\right], \\
& \partial_{y}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=M_{y}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
\partial_{y}\left(a_{1}\right) \\
\vdots \\
\partial_{y}\left(a_{n}\right)
\end{array}\right] .
\end{aligned}
$$

- Matrices M_{x} and M_{y} satisfy "integrability" $\left(\partial_{x} \partial_{y}=\partial_{y} \partial_{x}\right)$.
- A-hypergeometric functions satisfy differential equations, which could be presented by D-modules.

Task 1: Homomorphisms between two D-modules

- $K=\mathbb{C}(x, y), D=K\left[\partial_{x}, \partial_{y}\right]$.
- $D_{x}=K\left[\partial_{x}\right], D_{y}=K\left[\partial_{y}\right]$.
- Let M, M^{\prime} be D-modules. As K-vector spaces, $M \cong K^{n}$ and $M^{\prime} \cong K^{n^{\prime}}$.
- Goal: compute homomorphisms between M and M^{\prime} as D-modules. Idea: multivariate \rightarrow univariate.

Theorem

$\operatorname{Hom}_{D}\left(M, M^{\prime}\right)=\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right) \cap \operatorname{Hom}_{D_{y}}\left(M, M^{\prime}\right)$.
Theorem reduces our goal to two tasks.

- Compute $V_{1}:=\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right)$ and $V_{2}:=\operatorname{Hom}_{D_{y}}\left(M, M^{\prime}\right)$.
- Given two vector spaces $V_{1}, V_{2} \subseteq \operatorname{Mat}_{n^{\prime}, n}(K)$, where V_{1} is a $\mathbb{C}(y)$-vector space and V_{2} is a $\mathbb{C}(x)$-vector space, compute their intersection $V_{1} \cap V_{2}$ (a \mathbb{C}-vector space).

Compute $\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right)$

- Every $G \in$ Homomorphisms $\left(L_{x}^{\prime}, L_{x}\right)$ in Maple corresponds a homomorphism $\phi \in \operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right)$.
- An element $m \in M$ is a cyclic vector w.r.t. x if $D_{x} m=M$. Cyclic vector theorem ensures the existence of cyclic vectors.
- Given a D-module and a variable, "CycVec" returns a cyclic vector and its minimal operator w.r.t that variable $\left(L_{x}, L_{x}^{\prime}\right)$.
- $\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right) \subseteq \operatorname{Hom}_{K}\left(M, M^{\prime}\right)=\operatorname{Mat}_{n^{\prime}, n}(K)$ could be computed from G applying on a basis of M^{\prime} and the change of basis matrix.
- $\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right)$ is a $\mathbb{C}(y)$-vector space.
- $\operatorname{Hom}_{D_{y}}\left(M, M^{\prime}\right)$ is a $\mathbb{C}(x)$-vector space.

$\operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right) \cap \operatorname{Hom}_{D_{y}}\left(M, M^{\prime}\right)-$ Algorithm "Hom"

Let M be the D-module of $F_{1}\left(1, b_{1}, b_{2}, c \mid x, y\right)$, I be the D-module of $(y-x)^{1-b_{1}-b_{2}}(1-y)^{b_{1}-2}(1-x)^{c-b_{1}} x^{b_{1}+b_{2}-c}$ and M^{\prime} be the D-module of ${ }_{2} F_{1}\left(1-b_{1}, c-b_{1}-b_{2}, c-b_{1} \left\lvert\, \frac{y(x-1)}{x(y-1)}\right.\right)$ tensor I. Then the $h_{1} \in \operatorname{Hom}_{D_{x}}\left(M, M^{\prime}\right)$ and $h_{2} \in \operatorname{Hom}_{D_{y}}\left(M, M^{\prime}\right)$ are:
$h_{1}=\left[\begin{array}{ccc}\frac{1}{x-1} & -\frac{\left(\left(b_{1}+b_{2}-1\right) y-c+b_{1}+1\right) x+\left(c-2 b_{1}-b_{2}\right) y}{b_{1}(x-1)^{2}(x-y)} & \frac{\left(\left(b_{1}+b_{2}+1\right) y-b_{2}\right) x+\left(1-b_{1}\right) y}{b_{2}(x-y)(x-1)(y-1)} \\ 0 & -\frac{\left(b_{1}-1\right)\left(b_{1}+b_{2}-c\right) y}{b_{1}\left(b_{1}-c\right) x(x-1)(y-1)} & \frac{\left(b_{1}-1\right)\left(b_{1}+b_{2}-c\right) y}{b_{2}\left(b_{1}-c\right) x(y-1)^{2}}\end{array}\right]$,
$h_{2}=\left[\begin{array}{ccc}y-1 & -\frac{(y-1) \cdot\left(\left(\left(b_{1}+b_{2}-1\right) y-c+b_{1}+1\right) x+\left(c-2 b_{1}-b_{2}\right) y\right)}{b_{1}(x-1)(x-y)} \\ 0 & -\frac{\left(b_{1}-1\right)\left(b_{1}+b_{2}-c\right) y}{b_{1}\left(b_{1}-c\right) x} & \frac{\left(\left(b_{1}+b_{2}+1\right) y-b_{2}\right) x+\left(1-b_{1}\right) y}{b_{2}(x-y)} \\ 0 & \frac{\left(b_{1}-1\right)\left(b_{1}+b_{2}-c\right)(x-1) y}{b_{2}\left(b_{1}-c\right) x(y-1)}\end{array}\right]$.
Now $(y-1) \cdot h_{1}=\frac{h_{2}}{x-1}$, recall h_{1} is unique up to $\mathbb{C}(y)$ and h_{2} is unique up to $\mathbb{C}(x)$. So $(y-1) \cdot h_{1} \in \operatorname{Hom}_{D}\left(M, M^{\prime}\right)$.

Task 2: Compute Projective Homomorphisms "projHom"

Goal: Input: D-modules M, M^{\prime}. Find a 1-dimensional module I for which there is a non-trivial homomorphism from $M \otimes I$ to M^{\prime}.

- Generalized exponents w.r.t $\mathrm{x} \rightsquigarrow$ candidates for I as D_{x}-module.
- Generalized exponents w.r.t y \rightsquigarrow candidates for I as D_{y}-module.
- A large set of candidates for I: any generalized exponent difference from M to M^{\prime} is a candidate.
- Options "injective" and/or "surjective" drastically reduce the number. For example, "surjective" implies: for every generalized exponent of M^{\prime}, there must be a generalized exponent of M matching it.

Suppose there exists a projective homomorphism from M_{1} to M_{2} :

- M_{1} irreducible \rightsquigarrow injective; M_{2} irreducible \rightsquigarrow surjective.

Example of "projHom"

Example

Let M_{1} be the D-module of $F_{1}\left(1, b_{1}, b_{2}, c \mid x, y\right)$ and M_{2} be the D-module of ${ }_{2} F_{1}\left(1-b_{1}, c-b_{1}-b_{2}, c-b_{1} \left\lvert\, \frac{y(x-1)}{x(y-1)}\right.\right)$.

- Algorithm "projHom" gives 243 candidates for I.
- But M_{2} is irreducible. The number of candidates / drops to 1 after adding "surjective" option.

Reducible F_{1}

Let $F_{1}^{D}\left(a, b_{1}, b_{2}, c \mid x, y\right)$ be the D-module of $F_{1}\left(a, b_{1}, b_{2}, c \mid x, y\right)$. It is reducible if and only if
$a \in \mathbb{Z}$ or $b_{1} \in \mathbb{Z}$ or $b_{2} \in \mathbb{Z}$ or $c-a \in \mathbb{Z}$ or $c-b_{1}-b_{2} \in \mathbb{Z}$.

D-modules of following functions are projectively equivalent

- $F_{1}\left(a, b_{1}, b_{2}, c \mid u, v\right)$
- $F_{1}\left(c-a, b_{1}, b_{2}, c \left\lvert\, \frac{u}{u-1}\right., \frac{v}{v-1}\right)$
- $F_{1}\left(a, c-b_{1}-b_{2}, b_{2}, c \left\lvert\, \frac{u}{u-1}\right., \frac{v-u}{1-u}\right)$
- $F_{1}\left(a, b_{1}, c-b_{1}-b_{2}, c \left\lvert\, \frac{v-u}{v-1}\right., \frac{v}{v-1}\right)$
- $F_{1}\left(a, b_{1}, b_{2}, b_{1}+b_{2}+a+1-c \mid 1-u, 1-v\right)$

All reducible $F_{1}^{D}\left(a, b_{1}, b_{2}, c \mid x, y\right) \rightsquigarrow F_{1}^{D}\left(a^{\prime} \in \mathbb{Z}, b_{1}^{\prime}, b_{2}^{\prime}, c^{\prime} \mid x^{\prime}, y^{\prime}\right)$ with $\mathbb{C}\left(x^{\prime}, y^{\prime}\right)=\mathbb{C}(x, y)$.

Reducible F_{1}

- Algorithm "Hom" gives a homomorphism from

$$
\begin{aligned}
& F_{1}^{D}\left(a, b_{1}, b_{2}, c \mid x, y\right) \text { to } F_{1}^{D}\left(a+1, b_{1}, b_{2}, c \mid x, y\right): \\
& H=\left[\begin{array}{ccc}
a-b_{1}-b_{2} & \frac{b_{1}+b_{2}-c+1}{x-1} & \frac{b_{1}+b_{2}-c+1}{y-1} \\
b_{1} & -\frac{a+b_{1}-c+1}{x-1} & -\frac{b_{1}}{y-1} \\
b_{2} & \frac{-b_{2}}{x-1} & -\frac{a+b_{2}-c+1}{y-1}
\end{array}\right] .
\end{aligned}
$$

- H is an isomorphism when $a \neq 0 \Rightarrow F_{1}^{D}\left(a \in \mathbb{Z}, b_{1}, b_{2}, c \mid x, y\right)$ $\rightsquigarrow F_{1}^{D}\left(0, b_{1}, b_{2}, c \mid x, y\right)$ and $F_{1}^{D}\left(1, b_{1}, b_{2}, c \mid x, y\right)$.
- "Hom" gives a homomorphism between the dual module of $F_{1}\left(1-a, 1-b_{1}, 1-b_{2}, 3-c \mid x, y\right)$ and $F_{1}^{D}\left(a, b_{1}, b_{2}, c \mid x, y\right)$.
- $F_{1}^{D}\left(0, b_{1}, b_{2}, c \mid x, y\right)$ and $F_{1}^{D}\left(1, b_{1}, b_{2}, c \mid x, y\right)$ reduce to each other under the dual.

Reducible F_{1}

"projHom" gives a projective homomorphism from $F_{1}^{D}\left(1, b_{1}, b_{2}, c \mid x, y\right)$ to the D-module of ${ }_{2} F_{1}\left(1-b_{1}, c-b_{1}-b_{2}, c-b_{1} \left\lvert\, \frac{y(x-1)}{x(y-1)}\right.\right)$.

Theorem

Any irreducible $2^{\text {nd }}$ order submodule or quotient module of $F_{1}^{D}\left(a, b_{1}, b_{2}, c \mid x, y\right)$ comes from ${ }_{2} F_{1}$.

A-hypergeometric Horn G_{1}, G_{2}, H_{3} and H_{6} relate to F_{1}. From their relations, one can obtain the same conclusion of their reducible submodules and quotient modules.

Reducible Horn G_{3}

One Reducible Case of G_{3}

The reducible $G_{3}(1-2 b, b \mid x, y)$ satisfies the same differential equations as

$$
(3 y+1)^{\frac{3 b}{2}-1} y^{1-2 b} \cdot{ }_{2} F_{1}\left(\frac{1}{3}-\frac{1}{2} b, \frac{2}{3}-\frac{1}{2} b, \frac{1}{2} \left\lvert\, \frac{\left(27 x y^{2}-9 y-2\right)^{2}}{4(3 y+1)^{3}}\right.\right) .
$$

How did we find this relation?

- Use ${ }_{2} F_{1}$-solver to recover the pullback function and parameters in ${ }_{2} F_{1}$.
- Use "projHom" to compute projective homomorphisms between D-modules of G_{3} and ${ }_{2} F_{1}$.

Thank You

