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ABSTRACT

In this work, we consider the problem of computing the subfield lattice

of a separable and finite degree field extension k(α)/k. That is, we wish to find

all fields L such that k ⊆ L ⊆ k(α). Until recently, the algorithm used by most

Computer Algebraic Systems relied on a combinatorial problem on the roots of the

minimal polynomial f of α over k, which can be a computationally expensive task.

In 2013, another algorithm was presented to find the subfield lattice of

k(α)/k. This method computes a small set of subfields, called principal subfields,

with the property that any other subfield of k(α)/k is the intersection of some of

these principal subfields. Thus, the problem of computing the subfield lattice can

be split into 2 steps: 1) Find the principal subfields of k(α)/k and 2) Compute all

intersections of these subfields. The first step can be executed in polynomial time

however, the second step can not and thus, dominates the algorithm complexity.

Our main goal is to improve the second step, both theoretically and

practically. More specifically, we develop a method to quickly compute all intersec-

tions of principal subfields. While the complexity is still not polynomially bounded

(in fact, it can not be for the total number of subfields is not polynomially bounded),

this new method helps to improve the non-polynomial part of the complexity. Prac-

tical performance is also improved when the number of intersections is large.

We also focus on two special cases: number fields and rational function

fields. For the number field case (i.e., when k = Q), we also present an improvement

for the first step. For the rational function field case, computing the subfield lattice

of the extension K(t)/K(f(t)) defined by f(t) ∈ K(t) yields all decompositions

of the rational function f(t). Our algorithm outperforms previous algorithms for

computing rational function decompositions.
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RESUMO

Neste trabalho, consideramos o problema de calcular o reticulado de

subcorpos de uma extensão separável e de grau finito k(α)/k. Isto é, queremos

encontrar todos os corpos L tais que k ⊆ L ⊆ k(α). Até recentemente, o algoritmo

utilizado pela maioria dos Sistemas Algébricos Computacionais baseava-se em um

problema combinatorial nas ráızes do polinômio minimal f de α sobre k.

Em 2013, um algoritmo foi apresentado para encontrar tais subcorpos.

Este método calcula um pequeno conjunto de subcorpos, chamados de subcorpos

principais, com a propriedade de que todo subcorpo de k(α)/k é a interseção de

alguns destes subcorpos. Assim, calcular o reticulado de subcorpos é dividido em

duas etapas: 1) Encontrar os subcorpos principais de k(α)/k e 2) Calcular todas as

interseções destes subcorpos. A primeira etapa pode ser feita em tempo polinomial.

Entretanto, a segunda etapa não pode e assim, domina a complexidade do algoritmo.

Nosso objetivo é melhorar a segunda etapa, tanto em teoria quanto

na prática. Para isso, mostramos como rapidamente calcular todas as interseções

entre os subcorpos principais. Embora a complexidade continue não sendo limitada

polinomialmente (e também não poderia ser, pois o número total de subcorpos não

o é), conseguimos melhorar a complexidade do algoritmo. Também notamos um

melhoramento na prática, principalmente quando o número de subcorpos é grande.

Além disso, estudamos dois casos especiais: corpos numéricos e o corpo

das funções racionais. Para corpos numéricos (i.e., quando k = Q), também apre-

sentamos um melhoramento para a primeira etapa. No segundo caso, os subcorpos

da extensão k(t)/k(f(t)), definida por f(t) ∈ k(t), nos fornecem decomposições da

função racional f(t). Nosso algoritmo tem uma performance melhor que algoritmos

anteriores para calcular as decomposições de funções racionais.
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RESUMO EXPANDIDO

T́ıtulo: Computando Subcorpos

Este trabalho trata do problema de calcular subcorpos de uma extensão de corpos

separável e de grau finito. Além de ser um problema interessante por si só, o prob-

lema de calcular subcorpos possui diversas aplicações, tais como o cálculo do grupo

de Galois de um polinômio [17, 18], expressar ráızes de um polinômio em termos

de radicais [30] (quando isto for posśıvel), simplificação de expressões algébricas,

decomposição polinomial [10] e de funções racionais [60], entre outros.

O principal resultado da Teoria de Galois afirma que calcular o conjunto

de todos os subcorpos de uma extensão K/k, separável e de grau finito, definida por

um polinômio f ∈ k[x], é equivalente ao problema de calcular certos subgrupos do

grupo de Galois do polinômio f . Por se tratar de um problema clássico, já existem

diversos algoritmos que calculam subcorpos de tais extensões, como por exemplo

[13, 17, 25, 30, 32]. Até recentemente, o algoritmo utilizado na maioria dos Sistemas

Algébricos Computacionais era baseado no trabalho de Klüners & Pohst [28]. Tal

algoritmo funciona bem em certos caso, mas sua complexidade é exponencial no

grau da extensão. Uma ideia deste algoritmo é apresentada no Caṕıtulo 2.

Mais recentemente, van Hoeij et al. [51] também apresentaram um al-

goritmo para calcular os subcorpos de uma extensão finita e separável K/k. Neste

trabalho iremos melhorar este algoritmo, que se baseia no seguinte resultado de [51].

Teorema Seja K/k uma extensão separável e de grau n. Seja α um elemento

primitivo de K e seja f ∈ k[x] seu polinômio minimal. Sejam f1, . . . , fr os fatores

irredut́ıveis de f sobre K e sejam Li := {h(α) ∈ K : h(x) ≡ h(α) mod fi}, i =

1, . . . , r. Para todo subcorpo L de K/k, existe I ⊆ {1, . . . , r} tal que L = ∩i∈ILi.
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Os subcorpos L1, . . . , Lr são chamados de subcorpos principais da ex-

tensão K/k. Aqui, também podemos utilizar uma fatoração f̂1, . . . , f̂r̂ de f sobre

qualquer extensão algébrica K̂ de K. Fazendo isso, podemos obter mais fatores

(isto é, r̂ ≥ r) porém, o conjunto de subcorpos principais permanece o mesmo. Mais

detalhes sobre a escolha de K̂ quando k = Q são dados no Caṕıtulo 4.

Mais geralmente, se L1, . . . , Lr são subcorpos quaisquer de K/k e se

todo subcorpo L de K/k é a interseção de alguns destes subcorpos, dizemos que

{L1, . . . , Lr} é um conjunto gerador para K/k. Assim, o teorema anterior afirma

que os subcorpos principais de K/k formam um conjunto gerador para K/k. Se g é

um fator qualquer de f , também podemos definir o conjunto

Lg = {h(α) ∈ K : h(x) ≡ h(α) mod g(x)}.

O conjunto Lg é um subcorpo de K/k. Seja g1, . . . , gr uma fatoração qualquer de

f sobre K (isto é, gi não necessariamente irredut́ıvel sobre K). Se g1 = x − α e se

Lg1 , . . . , Lgr formam um conjunto gerador para K/k, dizemos que g1, . . . , gr é uma

subfield factorization para K/k. Com estas definições, podemos encontrar todos os

subcorpos de K/k em 3 passos.

1. Encontrar uma subfield factorization g1, . . . , gr para K/k.

2. Calcular os correspondentes subcorpos Lg1 , . . . , Lgr de K/k.

3. Calcular todas as interseções entre Lg1 , . . . , Lgr .

Os passos 1 e 2 podem ser executados em tempo polinomial (desde que

fatoração em K[x] possa ser feita em tempo polinomial). Porém, o passo 3 não

pode ser feito em tempo polinomial. O número de interseções feita no passo 3 pode

ser limitado por rm, onde m é o número total de subcorpos de K/k. Entretanto,

o número m não é limitado polinomialmente no grau n da extensão K/k. Assim,
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o custo do passo 3 é dado por rm vezes o custo de cada inteseção, que é feito

utilizando-se Álgebra Linear sobre k (conforme [51]).

Por simplicidade, vamos supor que a subfield factorization é dada pela

fatoração de f sobre K em fatores irredut́ıveis. Neste trabalho, iremos melhorar

a complexidade do passo 3. Para tanto, vamos representar cada subcorpo L de

K/k através de uma partição PL do conjunto {1, . . . , r}, onde cada i corresponde

ao fator irredut́ıvel fi de f sobre K. A partição PL é definida da seguinte forma:

sobre L, f possui uma fatoração em fatores irredut́ıveis, digamos g1, . . . , gs. Cada

gj é o produto de alguns fi’s. Assim, definimos PL = {{i : fi | gj}, j = 1, . . . , s}.

No exemplo abaixo, f possui cinco fatores irredut́ıveis sobre k(α) e dois fatores

irredut́ıveis sobre L, definindo assim a partição PL.

k(α) f = f1 · f2 · f3 · f4 · f5 PK = {{1}, {2}, {3}, {4}, {5}}

L f = (f1f2f3) · (f4f5) PL = {{1, 2, 3}, {4, 5}}

k f = (f1f2f3f4f5) Pk = {{1, 2, 3, 4, 5}}

A partir deste exemplo, é fácil notar que L ⊆ L′ se, e somente se, PL′

refina PL. O principal resultado que demonstramos neste trabalho é dado a seguir.

Teorema 3.26. Sejam L,L′ subcorpos de K/k e sejam PL e PL′ suas correspon-

dentes partições. Então PL∩L′ = PL ∨ PL′ .

A partição PL ∨ PL′ chama-se junção de PL e PL′ e é definida como

a partição mais fina que é refinada tanto por PL quanto por PL′ . Além disso,

essa partição pode ser calculada utilizando-se o algoritmo dado por Freese [19, 20].

Assim, dados dois subcorpos principais Li, Lj, ao invés de calcularmos diretamente

a interseção Li ∩ Lj utilizando-se Álgebra Linear (passo 1 no esquema abaixo),

iremos primeiro calcular as respectivas partições PLi , PLj (passo 2), calcular a junção
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PLi ∨ PLj (passo 3) e finalmente, calcular um gerador para o subcorpo Li ∩ Lj a

partir da partição PLi ∨ PLj (passo 4).

Li, Lj PLi , PLj

Li ∩ Lj PLi ∨ PLj

(1)

(2)

(4)

(3)

Mais detalhes sobre os passos (2), (3) e (4) deste esquema são apresentados no

Caṕıtulo 3. Para k = Q, este esquema nos permite demonstrar o seguinte resultado.

Teorema 3.47. Seja m o número total de subcorpos de K/k. Quando k = Q,

podemos calcular todos os subcorpos de K/k (em termos de partições) com um custo

esperado de Õ(rn7 + rn5 log2 ‖f‖2 + mr2) operações de bit, onde r é o número de

fatores da subfield factorization e n é o grau da extensão.

Utilizar partições para calcular interseções também melhora o tempo

computacional, especialmente nos casos onde há um grande número de subcorpos

(veja Tabela 4.2). Quando k = Q, van Hoeij et al. [51] também apresentam um

método para calcular os subcorpos principais utilizando o algoritmo LLL [35], evi-

tando assim calcular a fatoração de f sobre Q(α). Utilizando estas ideias, pode-

mos calcular uma subfield factorization para Q(α)/Q e também mostramos como

podemos melhorar este passo (Remark 4.6), reduzindo o número de chamadas do

algoritmo LLL. Para mais detalhes, veja o Caṕıtulo 4.

Finalmente, passamos a nos concentrar em extensões definidas por

funções racionais. Isto é, se f(t) ∈ K(t), com K um corpo qualquer, é uma função

racional, então K(f(t)) é um subcorpo de K(t). Assim, temos definida uma extensão

K(f(t)) ⊂ K(t) de grau finito. Subcorpos desta extensão estão em bijeção com as

decomposições de f , ou seja, L é um subcorpo de K(t)/K(f(t)) se, e somente se,

existe h(t) ∈ K(t) tal que L = K(h(t)) e f = g ◦ h, para algum g(t) ∈ K(t).
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Assim, para encontrar todas as decomposições de f(t) ∈ K(t), cal-

cularemos todos os subcorpos de K(t)/K(f(t)). Para K(t), o elemento t ∈ K(t)

é primitivo e seu polinômio minimal sobre K(f(t)) é dado por1 Φf := fn(x) −

f(t)fd(x) ∈ K(f(t))[x], onde fn(x), fd(x) ∈ K[x] são coprimos e f(t) = fn(t)/fd(t).

Sejam F1, . . . , Fr os fatores irredut́ıveis de Φf sobre K(t) e defina

Li := {g(t) ∈ K(t) : Fi | Φg}, i = 1, . . . , r. (1)

Teoremas 5.11 e 5.12. Seja f(t) ∈ K(t) e sejam F1, . . . , Fr os fatores irredut́ıveis

de Φf sobre K(t). Então o conjunto {L1, . . . , Lr}, com Li definido em (5.17), é o

conjunto dos subcorpos principais de K(t)/K(f(t)).

Dada esta descrição dos subcorpos principais, utilizamos partições para

calcular todas as interseções entre os subcorpos principais, o que simplifica significa-

tivamente o cálculo destas interseções. Para calcular um gerador para cada subcorpo

L de K(t)/K(f(t)), dado pela partição PL, demonstramos o seguinte resultado.

Teorema 5.26. Seja f(t) ∈ K(t) e sejam F1, . . . , Fr os fatores irredut́ıveis de Φf

sobre K(t), com F1 = x − t. Seja PL = {P (1), . . . , P (s)} a partição correspondente

ao subcorpo L. Seja g :=
∏

i∈P (1) Fi, com 1 ∈ P (1) e seja c(t) ∈ K(t) um coeficiente

não constante de g. Então L = K(c(t)).

Estes resultados permitem encontrar todas as decomposições de uma

função racional f(t) ∈ K(t) de forma mais eficiente e com uma melhor complexi-

dade (veja Corolário 5.25 e Tabelas 5.1 e 5.2). Além disso, no caso de f(t) ∈ K[t],

nosso algoritmo possui uma melhor complexidade do que o algoritmo apresentado

por Blankertz [10]. A implementação deste algoritmo de decomposição de funções

racionais foi incluida no Sistema Algébrico Computacional Magma. Para mais de-

talhes, veja o Caṕıtulo 5.

1Aqui podemos sempre assumir que deg(fn(x)) > deg(fd(x)), o que garante que Φf é mônico.
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1 INTRODUCTION

In this chapter we give a basic introduction to the subject, explain what

this dissertation is about and mention our contributions to this field.

1.1 Computer Algebra - Let the computer do the work!

Computer Algebra, also referred to as Symbolic Computation or Alge-

braic Computation, is an area of study concerning the development of algorithms and

software for manipulating mathematical objects. Using the aid of computers, these

algorithms have become an important tool in a researcher’s repertoire, especially if

one has to perform lengthy algebraic computations, which could not be easily done

using pencil and paper.

Unlike numerical computation, symbolic computation is exact (no round-

ing occurs) and one can manipulate mathematical objects involving symbols and

variables without attributing numerical values to them. Furthermore, algebraic so-

lutions are usually more “compact” than numerical solutions and one might obtain

more (accurate) information from an algebraic solution than from a set of (approx-

imate) numerical solutions. However, it has to be noted that this is not always

the case. An algebraic solution to a certain problem might be so complex that not

much information can be obtained. Besides, there are cases where one has to solve

problems that are so complex that they can not be solved through algebraic or ana-

lytic methods (even on a computer), and what remains is - hopefully - a numerical

approach.

A piece of software that performs algebraic manipulations is called a

Computer Algebra System. One of the goals of a Computer Algebra System is to

automate long, tedious and (more often than not) difficult algebraic manipulation
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tasks. Maple and Mathematica are two well-known examples of Computer Algebra

Systems, with a friendly graphical user interface and capable of solving a wide

variety of tasks. Other Computer Algebra Systems can perform more specialized

tasks. One such example is Magma [11], which focuses on Algebra, Number Theory,

Algebraic Geometry and Algebraic Combinatorics, and on which all the algorithms

presented in this dissertation were implemented. Another example is SageMath [46],

an open-source Computer Algebra System which encompasses many existing open

source packages for several areas of research, and whose mission is to create “a viable

free open source alternative to Magma, Maple, Mathematica and Matlab”.

It is not difficult to see that a Computer Algebra System is incredi-

bly helpful for someone who has to perform symbolic computations. In fact, this

research field was born by the need of theoretical physicists to perform such opera-

tions. In 1967, the Dutch theoretical physicist Martinus J. G. Veltman created the

SchoonSchip, which is considered one of the first Computer Algebra System for use

in particle physics (see [59] for more details).

From solving a quadratic polynomial equation to very specific algebraic

computations, Computer Algebra Systems have evolved to solve a wide variety of

problems and are now being used by researchers from several distinct fields. Teaching

in universities also benefits from Computer Algebra Systems. For instance, some

concepts and geometrical properties from Calculus can be easily visualized in a

computer, helping students better understand the inner workings of Mathematics.

Moreover, as we shall see in Section 1.2.2, Computer Algebra Systems

can not only find solutions to a certain problem, but also present them in a simpler

form, which may lead to a better understanding of the whole theory. That is,

Computer Algebra Systems can aid in research, teaching as well as in the real world

applications. Thus, improving the algorithms used by a Computer Algebra System

is of great importance.
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1.2 The Subfield Lattice Problem

1.2.1 What is this Dissertation about?

Computer Algebra Systems can solve a wide variety of problems. One

such problem is to find subfields of a field extension (precise definitions are given

in the next chapter). That is, given a field extension K/k, we want to find fields L

such that k ⊆ L ⊆ K. As we shall see in Subsection 1.2.2, finding such subfields

has several applications.

In this dissertation we are interested in finding all subfields L of K/k,

as well as their inclusion relations. This is often referred to as the Subfield Lattice

problem. Moreover, we are interested in devising an algorithm to perform this task.

In addition to giving a general algorithm, we shall consider two particular cases:

number fields and rational function fields.

As we shall see in Chapter 2, finding subfields of a field extension is

equivalent to finding certain subgroups of the Galois Group of this extension. Find-

ing the Galois Group, and hence, the subfield lattice, is a classical problem and as

such, there are already several results on this matter. In Chapter 2 we give some

basic definitions that will be used throughout this work. We also briefly explain

previous methods to compute the subfield lattice via Galois Theory.

Another method to find the subfield lattice was presented by [51]. This

method focuses on finding a set of r ≤ n principal subfields, where n is the degree of

the extension. These special subfields have the property that any other subfield of

K/k is the intersection of some of them. In Chapter 3 we propose an improvement

for this algorithm and in Chapter 4 we pay close attention to the number field case.

In Chapter 5 we focus on the case where the field extension is a rational

function field extension K(t)/K(f(t)), for some rational function f(t) ∈ K(t). As
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we shall see, the subfield lattice of K(t)/K(f(t)) is closely related to the rational

decompositions of f(t) ∈ K(t). Hence, as a byproduct, we get an algorithm to

compute all decompositions of a rational function.

1.2.2 Applications

Finding the subfield lattice is an interesting problem on its own right.

However, there are several cases where finding subfields of a field extension can give

us additional information or can even simplify our computations. In what follows, we

briefly mention two problems that can be solved/simplified by computing subfields.

The first application we mention is the computation of rational func-

tion decompositions. Given a rational function f(t) := fn(t)/fd(t) ∈ K(t), where

fn(t), fd(t) ∈ K[t] are coprime, we wish to find rational functions g(t) = gn(t)/gd(t) ∈

K(t) and h(t) = hn(t)/hd(t) ∈ K(t), where gn, gd, hn, hd ∈ K[t], such that

f(t) = g ◦ h =
gn (h(t))

gd (h(t))
.

In this case, we say that g ◦ h is a decomposition of f . In order to find g and

h as above, consider the (rational function) field extension defined by f , denoted

by K(t)/K(f(t)). Let L be a subfield of K(t)/K(f(t)). By Lüroth’s Theorem

(see [41] or [48] for more details), there exists a rational function h(t) ∈ K(t) such

that L = K(h(t)). Furthermore, since K(f(t)) ⊆ L = K(h(t)) and hence, f(t) ∈

K(h(t)), there exists g(t) ∈ K(t) such that f = g ◦ h. That is, we have found a

decomposition of f(t). Conversely, if f = g ◦h, with g, h ∈ K(t), then L := K(h(t))

is such that K(f(t)) ⊆ L ⊆ K(t). Thus, we see that there exists a relation between

the decompositions of f(t) ∈ K(t) and the subfields of the extension K(t)/K(f(t)),

and that finding these subfields gives us decompositions of f .

Notice that polynomial decomposition is just a particular case of ratio-

nal function decomposition. Polynomial decomposition allows us to express roots
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of simple polynomials in terms of radicals. For instance, consider the polynomial

f = x4 − 8x3 + 18x2 − 8x+ 2. The polynomial f has the following decomposition

f = (x2 + 1) ◦ (x2 − 4x+ 1).

If a is a zero of x2 + 1 and if b is a root of x2 − 4x + 1 = a, then b is a zero of f .

The zeros of x2 + 1 are ±i. By solving x2 − 4x+ 1 = ±i, we get the 4 zeros of f

2 +
√

3 + i, 2 +
√

3− i, 2−
√

3 + i and 2−
√

3− i.

The second application we mention is the simplification of algebraic

numbers, which in turn can be used to simplify the solutions of a polynomial system.

Consider the following polynomial system x2 − 2xy + y2 − 8 = 0,

x2y2 − (x2 + 2x+ 5)y + x3 − 3x+ 3 = 0.

Many Computer Algebra Systems, such as Maple and Mathematica, will

reduce this problem to a univariate problem, by giving the solutions in terms of the

roots of some univariate polynomial of higher degree. For instance, the command

solve in Maple returns the solution {x = a, y = b}, where a is a root of

f = x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x− 191 (1.1)

and b is given in terms of a by

b = − 17

1809
a7 +

61

3618
a6 +

371

1809
a5− 1757

3618
a4− 563

603
a3 +

6013

3618
a2 +

3184

1809
a+

7175

3618
. (1.2)

Computationally speaking, this solution is “as good as any”. However, a much

simpler solution exists, given by

a =
√

3 +
4
√

2−
√

2 and b =
√

3 +
4
√

2 +
√

2. (1.3)

Obviously, the solution in (1.3) is more pleasing to the eye than the solution pre-

sented in (1.1) and (1.2). So the question is, how do we find the solution in (1.3)?
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First, consider the field extension Q(a)/Q, where a is a root of f . This extension has

subfields Q(α) and Q(β), where α satisfies α2− 3 = 0 and β satisfies β4− 2 = 0 (we

might consider α =
√

3 and β = 4
√

2). Moreover, one can show that Q(a) = Q(α, β).

That is, a ∈ Q(α, β) and we can write a in terms of α and β. By substituting this

expression for a in (1.2) and simplifying, we get the expression for b in (1.3).

Simplifying an algebraic expression, as in the previous example, can be

useful, for instance, for teaching purposes or if one has to display these results in

an article. Thus, computing subfields of a field extension is an important task for

solving/simplifying other problems.

1.2.3 Our Contribution

In order for computers to solve our algebraic problems efficiently and

correctly, one has to devise (efficient and correct) algorithms that perform such

tasks. As mentioned above, this dissertation focuses on the problem of computing all

subfields of a field extension. Several algorithms already exist for finding subfields

of a field extension. In this dissertation we make improvements on an algorithm

presented by van Hoeij et al. [51].

The main improvement relies on the representation of each subfield.

While a subfield can be viewed as a vector space, we represent it by a partition

of {1, . . . , r}, where r ≤ n and n is the degree of the extension. This has several

advantages, as we shall see in Section 3.1.3 (more specifically, Remark 3.14). In

the worst case, our algorithm performs similarly as the original. However, when

the number of subfields is high, we see a big improvement. This leads to a faster

algorithm in general, with significant improvement when the field extension has a

high number of subfields. Since the number of subfields is not polynomially bounded,

the complexity of such algorithm can not be polynomially bounded. Nonetheless, by
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using partitions, we are able to improve the non-polynomially bounded complexity

term (see Theorem 3.47).

In Chapter 3, we give a general algorithm to compute the subfield

lattice of a generic extension K/k. We also analyze two particular cases: number

fields (Chapter 4) and rational function fields (Chapter 5). In the number field

case, we are able estimate the complexity in terms of CPU operations (see Theorem

3.47). In practice, the bottleneck of the algorithm is the LLL computations. We

also present a nearly trivial result (Remark 4.6) that helps reduce the number of

LLL calls. This further improves the performance of our algorithm (see Table 4.2).

In the rational function field case, our algorithm is the first1 to use

principal subfields to find the subfield lattice of this kind of extension field. Previ-

ous methods relied on a combinatorial approach on the factors of a certain bivariate

polynomial, rendering them inefficient as the number of factors grew. Our algorithm

is able to avoid this problem, being capable of solving examples in seconds while

previous algorithms would take hours. Moreover, the subfield lattice of a rational

function field extension K(t)/K(f(t)), where f(t) ∈ K(t) is a rational function, is

closely related to the set of non-equivalent complete decompositions of f(t). When

f(t) ∈ K(t) is a rational function, finding a decomposition of f(t) means finding

g(t), h(t) ∈ K(t) such that f = g ◦ h. Hence, by finding the subfield lattice of

K(t)/K(f(t)), we are able to give an efficient algorithm to find all rational decom-

positions of f(t) (see Table 5.1 for a comparison with a previous method).

Polynomial decomposition is another classical topic in Computer Alge-

bra, with contributions from several authors. Given f ∈ K[t], one wants to find

g, h ∈ K[t] such that f = g ◦ h. When f(t) ∈ K[t] is a polynomial, our algorithm

gives all (polynomial) decompositions of f(t). Polynomial decomposition is often

split into two cases: the tame case (when the characteristic of the field K does not

1to the best of our knowledge.



8

divide deg(g)) and the wild case (when the characteristic of K does divide deg(g)).

In the tame case there are already very efficient algorithms to solve this problem,

e.g. [55], which finds a (single) decomposition with O(n log2 n log log n) field op-

erations. In the wild case, however, our algorithm has better complexity than a

previous method from Blankertz [10].

The results in this dissertation are available in the article [44], ac-

cepted for publication in the Journal of Symbolic Computation, and in the con-

ference paper [3], presented at the 42nd International Symposium on Symbolic

and Algebraic Computations (ISSAC ’17). The first article encompasses Chap-

ters 3 and 4, while the results in Chapter 5 can be seen in the conference paper.

Another contribution of our work is that the implementation (in Magma [11]) of

both algorithms, for computing the subfield lattice of a number field and the de-

compositions of rational functions, which are freely available to the scientific com-

munity at http://www.math.fsu.edu/~jszutkos/MySubfields and http://www.

math.fsu.edu/~jszutkos/Decompose, respectively. Moreover, the implementation

of the function decomposition algorithm was added to Magma, and is available in

all releases beginning at v2.23.1.

1.3 Further Remarks

We make some further remarks before jumping into the fun part. We

shall mention some techniques that will be used throughout this work. We also give

some details about the complexity we use, that is, we give the complexity of the

operations we will be using in our algorithms.
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1.3.1 Techniques Used

In order to compute the subfield lattice, several techniques from Com-

puter Algebra are used. We do not intend to explain all these techniques in great

detail. However, we do feel obligated to (at least) briefly mention them.

Let K/k be a field extension. If this extension is finite and separable,

we always have an associated polynomial f ∈ k[x] (the minimal polynomial of

a primitive element of K) and more often than not, we will be interested in the

factorization of f ∈ k[x] over K (or even an extension of K). That is, given

f ∈ k[x] ⊆ K[x], we want to find polynomials f1, . . . , fr ∈ K[x] such that

f = f1 · · · fr. (1.4)

The polynomials fi, 1 ≤ i ≤ r, are called factors of f . A polynomial f is said to be

irreducible over K if f is not a constant and its only (non-constant) factor over K

is f . The factorization in (1.4) is an irreducible factorization if all fi are irreducible.

When k = Q, factorization over a finite extension of k can be done

using Trager’s algorithm [47] or the algorithm proposed by Belabas [8], which is a

generalization of van Hoeij’s factorization algorithm [49] to the number field case.

Factorization over Q can be computed using van Hoeij’s algorithm [49] (see also

[27]). For factorization algorithms over finite fields, see [58] and [57, Chapter 14].

Let f ∈ R[x], where R is a commutative ring with unity. Let m ⊂ R

be an ideal and let f1, f2 ∈ R[x] such that f ≡ f1f2 mod m. We might be interested

in the “lifted” factorization of f modulo m2. That is, we want to find f̂1, f̂2 such

that f ≡ f̂1f̂2 mod m2, f̂1 ≡ f1 mod m and f̂2 ≡ f2 mod m. This process is often

referred to as Hensel Lifting. For further details, see [57, Chapter 15]. Hensel Lifting

will be used in the following context. Let f ∈ Q[x] and let p be a prime number

(not dividing the denominator of the coefficients of f). We will be interested in the

factorization of f over Qp, the p-adic completion of Q. That is, we want to find
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f̂1, . . . , f̂r ∈ Qp[x] such that f = f̂1 · · · f̂r. However, like factorization over R or

C, one cannot always compute the factors f̂i with infinite precision. This is where

Hensel Lifting is used. If f̄1, . . . , f̄r are the irreducible factors of f over pZ, then

f̂i ≡ f̄i mod p and for a given a ∈ N, using Hensel Lifting, we can compute factors

f
(a)
1 , . . . , f

(a)
r ∈ paZ such that

f ≡ f
(a)
1 · · · f (a)

r mod pa (1.5)

and f̂i ≡ f
(a)
i mod pa. Moreover, the factorization in (1.5) is said to be an approx-

imation with accuracy (or precision) a of the factorization f̂1 · · · f̂r. Working with

f
(a)
i , if the accuracy a is high enough, is often sufficient.

Another paramount technique from Computer Algebra we shall fre-

quently use is the LLL algorithm, which computes a reduced basis for a given lattice.

Originally, this algorithm was used to present the first polynomial time algorithm

for polynomial factorization over Q. However, the LLL algorithm found numerous

applications. We shall briefly mention how this technique works. Let v1, . . . , vn ∈ Rn

be linearly independent. The lattice generated by v1, . . . , vn is the set (Z-modulo)

L = {c1v1 + · · ·+ cnvn ∈ Rn : c1, . . . , cn ∈ Z},

and v1, . . . , vn are said to be a basis for L. A natural question is to compute a

shortest vector in a given lattice L (i.e., v0 is a shortest vector in L if v ∈ L and

‖v‖ < ‖v0‖ then v = 0). This is also an important question, as many problems can

be re-stated as finding a shortest vector inside some particular lattice. However,

computing a shortest vector v0 is NP-hard (see Ajtai [1]).

Let L be a lattice generated by v1, . . . , vn and let v∗1, . . . , v
∗
n be its Gram-

Schmidt orthogonal basis. Then one can show that ‖v‖ ≥ min{‖v∗1‖, . . . , ‖v∗n‖}, for

any non-zero v ∈ L (see [57, Lemma 16.7]). That is, if the vectors v∗1, . . . , v
∗
n are

inside L, then one of the v∗i is a shortest vector of L. Unfortunately, the vectors

v∗1, . . . , v
∗
n are not usually inside L. We say that a basis v1, . . . , vn of L is reduced if
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the vectors v∗1, . . . , v
∗
n satisfy

‖v∗i ‖2 ≤ 2‖v∗i+1‖2, i = 1, . . . , n− 1.

Thus, if v1, . . . , vn is a reduced basis, then ‖v1‖ ≤ 2(n−1)/2‖v‖, where v is any non-

zero vector of L (see [57, Theorem 16.9]). That is, if we can compute a reduced

basis, then we have a vector v1 ∈ L which is at most 2(n−1)/2 times larger than a

shortest vector of L. For many problems, we can design a lattice in such a way that

the solution to our problem is encoded in a relatively short vector inside this lattice.

Hence the importance of the LLL algorithm: it allows us to compute a reduced

basis (and hence, relatively short vectors) in polynomial time. Fortunately, for most

applications, this will suffice.

Let us see an example. Let φ ∈ R be a real number. Suppose that we,

somehow, have an approximation r = 1.618034 of φ. Moreover, suppose we know

that φ is the root of a quadratic polynomial f ∈ Z[x] with coefficients bounded

by 10 in absolute value. How do we find f , knowing only this little information?

Consider the lattice L generated by v1 = [1, 0, 0, Cr2], v2 = [0, 1, 0, Cr] and v3 =

[0, 0, 1, C], where C = 10000. A random element in the lattice L has the form

[a, b, c, C(ar2+br+c)], for a, b, c ∈ Z. When a, b, c are such that f = ax2+bx+c, then

C(ar2+br+c) ≈ 0, and the vector [a, b, c, C(ar2+br+c)] is relatively short (i.e., has a

relatively small norm compared to vectors which do not correspond to the solution).

The LLL algorithm is able to find the vector [a, b, c, C(ar2 + br + c)], provided the

constant C is appropriately chosen. By applying LLL to the vectors v1, v2 and v3

above, we obtain the basis b1 = [1,−1,−1, 0.000250], b2 = [−7, 41,−48, 131.558249]

and b3 = [−11, 66,−78,−81.302750]. Among these vectors, b1 gives a polynomial

f = x2 − x − 1, which satisfies the coefficient bound given above. In this case,

because of the information given, we are able to prove that φ is a root of x2−x− 1.

The constant C in the previous example was used to separate vectors

corresponding to solutions from other vectors, and depends on how good the approx-
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imation r is. For the LLL algorithm to work, we need to ensure that the vectors we

do not want are at least 2
n−1

2 times bigger than the vectors we do want. If we can con-

struct a lattice with this property, then the short vectors in a reduced basis will span

the solutions of our problem. If v0 is a shortest vector in L, then ‖v0‖n ≤ | det(L)|,

where L is the n×n matrix whose columns are the vectors v1, . . . , vn forming a basis

of L (when the lattice has rank < n, we use
√
| det(LTL)|). Hence, if we want vS ∈ L

to be a shortest vector, than we need to, at least, ensure that ‖vS‖n ≤ det(L). This

can be used as a starting point for choosing the constant C.

The LLL algorithm was devised by Lenstra, Lenstra and Lovász [35],

and it was used to give the first polynomial time algorithm for factorization of

polynomials over Q. Several improvements have since been made. We cite [53], who

presented an algorithm LLL with removals, which returns a basis of a sublattice of

the original lattice, which still contains the desired vectors.

1.3.2 On the Complexity of the Algorithms

Throughout this dissertation, we shall mention different types of algo-

rithms. A deterministic algorithm will produce the same output every time it is

executed (with the same input, of course). A deterministic algorithm can be com-

pared to a mathematical function, which associates a unique value for every element

of its domain. A randomized algorithm, on the other hand, uses randomness as part

of its logic. Usually, randomized algorithms are faster (on average) than the corre-

sponding deterministic versions (when they exist). However, they might not always

produce a correct output or even terminate. It is important to distinguish between

Monte Carlo algorithms, which are randomized algorithms where the output has a

(usually small) probability of being wrong, and Las Vegas algorithms, which also use

randomness, but whose output is always correct. We shall present deterministic al-
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gorithms and, whenever possible, a randomized version. The randomized algorithms

in this dissertation are all of the Las Vegas type.

Whenever we write an algorithm, we are also often interested in its

time complexity, which quantifies the number of operations the algorithm executes

in terms of the input size. This number is given using the “Big Oh” notation O,

which is more concerned with the “rate of growth” rather than the precise number

of operations performed by the algorithm. That is, f(n) ∈ O(g(n)) if there exists

N ∈ N and c ∈ N such that f(n) ≤ cg(n), for all n ≥ N . For the sake of simplicity,

we will often use the soft-O notation Õ, which ignores logarithmic factors. More

precisely, f(n) ∈ Õ(g(n)) if there exists k ∈ N such that f(n) ∈ O(g(n) logk g(n)).

This might be useful for simplifying results. For more details, see [57, Section 25.7].

In what follows we list the complexity of basic operations we shall use

in our algorithms. This should help us when analyzing the complexity of our algo-

rithms. When a, b ∈ Z are bounded by B in absolute value, arithmetic operations

(+,−,×,÷) and the equality test can be computed with O(logB) CPU operations.

If a, b ∈ Q, with numerators and denominators bounded by B, then the operations

(+,−,×,÷) can also be computed with O(logB) CPU operations. For a finite field

Fp of characteristic p, any element a ∈ Fp is bounded by p in absolute value. Hence,

any arithmetic operation in Fp costs O(log p) CPU operations.

Let K be a field and let M(n) be a multiplication time for K[x], that

is, given two polynomials f, g ∈ K[x]<n, we can compute f · g with M(n) arithmetic

operations in K. Classical algorithms have M(n) = 2n2 and using Fast Fourier

Transform multiplication yields M(n) = n log n (see [24]). We recall that the func-

tion M is super-additive: M(n1) + M(n2) ≤ M(n1 + n2), see [57, Chapter 8.3].

Furthermore, we can compute gcd(f, g) ∈ K[x] with O(M(n) log n) arithmetic op-

erations in K, see [57, Chapter 10]. Moreover, if f ∈ K[x] is irreducible with degree

n, then arithmetic in K[x]/ 〈f(x)〉 costs O(M(n)) operations in K (see [57, Chapter
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11]). To give the complexity of these operations in terms of CPU operations one

would need a bound for all coefficients involved in these operations, which is usually

a hard task. Finally, given a linear system S, with m equations in r variables defined

over K, we can compute a basis of solutions of S with O(mrω−1) field operations [9,

Chapter 2], where 2 < ω ≤ 3 is a feasible matrix multiplication exponent. A number

ω is a feasible matrix multiplication exponent if we can multiply two n× n matrices

with O(nω) operations. The classical algorithm shows that ω = 3 is feasible. The

smallest known feasible matrix multiplication exponent is ω = 2.3728 [33].

Given f ∈ Z[x] of degree n, ‖f‖∞ ≤ pl, and a factorization of f mod p

given by f ≡ f1 · · · fr mod p, we can compute (see [57, Theorem 15.18]) the lifted

factorization of f mod pl with complexity

O((M(n)M(lµ) +M(n) log nM(µ) + nM(µ) log µ) log r), µ = log p.

For the precision l given in Remark 2.16 and using fast arithmetic, this complexity

can be restated as Õ(n3 + n2 log ‖f‖)) CPU operations. We will also need the

complexity of an LLL call. In [53, Theorem 6], the complexity of one call of the

algorithm LLL with removals, is given by

O((r +N)c3(c+ logB)[logX + (r +N)(c+ logB)]),

where r, c,N,B and X are parameters of the lattice. For a given factor fi of f and

the lattice we will be using in Chapter 3, these parameters have values r = n =

deg(f), N = di = deg(fi), c = n + di, X is a bound for the entries in the matrix

that contains a basis of the lattice and is given by pl (where l is the accuracy from

Remark 2.16), and B is an upper bound for the vectors in the desired sublattice,

which is given by B = n2‖f‖ (see Theorem 2.15). By substituting these values and

simplifying, we get that the complexity for one LLL call (for our particular case) is

given by O(n7 + n5 log2 ‖f‖) CPU operations.
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2 BASIC DEFINITIONS AND KNOWN

RESULTS

In this chapter we give some basic definitions. We also recall one of the

main result of Galois Theory, which gives a bijection between the set of subfields

of a field extension and subgroups of the Galois Group of this extension. More

details regarding fields, groups and the Galois Theory can be found in most Abstract

Algebra books (e.g., [42]). We also mention previous approaches to compute the

subfield lattice of a field extension K/k of finite degree. We shall mainly focus on

two approaches, the first for its direct connection with Galois Theory, and the second

which is the method we shall improve in this dissertation.

The first approach explicitly uses one of the main results given by Galois

Theory, that the subfield lattice is in bijection with subgroups of its Galois group.

This is presented in Section 2.2.2. All results presented in this section are proved in

Dixon [17], Klüners & Pohst [28] or in the references therein. The second approach is

presented in Section 2.4. This approach searches for a set of intersection-generating

subfields of K/k. These special subfields have the important property that any

subfield of K/k is the intersection of some of these subfields. This was first presented

by van Hoeij et al. [51]. Other approaches are briefly mentioned in Section 2.3.

Although we do not use the first approach (even though some ideas from

both methods are recurrent throughout this work), its direct connection with Galois

Theory is worth mentioning. The remaining chapters are devoted to improving the

method from van Hoeij et al.[51].
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2.1 Basic Definitions

In this section we recall some basic definitions regarding fields, field

extensions and Group Theory that will be used throughout the entire work.

2.1.1 Fields

We begin by formally defining a field. In order to do so, let us first

define a ring. A ring (R,+, ·) is an algebraic structure composed of a nonempty set

R, equipped with binary operations of addition + : R × R → R and multiplication

· : R×R→ R, such that

1. ∀ a, b, c ∈ R, (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c).

2. ∀ a, b ∈ R, a+ b = b+ a and a · b = b · a.

3. ∃ 0 ∈ R and ∃ 1 6= 0 ∈ R such that a+ 0 = a and a · 1 = a, ∀ a ∈ R.

4. ∀ a ∈ R, ∃ a′ ∈ R such that a+ (a′) = 0.

5. ∀ a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

As usual, we denote the product of two elements a, b ∈ R simply by

ab. The element a′ ∈ R in property 4 is called the additive inverse of a ∈ R, and is

commonly denoted by −a. When the operations of addition and multiplication are

clear, we shall denote the ring (R,+, ·) simply by R.

An ideal p of R is a non-empty subset of R such that x − y ∈ p, for

every x, y ∈ p and ab ∈ p, for every a ∈ p and b ∈ R. Moreover, for s ⊂ R, we define

the ideal 〈s〉 generated by s as the set of all sums of products of elements of s with

coefficients in R. An ideal p is said to be principal if p = 〈p〉, for some p ∈ R. An

ideal defines a equivalence relation ∼ on R defined by a ∼ b if an only if, a− b ∈ p.
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The set of equivalence classes defined by this relation is called the residue class ring,

or the quotient ring, of R by p, and is usually denoted by R/p.1 Let (R1,+, ·) and

(R2,⊕,�) be rings. An homomorphism is a map φ : R1 → R2 that satisfies

a) ∀ a, b ∈ R1, φ(a · b) = φ(a)� φ(b)

b) ∀ a, b ∈ R1, φ(a+ b) = φ(a)⊕ φ(b).

If the homomorphism φ : R1 → R2 is a bijection, then φ is said to be an

isomorphism. Moreover, if R1 = R2, then φ : R1 → R1 is called an endomorphism

and if φ : R1 → R1 is also bijective, then φ is an automorphism. If a ring (R,+, ·)

also satisfies the following property

6. ∀ a, b ∈ R, ab = 0 implies a = 0 or b = 0.

then (R,+, ·) is an integral domain. If (R,+, ·) is not an integral domain, there are

a, b ∈ R such that ab = 0 and neither a = 0 nor b = 0. In this case, a and b are

called zero divisors of (R,+, ·). If an integral domain (R,+, ·) satisfies

7. ∀ a ∈ R \ {0}, ∃ a′′ ∈ R such that a · a′′ = 1.

then (R,+, ·) is a field. The element a′′ ∈ R in 7. is the multiplicative inverse of

a ∈ R, and is denoted by 1/a. Hence, a field is but a ring with no zero divisors and

where every nonzero element has a multiplicative inverse. Rings, integral domains

and fields are usually denoted by the letter representing their set of elements. For

instance, a field (K,+, ·) is denoted simply by K, provided the definition of the

operations of addition and multiplication are clear.

Let K be a field. A subfield k of K is a subset of K containing the

elements 0 and 1, closed under addition, multiplication and multiplicative inverses,

1The difference between a field extension K/k and a quotient ring R/p should be clear.
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and with its own operations defined by the restriction over k of the operations of

addition and multiplication defined over K. A field extension K/k is composed of

a field K and a subfield k of K. A field L is said to be a subfield of the extension

K/k if k ⊆ L ⊆ K.

Let K/k be a field extension. The field K can be seen as a vector space

over k with the induced operations. The degree of the extension K/k is denoted by

[K : k] and is defined as the dimension of the vector space K over the base field k.

If [K : k] is finite, then the extension K/k is said to be algebraic. Otherwise, K/k

is transcendental. Furthermore, if L is a subfield of K/k, then the following (Short)

Tower Law holds

[K : k] = [K : L] · [L : k]. (2.1)

Remark 2.1. Since we will be implementing algorithms to compute subfields, it

is worth mentioning how fields can be represented. We will pay close attention to

algebraic number fields, that is, finite extensions of Q. Every number field can be

represented by Q(α), for a suitable algebraic number α. The minimal polynomial

of α over Q will be represented by f ∈ Q[x]. It is well known that the field Q(α)

is isomorphic to Q[x]/ 〈f〉. If n = deg(f), then any element β ∈ Q(α) can be

represented as β = c0 + c1α + · · · cn−1α
n−1, for some c0, c1, . . . , cn−1 ∈ Q. That is,

Q(α) can be seen as a Q-vector space with basis {1, α, α2, . . . , αn−1}. A subfield L

of Q(α) is normally given by a generator β ∈ Q(α), where β = h(α), for some

h(x) ∈ Q[x] (the polynomial h is called the embedding of L into Q(α)), and the

minimal polynomial g ∈ Q[x] of β over Q. We notice that two subfields might

have the same minimal polynomial, hence computing the embedding is necessary to

distinguish subfields. Alternatively, one can uniquely represent a subfield L of Q(α)

using the minimal polynomial g ∈ L[x] of α over L. Moreover, the coefficients of

the polynomial g generate L (see Theorem 3.4).
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Let K be an algebraic number field and let α ∈ K. We say that α is

an algebraic integer if α satisfies a polynomial equation f(α) = 0, with f ∈ Z[x]

monic. The ring of integers OK of K is defined as the set of all algebraic integers

of K. Moreover, if f ∈ OK [x] is monic and g is a monic factor of f over K, then

g ∈ OK [x] (see [8, Lemma 3.1]).

Given f(x) ∈ k[x], the splitting field of f is the smallest extension K of

k such that f(x) splits into linear factors in K[x]. A polynomial f ∈ k[x] is said to

be squarefree if g2 | f , with g ∈ k[x], then g ∈ k. If f(x) has no repeated roots over

its splitting field, then f(x) is said to be separable (over perfect fields, separability

and “squarefreeness” are equivalent). Moreover, an extension K/k is said to be

separable if for every α ∈ K, its minimal polynomial mα(x) ∈ k[x] is separable.

For a field extension K/k, a k-automorphism of K is an automorphism

φ : K → K such that φ(a) = a, for every a ∈ k. We say that φ fixes k. The set

Aut(K/k) of k-automorphisms of K is very important, as we shall see below.

2.1.2 Groups

In this subsection we recall the basic definitions involving the notion of

a group. A group (G, ∗) is an algebraic structure composed of a nonempty set G

and a binary operation ∗ : G×G→ G such that

1. ∀ a, b, c ∈ G such that (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. ∀ a ∈ G, ∃ e ∈ G such that a ∗ e = e ∗ a = a.

3. ∀ a ∈ G, ∃ b ∈ G such that a ∗ b = b ∗ a = e.

The element e in 2. is called the identity of the group G. The element b in 3.

is called the inverse of a with respect to the operation ∗ and is denoted by a−1.
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Furthermore, if commutativity holds, i.e., a ∗ b = b ∗ a, ∀ a, b ∈ G, then (G, ∗) is

called an abelian group.

Given a subset H of G, we say that (H, ∗) is a subgroup of (G, ∗) if

(H, ∗) is itself a group. For simplicity, we also write ab instead of a ∗ b and as with

fields, we usually denote a group (G, ∗) simply by G. If H is a subgroup of G then it

is common to write H ≤ G. The order of a group G, denoted by |G|, is the number

of elements of the set G. If H ≤ G with |G| = n < ∞ and |H| = d, then d | n

(Lagrange’s Theorem, for a proof see [31]).

A classical example of a group is the Symmetric Group Sn of the per-

mutations of n symbols, with composition as the group operation. For instance,

π =

 1 2 · · · n

s1 s2 · · · sn


is a representation of a permutation π : {1, . . . , n} → {1, . . . , n} such that i 7→ si.

One can also represent a permutation as a product of cycles. A cycle is a permutation

that maps a subset of {1, . . . , n} onto itself in a cyclic fashion. That is, a cycle

r = (r1r2 · · · rt), with ri 6= rj for i 6= j, is a permutation that maps ri 7→ ri+1,

1 ≤ i ≤ t − 1 and rt 7→ r1. The cycle r = (r1r2 · · · rt) is also called a t-cycle or a

cycle of size t. It is well known that every permutation can be written as a product

of disjoint cycles. For simplicity, 1-cycles are omitted. For instance,

π =

 1 2 3 4 5 6

4 1 5 2 3 6

 = (142)(35)(6) = (142)(35).

Moreover, if π = π1π2 · · · πr, where πi is a cycle of size ni, then π is said

to be a permutation of cycle type [n1, . . . , nr]. Let G be a group and let X be a set.

The (left) action of G on X is a function Φ : G×X → X that satisfies

1. ∀ x ∈ X, Φ(e, x) = x, where e is the identity of G.
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2. ∀ g, h ∈ G and x ∈ X, Φ(gh, x) = Φ(g,Φ(h, x)).

For instance, the Symmetric Group Sn acts on the set {1, . . . , n} by permuting its

elements. Consider a group G, a set X and an action Φ : G × X → X. Fix

x ∈ X. Two notions involving group actions are the orbit and the stabilizer of

an element (or subset) of X. The orbit of x ∈ X is denoted by Ox and defined

as {Φ(g, x) : g ∈ G} ⊆ X. The stabilizer is denoted by Stabx and is defined as

{g ∈ G : Φ(g, x) = x} ⊆ G. Furthermore, for every x ∈ X, Stabx ≤ G.

Moreover, a group action is transitive if it has only one group or-

bit. For transitive groups G, it is interesting to notice that the action of a sub-

group of G defines a partition on the set X. For instance, if G = S4, then H =

{id, (12), (34), (12)(34)} is a subgroup of G, where id is the identity permutation.

Moreover, the only orbits under H are O1 = O2 = {1, 2} and O3 = O4 = {3, 4},

which determine a partition of X = {1, 2, 3, 4}.

2.2 Galois Theory

One dare not talk about subfields of a field extension or the subfield

lattice of a field extension without mentioning Galois Theory. First explored by

Évariste Galois in the early XIX century, this theory shows an intrinsic relation

between subfields of a field extension and subgroups of the Galois Group.

2.2.1 The Correspondence

Let K/k be a field extension of finite degree and consider the set G =

Aut(K/k) of k-automorphisms of K. The set G, under composition, is a group.

Furthermore, consider the group action Φ : G×K → K such that Φ(σ, x) = σ(x) ∈
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K, for every σ ∈ Aut(K/k). Let H ≤ G and define the set

KH := {x ∈ K : σ(x) = x, ∀ σ ∈ H}.

It can be shown that the set KH , with the induced operations, is a subfield of K/k.

For H ≤ G, the field KH is called the fixed field of H. On the other hand, if L is a

subfield of K/k, then the set

Aut(K/L) = {σ ∈ G : σ(x) = x, ∀ x ∈ L},

under composition, is a subgroup of G. The correspondences H  KH and L  

Aut(K/L) are inclusion-reversing, that is, if H1 ≤ H2 are subgroups of G, then

KH2 ⊆ KH1 and if L1 ⊆ L2 are subfields of K/k, then Aut(K/L2) ≤ Aut(K/L1).

An important class of field extensions are the Galois Extensions. A field

extension K/k is said to be Galois or a Galois extension if K is the splitting field

of some separable polynomial f ∈ k[x]. For instance, let α = 4
√

2 ∈ R and consider

the extension Q(α, i)/Q, where i2 = −1. Then this extension is Galois. Indeed, the

polynomial f = x4−2 ∈ Q[x] has roots α,−α, αi and −αi, all of which are elements

of Q(α, i). In the case of Galois extensions, we have the following result.

Theorem 2.2 (Galois Correspondence). Let K/k be a Galois extension and let

G = Aut(K/k). The inclusion-reversing mappings L  Aut(K/L) and H  KH ,

between subfields of K and subgroups of G, are inverses of each other. Moreover,

1. |H| = [K : KH ] and [KH : k] = [G : H].

2. KH/k is a Galois extension if and only if H E G.2

Theorem 2.2 tells us that there is a bijection between the subfields of

the extension K/k and the subgroups of Aut(K/k) provided, of course, that this

extension is Galois. However, one often finds extensions K/k which are not Galois.

2H is a normal subgroup of G, that is, ∀g ∈ G, gH = Hg.
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Let K/k be a separable field extension (not necessarily Galois) of finite

degree. Let α be a primitive element, i.e., K = k(α), and let f ∈ k[x] be the minimal

polynomial of α over K. Let K̂ be the splitting field of f and observe that K̂/K is

a separable extension. By Theorem 2.2, there exists a bijection between subfields of

K̂ and subgroups of Aut(K̂/k). For simplicity, let us denote the group Aut(K̂/k)

by Gal(f). Conversely, whenever we write Gal(f), we mean the group Aut(K̂/k),

where K̂ is the splitting field of f .

Since k ⊂ K ⊂ K̂, there exists a subgroup Gα ≤ Gal(f) such that

K̂Gα = K. Since K = k(α), it is easy to determine Gα. Indeed,

Gα = Aut(K̂/K) = {σ ∈ Gal(f) : σ(α) = α}.

Thus, if L is a subfield of K, then the corresponding subgroup via the Galois Corre-

spondence is a group containing Gα. On the other hand, if Gα ≤ H ≤ Gal(f), then

the field K̂H is a subfield of K. That is, there is a bijection between subfields of K

and subgroups of Gal(f) containing Gα.

Example 2.3. Let α be a root of f = x4 − 2 ∈ Q[x] (say α = 4
√

2). The 4

roots of f are α1 = α, α2 = iα, α3 = −α and α4 = −iα and hence, the splitting

field of f is Q(α, i). Let us analyze the bijection between subfields of Q(α, i) and

subgroups of Gal(f) = Aut(Q(α, i)/Q). Consider the automorphisms r, s ∈ Gal(f),

such that r(α) = iα, r(i) = i and s(α) = α, s(i) = −i, and the subgroup H =

{id, r, r2, r3, s, rs, r2s, r3s} of Gal(f). Since [Q( 4
√

2, i) : Q] = |H| = 8, it follows

from item 1. of Theorem 2.2 that

Gal(f) = H = {id, r, r2, r3, s, rs, r2s, r3s}.

This group is isomorphic to the group D4 of the eight symmetries of

the square whose vertices are the 4 roots of f . The isomorphism r can be seen as

a rotation counterclockwise of 90 degrees and s as a reflexion across one diagonal.

The next figure shows the subgroup lattice of Gal(f) = D4.



24

Figura 2.1: Subgroups Lattice

Since Q(α, i)/Q is a Galois extension, we already know that the subfield

lattice has the same structure. Moreover, the field corresponding to {id} is Q(α, i)

and the field corresponding to D4 is Q. The group 〈r〉 = {id, r, r2, r3}, for instance,

is a subgroup of Gal(f) of index 2. Hence, it corresponds to a subfield of Q(α, i) of

degree 2 over Q. Since r(i) = i and [Q(i) : Q] = 2, this subfield is Q(i). Now suppose

that we want to find all subfields of Q(α). The group Gα that fixes Q(α) is 〈s〉 and

the only (proper) subgroup of D4 that contains Gα is 〈r2, s〉, which corresponds to the

subfield Q(
√

2). That is, the only (nontrivial) subfield of Q( 4
√

2) is Q(
√

2). Below

we show the subfield lattice.

Figura 2.2: Subfields Lattice
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2.2.2 Blocks of Imprimitivity

Let K/k be a separable field extension of degree n with primitive ele-

ment α ∈ K and let f ∈ k[x] be its minimal polynomial. Let K̂ be the splitting

field of f . By the relation given in Theorem 2.2, finding the subfield lattice of

K/k is equivalent to finding the subgroups of Gal(f) that fix α, that is, subgroups

containing Gα. In this subsection we study the action of Gal(f) on the roots of f .

Let Ω := {α1 = α, α2, . . . , αn} be the set of roots of f over K̂ and let

σ ∈ Gal(f). Then f(σ(αi)) = σ(f(αi)) = 0, for i = 1, . . . , r, that is, σ maps roots

of f into roots of f . Hence, Gal(f) acts permutationally on the set of roots Ω.

Henceforth, we might call an element σ ∈ Gal(f) of a permutation of Gal(f). This

“permutation” should be understood as a permutation of Ω.

Definition 2.4. Let ∆ be a subset of Ω. Then ∆ is a block of imprimitivity if

σ(∆) ∩∆ ∈ {∅,∆},∀ σ ∈ Gal(f).

Let ∆ be a block of imprimitivity. The set of all block conjugates, that is, {σ(∆) :

σ ∈ Gal(f)}, is called a system of imprimitivity.

Notice that a system of imprimitivity yields a partition of the set Ω.

Moreover, if |∆| = d, then |σ(∆)| = d, for any σ ∈ Gal(f). For simplicity, we might

omit the word imprimitivity, so we have blocks and system of blocks.

Let L be a subfield of K of degree n/d and let Gα ≤ H be the cor-

responding subgroup of Gal(f). Let ∆ ⊆ Ω be the orbit of α under H, that is,

∆ = {σ(α) : ∀σ ∈ H}. Then ∆ is a block and H = Stab∆ = {σ ∈ Gal(f) : σ(c) =

c,∀c ∈ ∆}. On the other hand, if ∆ ⊆ Ω is a block of size d with α ∈ ∆, then

L := K̂Stab∆ is a field such that k ⊆ L ⊆ K. That is, there is a bijection between

the subfields L of K/k of degree n/d and the blocks ∆ of Ω of size d which contain
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α. In Section 2.2.3 we will show how one can determine the corresponding subfield

from a given block of imprimitivity.

Example 2.5. Consider f = x4 − 2 ∈ Q[x] and α = 4
√

2. The set of roots of

f is Ω = {α, iα,−α,−iα}. Consider the subfield Q(
√

2) of Q(α). We wish to

find the block of imprimitivity ∆ corresponding to this subfield. As we have seen

in Example 2.3, the only subgroup that contains Gα is 〈r2, s〉 = {id, r2, s, r2s}.

The block of imprimitivity ∆ is then given by the orbit of α under 〈r2, s〉, that is,

∆ = {id(α), r2(α), s(α), r2s(α)} = {α,−α, α,−α} = {α,−α}. In this case, it is ob-

vious that the block system is ∆1 = ∆ = {α,−α} and ∆2 = {iα,−iα} (the remaining

roots). However, one can also compute ∆2 as the image of ∆1 over some automor-

phism of Gal(f), for instance, ∆2 = rs(∆1) = {rs(α), rs(−α)} = {iα,−iα}. One

can also check that this is the only non trivial block of imprimitivity, which confirms

that Q(
√

2) is the only proper subfield of Q(α).

However, we do not always have the set Ω of roots of f . If this was

the case, the Galois group (and hence, the subfield lattice of our extension) could

be easily computed (this is the case in Examples 2.3 and 2.5). Generally, directly

computing the Galois group (and hence the blocks of imprimitivity) is a hard task,

which we shall avoid.

A näıve approach to compute all subfields of degree n/d would be to

consider all subsets of size d which contain α and verify which of these subsets corre-

sponds to a subfield, that is, check which of these subsets is a block of imprimitivity.

However, even for small values of n, this approach is unfeasible. In what follows,

we see that not all subsets of size d have to be tested. This is achieved by defining

potential blocks of imprimitivity and potential systems of imprimitivity.

Definition 2.6. Let π be a permutation of Gal(f). A subset A ⊆ Ω is a potential

block (for π) of size d if |A| = d and πj(A) ∩ A ∈ {∅, A}, for 1 ≤ j ≤ | 〈π〉 |.

A system A1, . . . , Am of potential blocks of size d is a potential system of size d if
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Ω = ∪Aj, Ai ∩ Aj = ∅, for i 6= j and πj(Ai) ∈ {A1, . . . , Am}, for every 1 ≤ i ≤ m

and 1 ≤ j ≤ | 〈π〉 |.

The important property of this set of potential blocks is that a block

of imprimitivity is always a potential block of imprimitivity and a block system is

always a potential block system. Our objective now is to compute all potential block

systems (for a permutation π).

Example 2.7. Consider the automorphism r2s ∈ Gal(f) from Example 2.3, and

let us enumerate the roots of f = x4 − 2 ∈ Q[x] as α1 = α, α2 = iα, α3 = −α

and α4 = −iα, where α = 4
√

2. The automorphism r2s can be seen as a permu-

tation π on {α1, α2, α3, α4}. Indeed, r2s(α1) = α3, r2s(α2) = α4, r2s(α3) = α1

and r2s(α4) = α2. That is, r2s acts as the permutation π = (α1α3)(α2α4) on

Ω = {α1, α2, α3, α4}. For this permutation, we can compute all potential block

systems of size 2: choosing A = {α1, α2} we have π({α1, α2}) = {α3, α4} (no-

tice that π2 = id). So A is a potential block and the corresponding potential

block system is A1 = A = {α1, α2}, A2 = {α3, α4}. Choosing different A gives

us two more potential block systems, namely, A1 = {α1, α3}, A2 = {α2, α4} and

A1 = {α1, α4}, A2 = {α2, α3}. Notice that the second (of the three) potential block

system is the block system we computed in Example 2.5.

The potential block systems computed in the previous example depend

on the choice of π. If we had chosen the automorphism rs, then the corresponding

permutation would have been π = (α1α4α3α2) and the only potential block system

would have been A1 = {α1, α3}, A2 = {α2, α4}. However, in general, we do not

always have an automorphism σ ∈ Gal(f). The following criterion allows us to

compute a set of potential blocks, knowing only the cycle type information of a

permutation π of Gal(f).
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Theorem 2.8 (Dedekind Criterion). Let R be a unique factorization domain3, p be

a prime ideal in R, R̄ := R/p its residue class ring, f ∈ R[x] and f̄ ∈ R̄[x] with

f ≡ f̄ mod p. If f̄ is square-free, then Gal(f̄) is isomorphic to a subgroup of Gal(f).

This criterion allows us to determine the cycle type of cyclic subgroups

of Gal(f) generated by a permutation π ∈ Gal(f). That is, if f̄ has a factorization

f̄1 · · · f̄r, with ni = deg(f̄i), then Gal(f) has a permutation of cycle type [n1, . . . , nr].

Suppose we know a permutation π to be an element of Gal(f). Fur-

thermore, suppose that π = π1 · · · πr is the product of π into disjoint cycles and

|πi| = ni, for 1 ≤ i ≤ r, i.e., the cycle πi has size ni (this information will be ob-

tained using Theorem 2.8). Let ∆ be a block of size d. Recall that σ(∆) ∩∆ = ∆

or σ(∆) ∩∆ = ∅, for any σ ∈ Gal(f). Hence, there exists some m ≥ 1 such that

πj(∆) ∩∆ = ∅, for 1 ≤ j < m, and πm(∆) ∩∆ = ∆. (2.2)

Let α be an element of ∆. Let πl, 1 ≤ l ≤ r, be a cycle such that either

πl = (α) or that πl(α) 6= α. In this case we say that α ∈ πl. Since πm(∆) = ∆, it

follows that πcm(α) ∈ ∆, for all c ∈ N. Moreover, for any m̃ not divisible by m, we

have πm̃(∆) ∩ ∆ = ∅. On the other hand, πnl(α) = α (because α ∈ πl and πl is a

cycle of length nl). Since πnl fixes α and ∆ satisfies Equation (2.2), it follows that

πnl must fix ∆, that is, πnl(∆) = ∆. Thus, nl = cm, for some c ∈ N and hence,

m | nl. Furthermore, the cycle πl contains nl/m elements of ∆.

Since this holds for any block in a block system, it follows that there

must be a partition {I1, . . . , Is} of {1, . . . , r} and integers m1, . . . ,ms, with mi ≥ 1

for 1 ≤ i ≤ s, such that, for each t = 1, . . . , s, we have

d =
∑
i∈It

ni
mt

, with mt | ni, for all i ∈ It. (2.3)

3A Unique Factorization Domain is an integral domain in which every non-zero non-unit ele-
ment can be written as a product of irreducible elements,uniquely up to order and units.
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Sometimes, depending on d and the cycle structure (i.e., the values

ni, 1 ≤ i ≤ r), it is possible to affirm that there are no subfields of degree n/d

because no partition of {1, . . . , r} exists that satisfy Equation (2.3). This equation

might also severely reduce the number of ways in which the roots in Ω can be

grouped to form blocks of imprimitivity of size d.

Example 2.9. Let Q(α)/Q be a field extension of degree 15 and let f ∈ Z[x] be

the minimal polynomial of α. We want some information about the existence of

subfields of degree 3 (so the size of any potential block is d = 5). Suppose that

for some prime p, the factorization of f mod p is composed of 1 linear factor, 1

degree-2 factor and 3 degree-4 factors (let us call these factors f̄1, f̄2, f̄3, f̄4 and f̄5,

respectively). By the Dedekind Criterion, this means that Gal(f) has a permutation

of cycle type [1, 2, 4, 4, 4]. By looking at Equation (2.3), we see that there are only

3 ways in which the roots of f can fall into a potential block of size 5, namely: the

root of the linear factor and the four roots of one of the degree-4 factors. Choosing

the first degree-4 factor, i.e., f̄3, we have the partition I1 = {1, 3}, m1 = 1 and

I2 = {2, 4, 5}, m2 = 2. The number of potential blocks is intimately connected to the

cycle type. Suppose that p′ is another prime number which gives a permutation of

Gal(f) of cycle type [1, 1, 1, 2, 2, 2, 2, 2, 2]. In this case, there are 21 possible ways4

into which the roots of f can be grouped to form potential blocks of size 5.

Remark 2.10. In Example 2.9, we mentioned that any block ∆ of size d = 5 must

contain roots of some factor f̄i of f mod p. That is, the potential block ∆ is given

in terms of the roots of f mod p and not on the roots of f . In the next section we

show that this information is enough to compute the corresponding subfield.

Remark 2.11. One can always choose a prime p such that p - disc(f) (and hence,

the factorization of f mod p is square-free) and that if a potential block ∆ contains

a root of some factor f̄i of f mod p, then ∆ contains all roots of f̄i. This is achieved

4We are only counting blocks which contain the root of a fixed linear factor of f mod p′, say f̄1.
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by choosing a prime p such that f mod p has a linear factor x− α (and this factor

is fixed, i.e., we are only looking for blocks which contain α). This is the case

in Example 2.9. If, for instance, f is some polynomial for which Gal(f) has a

permutation of cycle type [2, 2, 2, 2, 2], then any block ∆ of size 5 would be composed

of a single root of each of the degree-2 factors.

2.2.3 From Blocks to Subfields

In the previous section we showed how one could compute a set of

potential blocks of imprimitivity. Recall that a set of potential blocks contains all

blocks of imprimitivity. Therefore, we need a method to discard potential blocks

which do not correspond to a subfield. One way to verify if a potential block

corresponds to a subfield is attempting to compute this subfield. If the computation

fails, then the potential block was not an actual block of imprimitivity.

For simplicity, let us consider the finite extension Q(α)/Q and let

f ∈ Q[x] be the minimal polynomial of α over Q. Furthermore, let Ω = {α1 =

α, α2, . . . , αn} be the set of roots of f in its splitting field Q̃. Given a block ∆ cor-

responding to a subfield L of Q(α)/Q, we want to find δ such that L = Q(δ), given

by δ = h(α), for h ∈ Q[x]<n, and the minimal polynomial g ∈ Q[x] of δ over Q. Let

∆1,∆2, . . . ,∆m be the block system and define

δi =
∏
γj∈∆i

γj, for 1 ≤ i ≤ m, and let g =
m∏
i=1

(x− δi) ∈ Q̃[x]. (2.4)

Since Gal(f) acts permutationally on the roots of f and ∆1, . . . ,∆m is a block

system, it follows that δi, 1 ≤ i ≤ m, are conjugates over L and hence, g ∈ Q[x].

Furthermore, if α ∈ ∆1, then L = Q(δ1) and g is the minimal polynomial of δ1 over

Q. We may suppose that all δi are distinct (see [17, Appendix A]). Furthermore, we

may also suppose that the δi are algebraic integers (that is, the minimal polynomial

of δi is monic and has integer coefficients, see [17]). Thus, we may assume g ∈ Z[x].
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However, as we have mentioned before, we do not have the set Ω. Let

us now show that it is enough to have the potential blocks in terms of the roots of

f mod p. Let p be a prime number such that p - disc(f). Let ON be the ring of

integers of N = Q̃ and let p be a prime ideal of ON lying over p ( that is, p∩Z = pZ).

Furthermore, let E = Q̃p be the p-adic completion of Q̃ and let Φ be the canonical

embedding from Q̃ to Q̃p. If f̃ = Φ(f), let {α̃1, . . . , α̃n} be the roots of f̃ over Q̃p,

with α̃i = Φ(αi). It can be shown that, if

δ̃i =
∏
γj∈∆i

Φ(γj), for 1 ≤ i ≤ m, and g̃ =
m∏
i=1

(x− δ̃i) ∈ Q̃p[x], (2.5)

then g̃ = Φ(g). Furthermore, let a ∈ N and let OE be the ring of integers of E = Q̃p

with maximal ideal P. If δ̂i is an approximation of δ̃i ∈ Q̃p with accuracy a, that

is, δ̂i ≡ δ̃i mod Pa, and if ĝ =
∏m

i=1(x − δ̂i), then we have ĝ ≡ g̃ mod Pa. Since

we are assuming g ∈ Z[x], it follows that g̃ ∈ Zp[x] and hence, ĝ ≡ g̃ mod pa.

Moreover, g̃ = g over Zp (provided g is embedded into Zp[x] canonically), and hence

ĝ ≡ g mod pa, provided a is high enough (see [26, Lemma 39]). The following picture

might help elucidate the situation.

P OE E = Q̃p

pZp Zp Qp

p ON N = Q̃

pZ Z Q

Figura 2.3: Inclusion Diagram
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If we have a bound for the coefficients of g ∈ Z[x], then choosing a

high enough allows us to compute g from ĝ. That is, we want to find g ∈ Z[x]

given by
∏m

i=1(x − δi), where δi =
∏

γ∈∆i
γ ∈ Q̃, 1 ≤ i ≤ m. However, we do not

have the elements δi ∈ Q̃. Hence, we look at the p-adic completion of Q̃ and define

g̃ ∈ Q̃p[x]. Again, we cannot compute g̃ with infinite accuracy. However, we can

compute approximations δ̂i of the δ̃i (by Hensel Lifting the factorization of f mod p)

and hence, approximations ĝ of g̃. Since g ∈ Z[x] and g̃ ∈ Zp[x], and if the accuracy

a is high enough, we can compute g ∈ Z[x] by the approximations ĝ of g̃ ∈ Zp[x].

Obviously, we need an a priori bound on the coefficients of g ∈ Z[x] to be able to

compute g. For this, we use the Mignotte’s bound [37] for factors of f .

Example 2.12. Again, consider f = x4 − 2 ∈ Q[x]. Modulo p = 7, f factors as

f mod 7 = (x+ 2)(x+ 5)(x2 + 4).

Let α1 = 5, α3 = 2 and α2 and α4 be the two roots of x2 + 4 (this choice of order

does not influence on the computations). Hence, by Dedekind’s Criterion, Gal(f)

has a permutation of cycle type [1, 1, 2] (indeed, the permutation s in Example 2.3

has this cycle type). Let us find all potential blocks of size 2 which contain α1 and

satisfy Equation (2.3). For this choice of prime, the only potential block is {α1, α3}

and the corresponding potential block system is A1 = {α1, α3}, A2 = {α2, α4}. We

will now try to compute the subfield L corresponding to this potential block system.

First, let us compute g ∈ Z[x], the minimal polynomial of a generator of L. Since

g | f , the Mignotte bound tells us that ‖g‖∞ ≤ 2n−1‖f‖2 = 8
√

5 < 18. Hence,

we should Hensel Lift the factorization of f mod 7 to a factorization mod 72 (since

72 > 2 · 18). By doing this, we get the factorization

f mod 72 = (x+ 23)(x+ 26)(x2 + 39).

Now, let us compute an approximation ĝ of g modulo 72. Let δ̂1 = (−23)(−26) =

10 mod 72 and δ̂2 = 39 mod 72. Finally, define ĝ = (x−δ̂1)(x−δ̂2) = x2+47 mod 72.
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Rewriting ĝ in the symmetric representation, that is, with coefficients in
(
−72

2
, 72

2

)
,

we get ĝ = x2− 2. Notice that the coefficients of ĝ satisfy the bound found above. If

this was not the case, then we would have a proof that this potential block was not

an actual block of imprimitivity. It remains to compute the embedding of L in Q(α),

which we explain below.

While the previous method requires that we have a block system, it is

enough to only have the block ∆ = ∆1 such that α1 ∈ ∆. For simplicity, let us

consider f ∈ Z[x]. Let p be a prime such that p - disc(f) and such that f mod p has

a linear factor. Furthermore, suppose that f mod p has the following factorization

f ≡ f̄1f̄2 · · · f̄r mod p, (2.6)

where f̄1 is linear. As mentioned in the last subsection, if ni = deg(f̄i), then Gal(f)

has a permutation of cycle type [n1, . . . , nr]. Let ∆ be a potential block of imprim-

itivity and suppose that ∆ contains the root of f̄1 (here ∆ is a subset of the roots

of f mod p). Then ∆ must contain all the roots of some factors f̄i of f mod p (see

Remark 2.11). This allows us to compute the product δ ∈ pZ of the roots in ∆.

Furthermore, we can compute δ with accuracy a, that is, we can compute δ̃ ∈ paZ

such that δ̃ ≡ δ mod pa, for some integer a, by Hensel Lifting the factorization in

(2.6) to a factorization

f ≡ f
(a)
1 f

(a)
2 · · · f (a)

r mod pa, (2.7)

where f
(a)
i ∈ paZ[x] and f

(a)
i ≡ f̄i mod p. If the accuracy a is high enough, we can

use LLL to compute the minimal polynomial g ∈ Z[x] of δ (recall Section 1.3.1).

At this point we have the minimal polynomial g ∈ Q[x] of δ over Q

(computed from the image δ̃ of δ over paZ). The next step is to express δ as

an element of Q(α), where α is a root of f (notice that so far we only have an

approximation of δ). That is, we want to find h ∈ Q[x] such that δ = h(α). We

may suppose that deg(h) < n, where n = deg(f). The polynomial h must satisfy
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h(αi) = δj, for all αi ∈ ∆j, and for 1 ≤ j ≤ m, where δj is as in (2.4). At this step,

we can change the prime p (or we can extend the field Z/ 〈p〉) such that f splits

into linear factors over this new field. Hence, we know the value of h at n distinct

points. Since deg(h) ≤ n − 1, h is uniquely determined. Again, we can use p-adic

techniques to compute an approximation modulo p of h from the approximations of

αi and δj in a p-adic extension.

If we start with a potential block, then the construction of g or h might

fail, for instance, the coefficients of g (or h) might not satisfy the (a priori) bound

for its coefficients. If this happens, we have proof that the potential block does not

correspond to a subfield of Q(α)/Q.

2.3 Other Approaches

There are several other algorithms to compute subfields of a field exten-

sion K/k. In this section we briefly mention some of them. The method presented

in the previous section is mostly based on Dixon’s work [17]. Klüners [26] presents

some improvements on Dixon’s algorithm, including the intersection of potential

blocks, which helps to reduce the number of potential blocks we have to test.

In 1983, Landau and Miller [30] gave a different method to compute

the blocks of imprimitivity. However, this method requires the computation of

factorization over a number field, and computation of gcd’s over Q(α, β), where α, β

are roots of f , which tends to be computationally expensive.

If L is a subfield of K/k and if α is a primitive element with minimal

polynomial f , then g | f , where g is the minimal polynomial of α over L. Moreover,

the coefficients of g generate L as a k-algebra (see Lemma 3.1). Hulpke [25] proposes

to factor f over K and test which combination of these factors yields a subfield.

Although these tests can be done with p-adic approximations, the method involves
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the factorization of f over K. Moreover, if the number of factors is high, the

algorithm might require a large amount of time due to its combinatorial nature.

Cohen and Diaz y Diaz [14] present an algorithm, known as POLRED,

whose objective is, given an extension Q(α) with minimal polynomial f , return a

polynomial g as simple as possible5 such that, if β is a root of g, then Q(α) ∼= Q(β).

This algorithm might return several candidates g. However, if deg(g) < deg(f), then

g generates a subfield of Q(α). The algorithm POLRED needs to compute an integral

basis of the ring of integers of Q(α). This operation involves the factorization of the

discriminant of f , which might be computationally hard. Moreover, this algorithm

is not guaranteed to give a proper subfield, and even if it does, we are not guaranteed

to obtain all subfields of the extension Q(α)/Q.

Let f be the minimal polynomial of α over Q with roots α1 = α, α2, . . . ,

αn, and let L be a subfield of Q(α) of index d, that is, [Q(α) : L] = d. Let

s ∈ Q(x1, . . . , xd) and let H be a subgroup of the Symmetric group Sn. Denote by

H(s) the set of all functions s(xσ(1), . . . , xσ(d)), for any σ ∈ H. If s ∈ Q(x1, . . . , xd)

is a symmetric function, we define the d-symmetric resolvent s∗(f) as

s∗(f) =
∏

g∈Sn(s)

(x− g(α1, . . . , αd)) .

Lazard and Valibouze [32] noticed that any d-symmetric resolvent s∗(f) ∈ Q[x] has

a factor of degree n/d which is a power of an irreducible polynomial h and the roots

of h are in L. However, the degree of s∗(f) is
(
n
d

)
, which, depending on d, is much

bigger then the degree of the extension.

Casperson and Mckay [13] recall that if Q(α) has a non-trivial subfield,

then there exists a polynomial h ∈ Q[x] such that h(αi) = h(αj), for some αi, αj

distinct roots of f (the minimal polynomial of α). By using approximations of the

5As defined in their paper.
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roots of f and LLL, the authors are able to determine the polynomial h and hence,

L = Q(h(α)) is a subfield of Q(α).

2.4 Computing Subfields using Principal Subfields

Let K/k be a field extension of degree n. In this section we present a

method to compute the subfield lattice K/k by searching for a special subset of (at

most) n−1 subfields of K/k. This special subfields are called intersection-generating

subfields and any subfield of the extension K/k is the intersection of some of these

principal subfields. This method was presented by van Hoeij et al. [51].

The number of subfields of a finite extension field is not polynomially

bounded in general. The importance of this method is that we essentially need

to find at most n − 1 subfields, that is, a polynomial time task. Furthermore, all

subfields can be computed by intersecting subsets of these subfields. While the latter

step is still not polynomially bounded, our main contribution (which we present in

the next chapter) resides on how these intersections are computed. The remaining

of this chapter is a brief description of the algorithm from [51].

2.4.1 Principal Subfields

Let K/k be a field extension of degree n. Throughout this work, K/k

will be a separable extension. Let α be a primitive element with minimal polynomial

f ∈ k[x]. Furthermore, let K̃ be a finite extension of K, so that we have k ⊆ K ⊆ K̃.

Consider the factorization f = f1 · · · fr of f over K̃, where fi ∈ K̃[x] is an irreducible

polynomial. We may suppose that f1 = x−α. Define the fields K̃i := K̃[x]/ 〈fi(x)〉,

1 ≤ i ≤ r. If the elements of K are denoted by g(α), for g ∈ k[x]<n, define

Φi := K → K̃i, Φ(g(α)) := g(x) mod fi, (2.8)



37

for 1 ≤ i ≤ r. Furthermore, let

Li := Kernel(Φi − id) = {g(α) ∈ K : g(x) ≡ g(α) mod fi}. (2.9)

The set Li is a subfield of K/k and the subfields Li, 1 ≤ i ≤ r, are called principal

subfields of the extension K/k. Moreover, the following is true.

Theorem 2.13 ([51], Theorem 1). Let Li, 1 ≤ i ≤ r, be as in (2.9). If L is a

subfield of K/k, then there exists a subset I ⊆ {1, . . . , r} such that

L = {g(α) ∈ K : g(x) ≡ g(α) mod gL} =
⋂
i∈I

Li, (2.10)

where gL ∈ L[x] is the minimal polynomial of α over L.

Proof. Let gL ∈ L[x] be the minimal polynomial of α over L. It follows that gL | f ,

and hence, there exists a set I ⊆ {1, . . . , r} such that gL =
∏

i∈I fi. We shall now

prove the first equality of (2.10). Let g(α) ∈ L and consider h(x) := g(x)− g(α) ∈

L[x]. Then h(x) is divisible by x− α. However, the set of polynomials over L with

α as a root is an ideal given by 〈gL〉, and hence, h(x) ∈ 〈gL〉. That is, gL | h,

or equivalently, g(x) ≡ g(α) mod gL. Conversely, suppose that g(α) ∈ K satisfies

g(α) = g(x) mod gL. Since g ∈ k[x] and gL ∈ L[x], it follows that g(x) mod gL ∈

L[x] and hence, g(α) ∈ L[x] ∩K = L.

To show the second equality, let g(α) ∈ L, that is, g(x) ≡ g(α) mod gL

or, equivalently, gL | g(x)− g(α). Since we are assuming K/k separable (and hence,

fi 6= fj, for i 6= j), it follows that gL | g(x)− g(α) if and only if, fi | g(x)− g(α), for

every i ∈ I. That is, g(α) ∈ L if and only if, g(α) ∈ Li, for every i ∈ I.

Notice that if f1 = x − α, then L1 = K. The fields Li, 1 ≤ i ≤ r

are called principal subfields of the extension K/k and Theorem 2.13 shows that

{L1, . . . , Lr} is a set of intersection-generating subfields. Another important prop-

erty is that the set {L1, . . . , Lr} is independent of the extension K̃. We might take



38

K̃ = K, however, in some cases, it might be interesting to choose a different exten-

sion. For instance, in the number field case, computing the factorization of f over

Q(α) is a hard task. By choosing an appropriate prime p, we can embed Q(α) into

K̃ := Qp, the p-adic completion of Q. The factorization of f over K̃ = Qp can then

be approximated by Hensel lifting a factorization of f mod p. Further discussion on

how to choose K̃ is presented at the beginning of Chapter 4.

To find all subfields of the extension K/k, it suffices to compute the

intersection of all subsets of {L1, . . . , Lr}. If we näıvely try to compute the inter-

section of all subsets of {L1, . . . , Lr}, we might compute the same subfield several

times. In [51], an algorithm is presented that avoids computing the same subfield

several times. This is done by associating a vector e = (e1, . . . , er) to every subfield

of L of K/k, where ei = 1 if L ⊆ Li and ei = 0 otherwise.

To actually compute the intersections, the authors of [51] represented

every subfield L of K/k as a k-vector subspace of K. The intersection of subfields

Li and Lj is then given by intersecting the corresponding subspaces. Here lies

our improvement, which we present in the next chapter. We propose a different

representation for the subfields, namely, a partition of the set {1, . . . , r}, such that

the intersections can now be computed efficiently.

Example 2.14. Let f = x8 − 5 ∈ Q[x]. Let α be a root of f and consider the

extension Q(α)/Q. Over Q(α), f has the following factorization

f = (x− α)(x+ α)(x2 + α2)(x4 + α4).

Hence, this tells us that we have 4 principal subfields. Let g(α) = g0+g1α+· · ·+g7α
7,

where g0, . . . , g7 ∈ Q, be an arbitrary element in Q(α). Let us compute the principal

subfield L2 corresponding to f2 = x+α (the subfield L1 corresponding to f1 = x−α

we already know to be Q(α)). The element g(α) is in L2 if, and only if,

g(x) mod f2 = g(α).
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The left-hand side of this equation is g0− g1α+ · · · − g7α
7 and the whole equation is

equivalent to 2g1α + 2g3α
3 + · · ·+ 2g7α

7 = 0. This equation gives us a set of linear

conditions on g0, . . . , g7 such that g(α) = g0 + g1α+ · · ·+ g7α
7 is an element of L2.

In this case, the conditions are g1 = g3 = g5 = g7 = 0, while g0, g2, g4, g6 can be

arbitrary elements. Therefore,

L2 = {g0 + g2α
2 + g4α

4 + g6α
6 : g0, g2, g4, g6 ∈ Q}.

Similarly, the subfield L3, corresponding to the factor f3 = x2 + α2, is given by

L3 = {g0 + g4α
4 : g0, g4 ∈ Q}

and the linear conditions are g1 = g2 = g3 = g5 = g6 = g7 = 0 and g0, g4 arbitrary.

The subfield L4 corresponding to f4 = x4 + α4 is Q. In order to find all subfields, it

remains to compute the intersection of all combinations of L1, L2, L3 and L4, which

can be done by solving the linear conditions of every subfield in this combination

simultaneously. In this case, it is easy to see that L4 ⊆ L3 ⊆ L2 ⊆ L1 and hence,

these are the only subfields of Q(α)/Q.

Unfortunately, not all subfields of an arbitrary extension K/k have such

nice expressions as in Example 2.14. The linear conditions on g0, . . . , gn−1 can be

very complex and if we have a large number of subfields (recall that this number is

not polynomially bounded), computing all intersections can be time consuming.

2.4.2 The Number Field Case

We will now focus on the number field case. Let Q(α)/Q be a separable

extension of finite degree n and let f ∈ Q[x] be the minimal polynomial of α over Q.

One can compute the principal subfields by factoring f ∈ Q[x] over Q(α). However,

this is not always a simple task. To avoid factorization over Q(α), we embed the

field Q(α) into a p-adic completion of Q. Comparison between these two approaches

(factorization over Q(α) and p-adic embedding) is further discussed in Chapter 4.
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Let p be a prime number such that f mod p is separable (i.e., p - disc(f))

and such that f mod p has a linear factor. Let f ≡ f̄1 · · · f̄r mod p be the factoriza-

tion of f mod p, with f̄1 = x− ᾱ. By Hensel Lifting, this factorization corresponds

to a factorization f̂1 · · · f̂r over Qp, where f̂1 = x− α̂ and α̂ ≡ ᾱ mod p. By mapping

α 7→ α̂, we get an embedding of Q(α) into Qp.

We cannot compute the factorization f̂1 · · · f̂r of f over Qp, however, by

Hensel Lifting, we can compute an approximation of this factorization with accuracy

a, for any a ∈ N. That is, we can compute polynomials f
(a)
1 , . . . , f

(a)
r ∈ paZ[x] such

that f ≡ f
(a)
1 · · · f

(a)
r mod pa and f̂i ≡ f

(a)
i mod pa. For each of the factors f̂i, we

need to compute the principal subfield Li, that is, we want to find a basis of the Q-

subspace Li of Q(α). The idea is to design a lattice where elements of Li correspond

to short vectors in this lattice. The LLL algorithm will then determine these vectors.

First, we need a basis of Q(α) as a Q-vector space. The could use the

canonical basis {1, α, . . . , αn−1}, as every element g(α) ∈ Q(α) can be written as

g0 + g1α+ · · ·+ gn−1α
n−1, for some g0, . . . , gn−1 ∈ Q. However, we choose the basis{

1

f ′(α)
,

α

f ′(α)
, . . . ,

αn−1

f ′(α)

}
,

which is called the rational representation basis. This basis allows to prove better

bounds for elements of Li inside our lattice. In other words, the following is true.

Theorem 2.15 ([51], Theorem 12). Let Li be a principal subfield of Q(α)/Q of

degree mi over Q. For β ∈ Q(α) with β =
∑
bi

αi

f ′(α)
, define vβ := (b0, b1, . . . , bn−1).

There exists mi linearly independent algebraic numbers β1, . . . , βmi ∈ Li such that

‖vβj‖2 ≤ n2‖f‖2, for every j = 1, . . . ,mi.
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The lattice Bi, which contains the elements β1, . . . , βmi , is generated by

the columns of the following (n+ di)× (n+ di) matrix

Bi :=



1
. . .

1

c0,0 . . . c0,n−1 pa

...
. . .

...
. . .

cdi−1,0 . . . cdi−1,n−1 pa


where di = deg(f̄i) and ck,j is the k-th coefficient of the image of αj

f ′(α)
under Φi− id

reduced modulo pa. Notice that, if β =
∑
bi

αi

f ′(α)
∈ Li, its image under Φi − id is

0. Furthermore, the vector (b0, b1, . . . , bn−1, 0, . . . , 0) is a short vector of the lattice

Bi. If the accuracy a is appropriate, the LLL algorithm is then able to detect

these elements, returning mi algebraic independent elements β1, . . . , βmi comprising

a basis of Li as a Q-vector space.

Remark 2.16. An initial guess for the Hensel lifting accuracy a can be computed

using the ideas of Section 1.3.1. A short vector has norm less than n2‖f‖2, according

to Theorem 2.15. Hence, the determinant of Bi (and the number a) should satisfy

(2(n+di−1)/2n2‖f‖2)n ≤ det(Bi) = padi .

Let V be the vector space generated by the elements β1, . . . , βmi . Since

we are only using approximations f
(a)
i of f̂i, for some a ∈ N, it is possible that

Li 6= V (for instance, if the accuracy a is not high enough). However, we always

have Li ⊆ V . For the algorithm to work, we need to ensure that equality holds. Let

us assume for a moment that Li = V . The authors of [51] propose to attempt to

construct gi, the minimal polynomial of α over Li. Since gi | f , it follows that the

image ĝi of gi over Qp is given by
∏

j∈J f̂j ∈ Qp[x], where J ⊆ {1, . . . , r} is given by

J = {j ∈ {1, . . . , r} : (Φj − id)(βk) = 0, for all k = 1, . . . ,mi}
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and correspond to the principal subfields that contain Li. Notice that {1, i} ⊆ J .

Furthermore, since the coefficients of gi are elements of Li, each coefficient can be

written as a Q-linear combination of β1, . . . , βmi . We can then use an approximation

of the image of this coefficient over Qp (that we have from an approximation of ĝi)

and LLL to compute this combination. This allows us to compute gi ∈ Li[x].

When β1, . . . , βmi is not a Q-basis of Li, that is, Li ( V (which we do

not know a priori), the construction of gi might fail. If this happens, we know for

sure that Li 6= V and we need to increase the precision a in the Hensel Lifting.

Suppose we are able to construct gi ∈ Q(α)[x]. Next, we check whether gi | f over

Q(α). If this fails, then again we need to increase the precision a and compute gi

again. Otherwise, we might consider the subfield Lgi of Q(α)/Q (see Equation 3.1).

Since fi | gi, it follows that Lgi ⊆ Li (see Equation 3.2). Finally, we need to verify

that βj ∈ Lgi , for j = 1, . . . ,mi. This ensures that V ⊆ Lgi . Thus, if all tests pass,

we have Li = Lgi = V and gi ∈ Li[x] is the minimal polynomial of α over Li.
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3 COMPUTING INTERSECTIONS

EFFICIENTLY

Let k be a field and let K = k(α) be a separable field extension of

degree n. Let f ∈ k[x] be the minimal polynomial of α over k. As we have seen

in the previous chapter, there are several methods to compute the subfields of a

field extension. Many of these methods take advantage of the connection between

subfields of a field extension and subgroups of the Galois group Gal(f), see [17, 25,

26]. Other methods involve resolvents, such as [32], and symmetric functions, [13].

The POLRED algorithm [14] may also find subfields, but it is not guaranteed to work.

According to [51], there exists a set of so called intersection-generating subfields

{L1, . . . , Lr}, with r ≤ n, such that every subfield of K/k is the intersection of a

subset of {L1, . . . , Lr} (recall Theorem 2.13). Thus, the problem of computing all

subfields of K/k can be done in two phases:

Phase I: Compute the principal subfields L1, . . . , Lr of K/k.

Phase II: Compute all subfields by computing intersections of L1, . . . , Lr.

In practice, phase I usually dominates the CPU time. However, in the

theoretical complexity, the reverse is true: for k = Q, phase I is polynomial time but

phase II depends on the number of subfields, which is not polynomially bounded.

Our objective is to speed up phase II. This improves the theoretical complexity (see

Theorem 3.47). It also improves practical performance, although the improvement

is only significant when the number of subfields is large (see Section 4.2).

When computing all subfields, we might compute the same subfields

several times. An algorithm to compute the intersection of all subsets of {L1, . . . , Lr}

which avoids computing the same subfield several times is given in [51]. We will use

the same algorithm, however, our improvement relies on how each intersection is
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computed. While in [51], every intersection Li ∩ Lj is computed as the intersection

of k-vector subspaces of K, we first associate a partition to every principal subfield

and then compute the partition corresponding to the intersection of the subfields.

An important property of this new intersection algorithm is that it does not use

computations in k. This will be made clearer in the next sections.

3.1 Representing Subfields with Partitions

As usual, let K/k be a separable field extension of finite degree n.

Furthermore, let α ∈ K be a primitive element and let f ∈ k[x] be the minimal

polynomial of α over k. In this Section, we will show how one can uniquely associate

a partition of a set of indexes to every subfield L of K/k.

3.1.1 Subfield Polynomial

Let K̃ be an extension of K and let f = f̃1 · · · f̃r̃, where f̃i ∈ K̃[x], be

the factorization of f in K̃[x]. Let g ∈ K̃[x] with g | f . Since K/k is separable, g is

separable as well. The following set is a subfield of K

Lg := {h(α) : h ∈ k[x]<n, h(x) ≡ h(α) mod g} ⊆ K, (3.1)

where k[x]<n denotes the set of polynomials over k with degree at most n− 1. This

follows from the fact that f is separable and thus,

if g = g1g2 | f then Lg = Lg1 ∩ Lg2 . (3.2)

According to [51], the set {Lf̃1
, . . . , Lf̃r̃} is independent of the choice of the extension

K̃ and is called the set of principal subfields of K/k (recall Theorem 2.13). Notice

that we can always take K̃ = K, however, it can be more fruitful to choose a non-

trivial extension of K (this is further discussed in Chapter 4). All results in this



45

chapter hold if we consider f̃1, . . . , f̃r irreducible factors of f over an extension K̃ of

K however, for simplicity, we will henceforth use K̃ = K.

Lemma 3.1. If g ∈ L[x] is the minimal polynomial of α over L, for some subfield

L of K/k, then

(i) deg(g) · [L : k] = n.

(ii) L = {h(α) ∈ K : h(x) ≡ h(α) mod g} = Lg.

(iii) The coefficients of g generate L as a k-algebra.

Proof. Item (i) follows directly from the Short Tower Law [K : k] = [K : L] · [L : k].

Item (ii) follows from Theorem 2.13. Finally, the minimal polynomial of α over L

has degree [L(α) : L] = [K : L]. Let L̃ to be the field generated by the coefficients

of g. Since L̃ ⊆ L, the minimal polynomial g̃ of α over L̃ has degree deg(g̃) = [K :

L̃] ≥ [K : L] = deg(g). On the other hand, g ∈ L̃[x] and g(α) = 0 and therefore,

g̃ | g. Thus, g = g̃ and therefore [K : L̃] = [K : L]. That is, L = L̃.

Lemma 3.2. Let h(x) ∈ k[x] and let L = k(h(α)) be a subfield of K/k. The minimal

polynomial of α over L is the gcd of f and h(x)− h(α).

Proof. Let g be the gcd, d its degree, and let g̃ be the minimal polynomial of α over

L. The polynomials f , h(x) − h(α), and g, are elements of L[x] and have α as a

root, and are thus divisible by g̃. It remains to show that g and g̃ have the same

degree. If α1, . . . , αn are the roots of f in a splitting field, then the roots of g are

those αi for which h(αi) = h(α). So d is the number of i for which h(αi) = h(α).

The degree [L : k] is the number of distinct h(αi), which is n/d. The degree of g̃ is

[K : L] = n/[L : k] = d.

Lemma 3.3. Let Lg be a subfield of K/k, for some g | f and let g̃ be the minimal

polynomial of α over Lg. Then g | g̃.
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Proof. Let h ∈ k[x] be such that Lg = k(h(α)). By the previous lemma, g̃ =

gcd(f, h(x)− h(α)) which is divisible by g.

Finally, we show the main theorem of this section, regarding the mini-

mal polynomial of α over a subfield L of K/k.

Theorem 3.4. Let g ∈ K[x] be a monic polynomial such that x − α | g | f . The

following are equivalent

(1) g is the minimal polynomial of α over L, for some subfield L of K/k.

(2) deg(g) · [k(coeffs(g)) : k] ≤ n.

(3) deg(g) · [Lg : k] = n.

(4) The coefficients of g generate Lg as a k-algebra.

(5) g ∈ Lg[x].

(6) g = gcd(f, h(x)− h(α)), for some h(x) ∈ k[x]<n.

Proof. The equivalence 1) ⇔ 6) follows from Lemma 3.2. We shall prove that

1)⇒ 2)⇒ 3)⇒ 4)⇒ 5)⇒ 1). Suppose 1), then 2) follows from Lemma 3.1. Now,

suppose 2). Let g̃ be the minimal polynomial of α over L := k(coeffs(g)). Thus,

L = Lg̃. Moreover, since g, g̃ ∈ L[x] and g(α) = 0, we have g̃ | g. Hence,

n = deg(g̃) · [Lg̃ : k] = deg(g̃) · [L : k] ≤ deg(g) · [L : k] ≤ n.

Thus, g = g̃. Item 3) then follows from Lemma 3.1 (i). If 3) holds, let g̃ be the

minimal polynomial of α over Lg. Thus, Lg̃ = Lg. By Lemma 3.3, g | g̃ and thus,

n = deg(g) · [Lg : k] = deg(g) · [Lg̃ : k] ≤ deg(g̃) · [Lg̃ : k] = n.

Thus, g = g̃. Item 4) then follows from Lemma 3.1 (iii). If 4) holds, then 5) holds

trivially. Finally, suppose that 5) holds. Let g̃ be the minimal polynomial of α over
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Lg. By Lemma 3.3 it follows that g | g̃. On the other hand, since g ∈ Lg[x] and

g(α) = 0, we have g̃ | g. Therefore, g = g̃ and item 1) follows.

Definition 3.5. If any of the conditions in Theorem 3.4 holds, then g is called a

subfield polynomial. Furthermore, we call g the subfield polynomial of the subfield

L, which coincides with k(coeffs(g)) in (2), Lg in (3), (4), (5) and k(h(α)) in (6).

Notice that the subfield polynomial of K is x − α and the subfield

polynomial of k is f . In what follows we shall frequently use conditions 1, 4 and 6.

3.1.2 From a Subfield to a Partition

Let f = f1 · · · fr be a partial factorization of f over K (fi not necessarily

irreducible). In this subsection we define a partition PL of {1, . . . , r} correspond-

ing to a given subfield L of K/k. Recall that a partition P = {P (1), . . . , P (t)} of

{1, . . . , r} satisfies

1.
⋃
P (i) = {1, . . . , r}.

2. P (i) 6= ∅, 1 ≤ i ≤ t.

3. P (i)
⋂
P (j) = ∅, for every i 6= j.

Definition 3.6. Let P = {P (1), . . . , P (t)} be a partition of {1, . . . , r}. We call P -

products (with respect to the factorization f1 · · · fr of f) the polynomials defined by∏
i∈P (j) fi, 1 ≤ j ≤ t.

For instance, if P = {{1, 2, 3}, {4, 7}, {5, 6}} is a partition of {1, . . . , 7},

then the P -products (w.r.t. the factorization f1 · · · f7 of f) are the polynomials

f1f2f3, f4f7 and f5f6. We might also mention the size |P | ∈ N of a partition P ,

which is the number of elements of P .
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Definition 3.7. For every subfield L of K/k, let PL = {P (1)
L , . . . , P

(t)
L } be the par-

tition of {1, . . . , r} satisfying

1. The PL-products are in L[x].

2. |PL| is maximal satisfying 1.

We say that PL is the partition defined by L. Notice that this partition

depends on the factorization f1, . . . , fr of f . We now prove that PL is well defined.

Notation 3.8. Denote by {f1, . . . , fr}π the set of all products {
∏
f eii : ei ∈ {0, 1}}.

Lemma 3.9. Let P be a partition of {1, . . . , r} and let Fi, 1 ≤ i ≤ t, be the P -

products. Let L be a subfield of K/k. Then P = PL if and only if

{f1, . . . , fr}π
⋂

L[x] = {F1, . . . , Ft}π. (3.3)

Proof. Suppose that P = PL, that is, P satisfies the properties of Definition 3.7 for

a subfield L. Then Fi ∈ L[x] and hence

{F1, . . . , Ft}π ⊆ {f1, . . . , fr}π
⋂

L[x].

Conversely, let F ∈ {f1, . . . , fr}π
⋂
L[x]. Then gcd(F, Fi) ∈ L[x], for every 1 ≤ i ≤ t.

Furthermore, gcd(F, Fi) ∈ {1, Fi} (otherwise, we could replace P
(i)
L in PL by two non-

empty sets, which contradicts the maximality of t). Therefore, F ∈ {F1, . . . , Ft}π

and Equation (3.3) follows.

Now let P be a partition of {1, . . . , r} and assume Equation (3.3). We

need to prove that P satisfies conditions (1) and (2) of Definition 3.7. From Equa-

tion (3.3), it follows that Fi ∈ L[x]. Condition (2) follows from the fact that f is

separable and any partition P satisfying Definition 3.7 (1) defines |P | multiplica-

tively independent elements of {f1, . . . , fr}π
⋂
L[x] (i.e., the gcd of any two of them

equals 1). By Equation (3.3), the maximal number of multiplicatively independent

elements of {f1, . . . , fr}π
⋂
L[x] is t.
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This means that if P ′L is any other partition that satisfies Definition

3.7, then the P ′L-products are in {F1, . . . , Ft}π. Hence |P ′L| ≤ |PL| and therefore,

|P ′L| = |PL|, since both PL and P ′L satisfy Definition 3.7. Now if PL 6= P ′L, then using

the same argument as in the first part of the proof would allow us to construct a

partition P̃ satisfying Definition 3.7 (1) and such that |P̃ | > |PL|, which contradicts

the maximality of |PL|. That is, the partition PL is well defined.

Example 3.10. Consider f = x8 − 5 ∈ Q[x] and α a root of f . The factorization

of f over Q(α) is given by f = (x − α)(x + α)(x2 + α2)(x4 + α4). From Example

2.14, the subfield corresponding to f2 = x+ α is given by

L2 = {g0 + g2α
2 + g4α

4 + g6α
6 : g0, g2, g4, g6 ∈ Q}.

It is not difficult to see that L2 = Q(α2). Let us find the partition of {1, 2, 3, 4}

corresponding to this subfield. The factor f1 = x−α is not in L2[x]. Hence, we need

to multiply f1 with some other factors of f such that the product lies in L2[x]. By

considering f1f2 = x2−α2, we see that f1f2 ∈ L2[x]. Since f3, f4 ∈ L2[x], we have a

partition {{1, 2}, {3}, {4}} of {1, 2, 3, 4} Notice that this partition also satisfies item

2. of Definition 3.7 and hence, is the partition defined by L2. Similarly, the partition

of L3 = Q(α4) is {{1, 2, 3}, {4}}.

Hence, every subfield defines a single partition of {1, . . . , r}. However,

if we consider any factorization f1, . . . , fr of f over K, then different subfields might

correspond to the same partition. For instance, if we had chosen the factorization

f = (x4 − α4)(x4 + α4) in Example 3.10, then the partitions of L2 and L3 would

have been {{1}, {2}}. That is, we need some conditions on the factorization that

guarantee that different subfields define different partitions. As we shall see, the

irreducible factorization has this property, but it is not the only one.
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3.1.3 Subfield Factorization

Let f = f1 · · · fr be a partial factorization of f , that is, fi, 1 ≤ i ≤ r, is

not necessarily irreducible. In Section 3.1.2 we defined a partition PL of {1, . . . , r}

for each subfield L of K/k. In this subsection we will define the concept of a subfield

factorization. This factorization has the property that different subfields define

different partitions.

Definition 3.11. Let f1, . . . , fr ∈ K[x], not necessarily irreducible, be such that

f = f1 · · · fr. Then f1, . . . , fr is called a subfield factorization of f if f1 = x−α and

{f1, . . . , fr}π contains the subfield polynomial of every principal subfield of K/k.

The full factorization of f into irreducible factors over K is always a

subfield factorization of f , but the converse need not be true. For instance, if K/k

has no nontrivial subfields, then {x − α, f/(x − α)} is a subfield factorization of

f , even if f/(x − α) is reducible. The reason for defining a subfield factorization

is that, in some cases, different irreducible factors might give the same principal

subfield. That is, let f1, . . . , fr be the irreducible factors of f and suppose that

f1, f2 are such that Lf1 = Lf2 = L. Hence, if g = f1f2, then (recall Equation

3.2) Lg = Lf1 ∩ Lf2 = L. That is, if we replace f1, f2 by g, then the (partial)

factorization g, f3, . . . , fr of f still yields all principal subfields of K/k. That is,

the set {Lg, Lf3 , . . . , Lfr} is still an intersection-generating set for K/k. Another

advantage is that we do not necessarily need to compute the irreducible factorization

of f over K, giving us some room for improvement (see Chapter 4).

Lemma 3.12. If f1, . . . , fr is a subfield factorization of f , then {Lf1 , . . . , Lfr} is a

set of intersection-generating subfields of K/k. Moreover, if g is a subfield polyno-

mial (of any subfield of K/k), then g ∈ {f1, . . . , fr}π.

Proof. Let L be a principal subfield and let g be the subfield polynomial of L.

By Lemma 3.1, we have L = Lg. Since f1, . . . , fr is a subfield factorization, then
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g ∈ {f1, . . . , fr}π, that is, g = fi1 · · · fis , for polynomials fi1 , . . . , fis in {f1, . . . , fr}.

Hence, L = Lg = Lfi1 ∩ · · · ∩ Lfis . Thus, we showed that every principal subfield is

the intersection of some Lfi , 1 ≤ i ≤ r. Since every subfield of K/k is the intersection

of principal subfields, it follows that {Lf1 , . . . , Lfr} is an intersection-generating set.

For the second claim, let g be a subfield polynomial and let g̃ =
∏

fi|g fi.

Hence, g̃ | g. We want to show that g = g̃ and hence, it suffices to prove that g | g̃.

Let h ∈ K[x] be an irreducible polynomial such that h | g. Let h̃ be the subfield

polynomial of Lh. Since h | g, it follows that Lg ⊆ Lh (see Equation 3.2) and hence

h | h̃ | g (see Lemma 3.3). On the other hand, since h is irreducible, Lh is a principal

subfield and hence, h̃ ∈ {f1, . . . , fr}π. Therefore, h̃ | g̃ and hence h | g̃.

Lemma 3.12 shows that f1, . . . , fr is a subfield factorization if, and only

if, {Lf1 , . . . , Lfr} is an intersection-generating set for K/k. Let PL be the partition

corresponding to a subfield L of K/k, as defined in Definition 3.7. We shall number

the P
(i)
L in such a way that 1 ∈ P (1)

L so that f1 = x− α divides the first PL-product∏
i∈P (1)

L
fi. Another important property of a subfield factorization is that it allows

us to prove that PL = PL′ if and only if L = L′.

Lemma 3.13. Let f1, . . . , fr be a subfield factorization of f , let L be a subfield of

K/k and PL its partition. Then the first PL-product is the subfield polynomial of L.

In particular, L = L′ if and only if, PL = PL′.

Proof. Let h be the first PL-product and g be the subfield polynomial of L. By

Definition 3.7 (1), it follows that h ∈ L[x]. Furthermore, since 1 ∈ P
(1)
L , we have

x − α | h, that is, h(α) = 0. Since g is the minimal polynomial of α over L,

we have g | h. If g 6= h, then there exists h̃ ∈ L[x] such that h = gh̃. This

means that we can replace P
(1)
L by two non-empty sets (one corresponding to g

and the other, to h̃). The resulting partition would also satisfy Definition 3.7 (1),

which contradicts the maximality of |PL|. Hence, g = h. Therefore, if f1, . . . , fr is
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a subfield factorization, then for every partition PL, the subset P
(1)
L ⊆ {1, . . . , r}

encodes the subfield polynomial of L. In particular, if L 6= L′ then P
(1)
L 6= P

(1)
L′ and

hence PL 6= PL′ . On the other hand, if L = L′, then PL = PL′ , because PL is well

defined. Hence, every subfield L is uniquely represented by PL.

Remark 3.14. Representing subfields using partitions has many advantages:

1. Given PL, one can quickly find elements of L, for instance, by computing

a coefficient of a PL-product, or by computing a PL-product evaluated

at x = c, for some c ∈ k. Section 3.4.2 gives a quick test to see if the

elements obtained in this way generate L as a k-algebra.

2. P
(1)
L immediately gives the subfield polynomial in partially factored form.

3. Given PL and PL′, it is trivial (see Lemma 3.16) to check whether L ⊆

L′. Section 3.2 shows that one can quickly compute the partition for

L
⋂
L′. The degree [L : k] can be read from P

(1)
L with Theorem 3.4 (3).

4. PL only requires O(r log r) bits of storage. This means that when a

subfield factorization f1, . . . , fr of f is given, one only needs O(mr log r)

additional bits to represent the complete subfield lattice, where m is the

number of subfields.

Hence, provided that f1 · · · fr is a subfield factorization of f , every

subfield of K/k defines a unique partition of {1, . . . , r} and different subfields define

different partitions. Notice that the converse is not true, that is, not every partition

of {1, . . . , r} defines a subfield of K/k.
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3.2 Intersecting Subfields represented by Partitions

Since we are interested in the intersection of principal subfields, and we

have just found a representation of subfields in terms of partitions, we would like

to determine the partition corresponding to the intersection of two subfields L and

L′. That is, given PL and PL′ , we want to find PL∩L′ . In this section we give a

description of PL∩L′ , as well as an algorithm to compute this partition.

3.2.1 The partition of L ∩ L′

Definition 3.15. A partition P = {P (1), . . . , P (s)} is a refinement of a partition

Q = {Q(1), . . . , Q(t)} (or simply P refines Q) if every Q(i), 1 ≤ i ≤ t, can be written

as a union of some of the P (j), 1 ≤ j ≤ s.

Lemma 3.16. Let L,L′ be two subfields of K/k and let PL and PL′ be their corre-

sponding partitions of {1, . . . , r}. Then L ⊆ L′ if, and only if, PL′ refines PL.

Proof. If PL′ refines PL, then P
(1)
L′ ⊆ P

(1)
L . This means that the subfield polynomial

of L is divisible by the subfield polynomial of L′. Equation (3.2) implies that L ⊆ L′.

The converse follows from Lemma 3.9, that is, if L ⊆ L′, then the PL-products are

contained in {PL′-products}π. This only happens when PL′ refines PL.

Definition 3.17. Let P be a partition of {1, . . . , r}. We say that P is the finest

partition satisfying property X if P satisfies X and, for every partition Q satisfying

X, P refines Q.

Theorem 3.18. Let L,L′ be two subfields of K/k and let PL and PL′ be their

corresponding partitions. Then the partition corresponding to L ∩ L′ is the finest

partition P for which both PL and PL′ refine P .

Proof. Let P = PL∩L′ = {P (1), . . . , P (t)} satisfy items (1) and (2) of Definition 3.7.

We need to prove that P is the finest partition such that PL = {P (1)
L , . . . , P

(s)
L } and
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PL′ = {P (1)
L′ , . . . , P

(s′)
L′ } refine P . The fact that PL and PL′ refine P follows from

Lemma 3.16. To prove that P is the finest partition with this property, let Q be a

partition refined by both PL and PL′ . We need to prove that P refines Q. Pick Q(i)

and let P (j) be such that R := Q(i)∩P (j) 6= ∅. We need to prove that P (j) ⊆ Q(i) or,

equivalently, R = P (j). Since PL and PL′ refine P , there exist subsets J1 ⊆ {1, . . . , s}

and J2 ⊆ {1, . . . , s′} such that

P (j) =
⋃
k∈J1

P
(k)
L =

⋃
k∈J2

P
(k)
L′ .

Likewise, there exist I1 ⊆ {1, . . . , s} and I2 ⊆ {1, . . . , s′} such that

Q(i) =
⋃
k∈I1

P
(k)
L =

⋃
k∈I2

P
(k)
L′ .

Therefore,

R = Q(i) ∩ P (j) =
⋃

k∈I1∩J1

P
(k)
L =

⋃
k∈I2∩J2

P
(k)
L′ (3.4)

and

P (j) \R =
⋃

k∈J1\I1

P
(k)
L =

⋃
k∈J2\I2

P
(k)
L′ . (3.5)

If R 6= P (j), then we can replace P (j) by the non-empty sets R and

P (j) \ R. Equations (3.4) and (3.5) imply that the resulting partition is refined by

both PL and PL′ and therefore, satisfies item (1) of Definition 3.7 for L ∩ L′. This

contradicts the maximality of |PL∩L′ |. Hence, R = P (j) ⊆ Q(i) and P refines Q.

3.2.2 Partition-vectors

In the previous subsection we gave a description of the partition PL∩L′ .

In this and in the next subsection, we consider the problem of effectively computing

PL∩L′ , given just PL and PL′ . In order to compute PL∩L′ efficiently, we will to work

with vectors instead of sets.
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Definition 3.19. A partition-vector is a vector v = (v1, . . . , vr) with vi ∈ {1, . . . , i},

for each 1 ≤ i ≤ r. If v is a partition-vector then its normalization v∞ is the

partition-vector (v∞1 , . . . , v
∞
r ) defined recursively as follows

v∞i =

 i, if vi = i,

v∞vi , if vi < i.

This definition gives a procedure Normalize with complexityO(r) CPU

operations, which finds the normalization v∞ of a partition-vector v.

Definition 3.20. A partition-vector v is normalized if v = v∞. If P is a partition

then the vector of P is the normalized partition-vector v = (v1, . . . , vr) given by:

vi = min(P (j)), where P (j) is the part of P that contains i.

Conversely, if v is a partition-vector, then the partition P v defined by v is the

partition whose vector is v∞.

Example 3.21. Let v = (1, 1, 3, 2, 3, 6, 6, 7). Then v is a partition-vector. The nor-

malization v∞ is given by v∞ = (1, 1, 3, 1, 3, 6, 6, 6) and the partition P v of {1, . . . , 8}

is

P v = {{1, 2, 4}, {3, 5}, {6, 7, 8}}.

Remark 3.22. Let p, q ∈ {1, . . . , r}. For simplicity’s sake, if p, q are in the same

part in a partition P , then we say that p, q are P -equivalent. Moreover, if v is the

vector of P , then p, q are P -equivalent if, and only if, v∞p = v∞q .

Definition 3.23. Let P, P ′ be partitions of {1, . . . , r} and let p, q ∈ {1, . . . , r}. We

say that there is a P, P ′-path from p to q if there exist p0, p1, . . . , pt ∈ {1, . . . , r}

such that

1. p0 = p and pt = q.

2. p2n, p2n+1 are P -equivalent, for each 0 ≤ n ≤ (t− 1)/2.
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3. p2n+1, p2n+2 are P ′-equivalent, for each 0 ≤ n ≤ (t− 2)/2.

Notice that, if p0, p1, . . . , pt is a P, P ′-path, then p0, p0, p1, . . . , pt is a

P ′, P -path. That is, there is a P, P ′-path from p to q if, and only if, there is a

P ′, P -path from p to q. The definition of P, P ′-path defines an equivalence relation

on {1, . . . , r} (paths can be concatenated and inverted). This equivalence relation

defines a partition of {1, . . . , r}, where p, q are in the same part if and only if there

is a P, P ′-path from p to q.

Definition 3.24. Let P, P ′ be partitions of {1, . . . , r}. The partition defined by the

P, P ′-path equivalence relation is called the join of P and P ′ and is denoted by P∨P ′.

Moreover, if v,w are partition-vectors, then v ∨w denotes the vector of P v ∨ Pw.

One can also see the partition P ∨ P ′ as the partition given by the

transitive closure of the union of the equivalence relations defined by P and P ′.

Example 3.25. Let P = {{1, 2}, {3, 4}, {5, 6}} and P ′ = {{1, 3}, {2, 4}, {5}, {6}}

be partitions. Then there is P, P ′-path from 1 to 4. Indeed, consider p0 = 1, p1 = 2

and p2 = 4. Then p0 and p1 are P -equivalent and p1 and p2 are P ′-equivalent (and

hence, 1 and 4 are P ∨P ′-equivalent). On the other hand, there is no P, P ′-path from

1 to 5 ( and hence, 1 and 5 are not P ∨P ′-equivalent). Considering all P, P ′-paths,

we have

P ∨ P ′ = {{1, 2, 3, 4}, {5, 6}}.

Theorem 3.26. The partition P ∨ P ′ is the finest partition that is refined by both

P and P ′. Hence, if L and L′ are subfields of K/k, then PL∩L′ = PL ∨ PL′ .

Proof. Clearly, P and P ′ refine P ∨P ′, since for every p, q in the same part in P (or

P ′), p0 = p, p1 = q is a P, P ′-path (if p, q are P ′-equivalent, then p0 = p, p1 = p, p2 =

q is a P, P ′-path). Let Q be the finest partition refined by P and P ′. Then Q refines

P ∨ P ′. Let us suppose that Q 6= P ∨ P ′, then there exists a part A in P ∨ P ′ such
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that A = B1∪B2, where B1, B2 are disjoint parts of Q. Let p, q ∈ A such that p ∈ B1

and q ∈ B2. Since P and P ′ refine Q, there must be sets J1, J
′
1, J2, J

′
2 ⊆ {1, . . . , r}

such that

p ∈ B1 =
⋃
i∈J1

P (i) =
⋃
i∈J ′1

P ′(i) (3.6)

and

q ∈ B2 =
⋃
i∈J2

P (i) =
⋃
i∈J ′2

P ′(i). (3.7)

Moreover, since B1 ∩ B2 = ∅, it follows that J1 ∩ J2 = ∅ and J ′1 ∩ J ′2 = ∅. Now, let

p0, p1, . . . , pt be a P, P ′-path starting at p (that is, p0 = p). Since p0 ∈ B1 = ∪i∈J1P
(i)

and, by definition, p0, p1 must be P -equivalent, it follows that also p1 ∈ B1. Now

p1, p2 must be P ′-equivalent. Since p1 ∈ B1 = ∪i∈J ′1P
′(i), it follows that p2 ∈ B1.

By continuing with this argument, we see that this path is entirely contained in

B1. Since this path is arbitrary, this shows that there is no P, P ′-path from p to q,

which is an absurd, since for every p, q in the same part in P ∨ P ′, there must be

a P, P ′-path from p to q. Hence, Q = P ∨ P ′. Finally, Theorem 3.18 implies that

PL∩L′ = PL ∨ PL′ .

3.2.3 The Join Algorithm

What we need now is an algorithm that, given two partitions P, P ′,

returns the partition P ∨ P ′. The following algorithm does this using partition-

vectors. It has input partition-vectors v,w and the output is a partition-vector u

with u = v ∨w.
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Algorithm 3.1 Join

Input: Partition-vectors v,w ∈ {1, . . . , r}r.

Output: The normalized partition-vector v ∨w.

1. Let u := w.

2. for a = 1, 2, . . . , r do

3. b := va.

4. Compute A := u∞a .

5. Compute B := u∞b .

6. if A < B then uB := A.

7. if B < A then uA := B.

8. return Normalize(u).

In what follows we present a proof of the correctness of the algorithm.

The proof will work by induction. Let u = (u1, . . . , ur) be a partition-vector. Define

Cut(u, s) := (u1, . . . , us, s+ 1, . . . , r), for any 1 ≤ s ≤ r.

Notice that Cut(u, 1) = (1, 2, . . . , r) and Cut(u, r) = u. Hence, if for every a =

1, . . . , r in Step 2 (after Steps 3-7) we show that u = w ∨ Cut(v, a), the algorithm

will follow. In Lemma 3.28 we will show what happens to the partition-vector u

after each iteration of Step 2. Lemma 3.30 then shows the induction step.

Definition 3.27. Let P,Q be partitions of {1, . . . , r}. We say that P is a simple

refinement of Q (or that Q is a simple merge of P ) if P refines Q and |P | = |Q|+1.

Lemma 3.28. Let u be a partition-vector such that u∞A = A and u∞B = B, for

A,B ∈ {1, . . . , r} and A < B. Let u′ be such that u′i = ui, for i 6= B, and u′B = A.

Then Pu′ is a simple merge of Pu. Moreover, A and B are Pu′-equivalent.

Proof. Since u′B = A, it follows that every element in the same part as B in Pu is

now in the same part as A in Pu′ . Since this is the only difference between u and
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u′, it follows that Pu is a simple refinement of Pu′ and that A and B are in the

same part in Pu′ .

Example 3.29. For instance, let u = (1, 1, 3, 3, 1, 3, 7) be a partition-vector cor-

responding to the partition P = {{1, 2, 5}, {3, 4, 6}, {7}}. Let A = 1 and B = 3.

Notice that u∞A = 1 = A and u∞B = 3 = B. Let us define u′ as in the previous

lemma, that is, u′ = (1, 1, 1, 3, 1, 3, 7). This partition-vector corresponds to the par-

tition P ′ = {{1, 2, 3, 4, 5, 6}, {7}}, which is a simple merge of P . Moreover, A = 1

and B = 3 are in the same part in P ′.

Lemma 3.30. Let v,w be partition-vectors and let u be such that u = w∨Cut(v, s).

Let u′ be such that

(1) If ws+1, vs+1 are Pu-equivalent, then u′ = u;

(2) Otherwise, define u′ such that Pu′ is a simple merge of Pu and ws+1, vs+1

are Pu′-equivalent.

Then u′ = w ∨ Cut(v, s+ 1).

Proof. For simplicity, let us denote Cut(v, s) simply by v|s. We need to show that

u′ = w∨v|s+1 or, equivalently, that Pu′ = Pw∨P v|s+1 . That is, for p, q ∈ {1, . . . , r},

we need to show that p, q are Pu′-equivalent if and only if, there is a Pw, P v|s+1-path

from p to q.

Let p, q be Pu′-equivalent. If p, q are also Pu-equivalent, then (since u = w ∨ v|s)

there exists a Pw, P v|s-path from p to q, and hence, there exists a Pw, P v|s+1-path

from p to q.1 Now suppose that p, q are not Pu-equivalent. Since p, q are Pu′-

equivalent, we can assume, w.l.o.g., that both p, ws+1 and vs+1, q are Pu-equivalent

(and hence, there are Pw, P v|s+1-paths from p to ws+1 and from vs+1 to q). On

1Every Pw, Pv|s-path is also a Pw, Pv|s+1 -path.
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the other hand, ws+1, s + 1, vs+1 is also a Pw, P v|s+1-path. Since paths can be

concatenated, this yields a Pw, P v|s+1-path from p to q.

Conversely, suppose that p0, . . . , pt is a Pw, P v|s+1-path, with p0 = p and pt = q.

We need to show that p, q are Pu′-equivalent. If pi 6= s + 1, for every i = 0, . . . , t,

then p0, . . . , pt is also a Pw, P v|s-path and since u = w ∨ v|s, it follows that p0, pt

are Pu-equivalent (and thus, Pu′-equivalent, since Pu′ is a simple merge of Pu).

Now suppose that pi = s + 1, for some i (we may assume i is unique). Then, for

the same reason as above, p0, . . . , pi−1 and pi+1, . . . , pt are Pw, P v|s-paths. Thus,

p0, pi−1 and pi+1, pt are Pu-equivalent (and thus, Pu′-equivalent). W.l.o.g., assume

that pi−1, s + 1 are Pw-equivalent and s + 1, pi+1 are P v|s+1-equivalent. In Pw,

s+ 1 is in the same part as ws+1 and hence, pi−1, ws+1 are Pw-equivalent (and thus,

Pu′-equivalent). Likewise, vs+1, pi+1 are P v|s+1-equivalent. If vs+1 = s + 1, then

v|s = v|s+1 and hence, vs+1, pi+1 are P v|s-equivalent. If vs+1 < s + 1, then again,

vs+1, pi+1 are P v|s-equivalent. Either way, vs+1, pi+1 are Pu′-equivalent. Finally, by

construction, we have that vs+1, ws+1 are Pu′-equivalent.

Theorem 3.31. Given two partition-vectors v and w, Algorithm Join returns a

partition-vector u such that u = v ∨w. Moreover, we can compute the join of two

partitions with Õ(r3/2) CPU operations.

Proof. We will prove that for every a = 1, . . . , r in step 2, after computing steps 3-8,

the partition-vector u becomes w ∨ Cut(v, a). Hence, at the end of the algorithm,

u = w ∨ Cut(v, r) = w ∨ v.

At Step 1, u = w = w ∨ Cut(v, 1). Suppose that after computing

steps 3-8 for some a = s in Step 2, we have that u = w ∨ Cut(v, s). Let u′ be

the partition computed after steps 3-8 for a = s + 1. We want to prove that

u′ = w∨Cut(v, s+ 1). According to Lemma 3.30, we need to show that u′ satisfies

conditions (1) or (2) of Lemma 3.30. Suppose that ws+1, vs+1 are Pu-equivalent.
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This means that u∞ws+1
= u∞vs+1

. Since u = w at Step 1, it follows that u∞ws+1
= u∞s+1.

Hence,

A := u∞s+1 = u∞ws+1
= u∞vs+1

=: B.

The algorithm sets u′ := u and hence, by Lemma 3.30, u′ = w ∨ Cut(v, s+ 1). On

the other hand, suppose that ws+1, vs+1 are not Pu-equivalent. This means that we

have either A < B or B < A in steps 5-6 for a = s + 1. In either case, Lemma

3.28 tells us that the partition Pu′ is a simple merge of Pu and that ws+1, vs+1 are

Pu′-equivalent. Again, by Lemma 3.30, u′ = w ∨ Cut(v, s+ 1).

For each 1 ≤ a ≤ r in step 2, denote by la the length of the loop in

steps 4 and 5 of the algorithm. If we normalize u every d
√
re iterations of the loop

in step 2, then it follows that la ∈ O(r1/2). The total number of normalizations is

O(r1/2), and the cost of each normalization is O(r). Therefore, the total cost of the

algorithm is the cost of O(r1/2) normalizations plus r times the cost of finding u∞a

(and u∞b ), which is given by O(r1/2). Hence, we can compute v ∨ w with at most

O(r3/2) CPU operations.

In general, if the depth of u (i.e., the length of the loops in Steps 4 and

5) is bounded by d, then the complexity for computing the join of two partitions

using Algorithm Join is Õ(rd).

A similar algorithm is presented by Freese [19] (see also [20]), which

we found after we devised and proved algorithm Join above. However, [19] uses a

different “representation vector” for a partition. This (and other clever tricks) allows

the author to show that the join of two partitions can be computed with O(r log r)

CPU operations. We have implemented Freese’s algorithm, but it performed slightly

worse than the simpler algorithm Join given above. For this reason, we decided to

keep this section. Moreover, we shall use the Algorithm Join given above in our

implementations. To estimate the complexity, we use the complexity stated in [19].
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Theorem 3.32. Given two partition-vectors v and w, there exists an algorithm that

returns a partition-vector u such that u = v ∨w. Moreover, the partition-vector u

can be computed with Õ(r) CPU operations.

Proof. See [19] (see also [20]).

3.3 Computing the Partition of a Principal Subfield

Let f1, . . . , fr be a subfield factorization of f . In general, one can com-

pute a subfield factorization of f by factoring f over K. For k = Q we will give an

alternative in Chapter 4. We already know how to intersect partitions to find the

partition of the intersection of subfields. However, it remains to find the partition of

the principal subfields. We already mentioned how one can compute this partition

in Example 3.10 by, basically, combining the factors of the subfield factorization

and checking which combination has coefficients in the subfield. In this section we

present a polynomial time algorithm to compute the partition Pi of {1, . . . , r} de-

fined by a principal subfield Li of K/k. First of all, notice that, in order to find Pi,

it suffices to find a basis of the vectors (e1, . . . , er) ∈ {0, 1}r for which

r∏
j=1

f
ej
j ∈ Li[x]. (3.8)

The numbers e1, . . . , er appear as exponents in Equation (3.8). A way

to linearize this problem is to use the logarithmic derivative hj of fj (this technique

has been used in several other algorithms, mainly for polynomial factorization, such

as [38] and [21]). That is, let hj = f ′j/fj ∈ K(x) and let H(x) =
∑r

j=1 ejhj. If

g =
∏r

j=1 f
ej
j , then g′/g = H. We now have to find sufficient conditions for H such

that if H satisfies these conditions for a certain (e1, . . . , er) ∈ {0, 1}r, then Equation

(3.8) holds for the same vector (e1, . . . , er) ∈ {0, 1}r.
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Definition 3.33. Let f ∈ k[x]. Then f is semi-separable if char(k) = 0 or

char(k) = p and f has no roots with multiplicity larger than or equal to p.

Lemma 3.34. Let g ∈ K[x] monic and semi-separable, and let L be a subfield of

K/k. If g′/g ∈ L(x), then g ∈ L[x].

Proof. Consider the groups (K(x)∗, ·) and (K(x),+) and let φ : K(x)∗ → K(x)

be the group homomorphism defined by φ(g) = g′/g. The kernel of φ is K∗ in

characteristic 0 and K(xp)∗ in characteristic p. So, if we restrict φ to monic semi-

separable polynomials, then φ becomes injective. Let g ∈ K[x] be a monic semi-

separable polynomial such that g′/g ∈ L(x). Let g ∈ L̄[x] = K̄[x] be a conjugate of

g over L. Since g′/g ∈ L(x), it follows that

φ(g) = g′/g = (g′/g) = g′/g = φ(g),

By the injectivity of φ on monic semi-separable polynomials, g = g for any conjugate

of g over L in K[x]. Therefore, g ∈ L[x] (recall that K/k and hence K/L are assumed

to be separable extensions).

Lemma 3.35. Let g ∈ K[x] monic, deg(g) = n, and let L be a subfield of K.

Let p1, . . . , p2n ∈ k be distinct elements. If g′(pi)/g(pi) ∈ L, 1 ≤ i ≤ 2n, then

g′/g ∈ L(x).

Proof. Let h = g′/g ∈ K(x) and suppose that h(pi) ∈ L, 1 ≤ i ≤ 2n. Let h = g′/g

be a conjugate of h over L. Then

h(pi) = h(pi) = h(pi) = h(pi), 1 ≤ i ≤ 2n.

This means that the polynomial g′g − g′g of degree < 2n has 2n distinct roots.

Hence, g′g − g′g = 0 and therefore h = h, for every conjugate h of h over L. That

is, h ∈ L(x).
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The idea is to use Lemmas 3.34 and 3.35 to find the desired vectors

(e1, . . . , er) by solving a linear system on e1, . . . , er. Consider the following subrou-

tine System.

Algorithm 3.2 Subroutine System.

Input: Subfield factorization f1, . . . , fr, an index i and indeterminates e1, . . . , er.

Output: Set of equations Si on e1, . . . , er, whose solutions give the partition Pi.

1. Choose distinct elements p1, . . . , p2n of k.

2. Let qj(α) :=
∑
el
f ′l (pj)

fl(pj)
, where qj(x) ∈ e1 · k[x] + · · ·+ er · k[x], j = 1, . . . , 2n.

3. Let Si be the system of k-linear equations obtained by taking the coefficients

of x and α of qj(x) mod fi = qj(α), for j = 1, . . . , 2n,.

4. return Si.

In Step 3 of the algorithm, qj(x) mod fi represents the remainder of the

division of qj(x) by fi over K. Notice that the field k should contain at least 2n

elements for the algorithm to work. However, we should not worry about this, as we

will present a probabilistic version of this algorithm which requires much less than 2n

elements. If (e1, . . . , er) is a solution of the system Si given by Subroutine System,

then by Lemmas 3.34 and 3.35, it follows that
∏
f
ej
j ∈ Li[x]. By construction, Si

has a basis of solutions in {0, 1}-echelon form:

Definition 3.36. A basis of solutions {s1, . . . , st} of Si is called a {0, 1}-echelon

basis of Si if

1. si = (si,1, . . . , si,r) ∈ {0, 1}r ⊂ Zr, 1 ≤ i ≤ t.

2.
∑t

i=1 si = (1, . . . , 1).

Remark 3.37. If a {0, 1}-echelon basis of Si exists, then any reduced echelon basis

of Si is automatically a {0, 1}-echelon basis due to the uniqueness of the reduced

echelon basis.
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Corollary 3.38. Let {s1, . . . , st} be a {0, 1}-echelon basis of Si and define Pi =

{P (1), . . . , P (t)}, where P (l) = {j : sl,j = 1}. Then Pi is the partition defined by Li.

Proof. If (e1, . . . , er) ∈ {0, 1}r is a solution of Si then, by Lemmas 3.34 and 3.35,

it follows that g =
∏r

j=1 f
ej
j ∈ Li[x]. Thus, the Pi-products are in Li[x]. The

maximality of |Pi| follows from the fact that s1, . . . , st form a basis for the solution

space of E and that any vector (e1, . . . , er) ∈ {0, 1}r such that
∏
f eii ∈ Li[x] is a

solution of E . Hence, the partition Pi is the partition defined by Li.

Therefore, the partition Pi of {1, . . . , r} corresponding to the subfield

Li can be found using the following algorithm.

Algorithm 3.3 Partition (Slow version).

Input: Subfield factorization f1, . . . , fr of f and an index i.

Output: The partition Pi of {1, . . . , r} defined by Li.

1. Compute Si := System({f1, . . . , fr}, i).

2. Compute a {0, 1}-echelon basis {s1, . . . , st} of Si.

3. return Pi := {P (1), . . . , P (t)}, where P (l) is as in Corollary 3.38.

This algorithm, however, does not perform very well in practice. Apart

from the (costly) 2n polynomial divisions over K in Step 3 of System, the system Si
is over-determined. The number of linear equations in Si is bounded by 2n2di, where

di = deg(fi), while the number of variables is r ≤ n. Furthermore, the coefficients

are in k and can be potentially large, while the solutions are 0-1 vectors (that could

have been recovered from its images modulo a prime number). We address these

problems by computing a subset of Si modulo a prime ideal p.

Definition 3.39. A good k-valuation w.r.t. f is a valuation v : k → Z∪ {∞} such

that if Rv = {a ∈ k : v(a) ≥ 0} and pv = {a ∈ k : v(a) > 0}, then f ∈ Rv[x],

the residue field F := Rv/pv is finite, the image f̄ of f in F[x] is separable and
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deg(f̄) = deg(f). Furthermore, we call an ideal p a good k-ideal if p = pv, for some

good k-valuation v.

If k = Q, then a good k-ideal p is of the form 〈p〉, for some prime

number p such that f mod p is separable and has the same degree as f . The following

subroutine returns S̃i,c: a subset of Si modulo a good k-ideal p.

Algorithm 3.4 Subroutine SystemModP.

Input: Subfield factorization f1, . . . , fr, an index i and a good k-ideal p.

Output: S̃i,c: necessary equations modulo p for e1, . . . , er.

1. Choose c ∈ F at random.

2. If fj(c) mod p has no inverse, for some 1 ≤ j ≤ r, go to Step 1.

3. Let q(α) :=
∑
ejf
′
j(c)/fj(c) mod p, where q(x) ∈ e1 · F[x]<n + · · ·+ er · F[x]<n.

4. Let S̃i,c be the system of F-linear equations obtained by taking the

coefficients of x and α of q(x) mod fi = q(α).

5. return S̃i,c.

The element fj(c) mod p from Step 2 is in the finite ring F[α], where F

is as in Definition 3.39, for a good k-valuation v such that p = pv, and hence, may

not have an inverse. In this algorithm, we also need F to have sufficiently many

elements for step 2. If this is not the case, we can compute a finite extension F̃ of

F and compute/solve the system S̃i,c over this extension.

The system S̃i,c is a subset of Si reduced modulo a prime ideal p. There-

fore, a basis of solutions for S̃i,c may not represent the partition Pi. In fact, S̃i,c may

not even have a {0, 1}-echelon basis. This means that we have to devise a test that

verifies that the solution basis of S̃i,c represents the partition Pi. This test is given

in Theorem 3.43 below.
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If we find out that the solution basis for S̃i,c does not represent the

partition Pi (for instance, it contains elements other than 0’s and 1’s), then we

choose c′ 6= c, compute S̃i,c′ and solve S̃i := S̃i,c ∪ S̃i,c′ . We continue this process

until we find the correct partition Pi.

Example 3.40. Let f = x8 − 5 ∈ Q[x] and let α be a root of f . As we have seen,

the factorization of f over Q(α) is given by f = (x− α)(x + α)(x2 + α2)(x4 + α4),

whose factors we call f1, f2, f3 and f4, respectively. Let us compute the partition P3,

corresponding to the subfield L3 = Q(α4) using the above method. First of all, we

need an appropriate prime p. For p = 3, one can check that f mod p is separable and

that deg(f) = deg(f mod p). Next, let us choose a random element in F = 3Z. For

instance, c = 2. We now need to verify that fj(c) mod 3 has an inverse in 3Z[α],

for j = 1, . . . , 4. These elements are

f1(2) mod 3 = 2− α = 2 + 2α,

f2(2) mod 3 = 2 + α,

f3(2) mod 3 = 22 + α2 = 1 + α2,

f4(2) mod 3 = 24 + α4 = 1 + α4.

To compute the inverse of f1(c) mod 3, for instance, we use the Extended Euclidean

Algorithm. Consider g = 2x + 2. Since deg(g) < deg(f) and f is irreducible, it

follows that gcd(f, g) = 1. Hence, there exists a, b ∈ Z[x] such that 1 = af + bg. By

evaluating this equation at x = α, we get 1 = a(α)f(α) + b(α)g(α) = 0 + b(α)g(α).

Hence, b(α)g(α) = 1 and b(α) is the inverse of g(α) (provided b(α) is not 0 in

3Z[α]). In this case, the inverses are

1/f1(2) mod 3 = 2α7 + α6 + 2α5 + α4 + 2α3 + α2 + 2α + 1,

1/f2(2) mod 3 = α7 + α6 + α5 + α4 + α3 + α2 + α + 1,

1/f3(2) mod 3 = α6 + 2α4 + α2 + 2,

1/f4(2) mod 3 = α4 + 2.
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This allows us to compute the elements

f ′1(2)/f1(2) mod 3 = 2α7 + α6 + 2α5 + α4 + 2α3 + α2 + 2α + 1 =: A(α),

f ′2(2)/f2(2) mod 3 = α7 + α6 + α5 + α4 + α3 + α2 + α + 1 =: B(α),

f ′3(2)/f3(2) mod 3 = α6 + 2α4 + α2 + 2 =: C(α),

f ′4(2)/f4(2) mod 3 = 2α4 + 1 =: D(α).

Let us now define q(α). This element is given by

q(α) :=
∑

eif
′
i(2)/fi(2) = A(α)e1 +B(α)e2 + C(α)e3 +D(α)e4,

and hence, q(x) mod f3 is given by

q(x) mod f3 = (A(x) mod f3)e1+(B(x) mod f3)e2+(C(x) mod f3)e3+(D(x) mod f3)e4.

By carrying out these divisions, we have

q(x) mod f3 =
(
(α6 + 2α4 + α2 + 2)x+ (2α6 + α4 + 2α2 + 1)

)
e1 +

+
(
(2α6 + α4 + 2α2 + 1)x+ (2α6 + α4 + 2α2 + 1)

)
e2 +

+(2α6 + 2α4 + 2α2 + 2)e3 + (α4 + 2)e4.

Hence, by looking at the coefficients of x of q(x) mod f3 = q(α), we have the follow-

ing system 
(α6 + 2α4 + α2 + 2)e1 + (2α6 + α4 + 2α2 + 1)e2 = 0

(2α6 + α4 + 2α2 + 1)e1 + (2α6 + α4 + 2α2 + 1)e2+

+(2α6 + 2α4 + 2α2 + 2)e3 + (2α4 + 1)e4 = q(α)

Or, by looking at the coefficients of α, we have the system

S̃3,2 =

 e1 + 2e2 = 0

e1 + e2 + e3 = 0

By solving this system over 3Z, we obtain the basis {(1, 1, 1, 0), (0, 0, 0, 1)}. The

next step is to verify that this basis of solutions is a {0, 1}-echelon basis and, if so,



69

that the corresponding partition is indeed P3. The first part is an easy check. The

second part is shown in Theorem 3.43 below. If one of these checks fail, then we

need to choose a different c′ ∈ 3Z, construct the system S̃3,c′ and solve S̃3,c∪S̃3,c′. In

this case, {(1, 1, 1, 0), (0, 0, 0, 1)} is a {0, 1}-echelon basis and it corresponds to the

partition P̃3 := {{1, 2, 3}, {4}}. As mentioned above, it remains to show P̃3 = P3.

Now we need to devise a test that proves that a given partition cor-

responds to a certain principal subfield. That is, let f1, . . . , fr be a subfield fac-

torization and let Li be the principal subfield corresponding to fi and Pi be the

corresponding partition of {1, . . . , r} (which we wish to find). Given a partition P ,

we wish to show that P = Pi. In order to do so, we will need the following lemma,

Lemma 3.41. Let K be a field and f ∈ K[x] monic separable such that f =

g1 · · · gt = h1 · · ·ht, where gj, hj ∈ OK [x] are monic but not necessarily irreducible.

Let q ⊆ OK be an ideal such that f mod q is separable. If gj ≡ hj mod q, for every

1 ≤ j ≤ t, then gj = hj, 1 ≤ j ≤ t.

Proof. It suffices to show that for every irreducible factor q of f in K[x], q | gj if

and only if, q | hj. Suppose that q | gj. Then q - gl, for any l 6= j, because f is

separable. Moreover, q also does not divide gl mod q, l 6= j, because f is separable

modulo q. Since gl ≡ hl mod q, it follows that q - hl mod q and hence, q - hl over

K, for all l 6= j. But q divides f = h1 · · ·ht and since K[x] is a unique factorization

domain, it follows that q | hj. The converse follows similarly. Hence q | gj if and

only if, q | hj. Since this holds for any irreducible factor q of f in K[x] and gj, hj

are monic, the equality follows.

Remark 3.42. When choosing the ideal q we have to make sure that denominators

of coefficients of gj and hj are not elements of q, otherwise the equation gj ≡ hj mod

q would return an error message. For k = Q, and assuming f monic, we assert that

it is enough to choose q such that disc(f) 6≡ 0 mod q. This follows from the following
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inclusions

Z[α] ⊆ OK ⊆
1

f ′(α)
· Z[α] ⊆ 1

disc(f)
· Z[α],

where OK is the ring of integers of K and disc(f) is the discriminant of f , and the

fact that any factor of f over K is in OK [x].

Let f1, . . . , fr be a subfield factorization of f and let Li be the principal

subfield corresponding to fi. Let Ki := K[y]/ 〈fi(y)〉 and define

σi : K → Ki, h(α) 7→ h(y) mod fi(y).

By the definition of σi and since f is separable, we can rewrite the definition of the

subfield Li in the following way (set g = fi in Equation 3.1)

Li = Lfi = {h(α) : h ∈ k[x]<n, σi(h(α)) = h(α)} .

Theorem 3.43. Let f1, . . . , fr be a subfield factorization of f . Let Li be the principal

subfield corresponding to fi and let Pi be the corresponding partition. Let q ⊆ OKi be

an ideal such that f mod q is separable. Moreover, let P be a partition of {1, . . . , r}

such that P refines Pi. If

σi(gj) ≡ gj mod q, (3.9)

for j = 1, . . . , t, where g1, . . . , gt are the P -products and σi acts on gj coefficient-wise,

then P = Pi.

Proof. Since P refines Pi, it suffices to prove that the P -products g1, . . . , gt are

elements of Li[x] (the maximality of |P | will follow from the fact that P refines Pi).

By the definition of σi, gj ∈ Li[x], if and only if, σi(gj) = gj. Since

g1 · · · gt = f = σi(f) = σi(g1) · · · σi(gt)

over Ki, f mod q is separable and σ(gj) ≡ gj mod q, it follows by Lemma 3.41

that σ(gj) = gj, that is, gj ∈ Li[x] and hence, P = Pi. If Ki is not a field, we
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cannot directly apply Lemma 3.41. Let fi = fi1 · · · fis , with fim ∈ K[x] irreducible,

m = 1, . . . , s. Let Kim := K[y]/ 〈fim(y)〉 and define σim : K → Kim as above. Since

f is separable, it follows that g̃j ∈ Li[x] if and only if, σim(g̃j) = g̃j, m = 1, . . . , s.

To use Lemma 3.41, we would need q to be a good Kim-ideal. However, we can view

Kim = K[αim ], where αim is a root of fim , and choose q to be a good K-ideal. Thus,

by Lemma 3.41 (with σim instead of σi in the argument above and q a good K-

ideal), it follows that σim(g̃j) = g̃j, if and only if, σim(g̃j) ≡ g̃j mod q, m = 1, . . . , s.

Since f mod q is separable, this is equivalent to σi(g̃j) ≡ g̃j mod q. That is, if the

P̃i-products satisfy Equation (3.9), then P̃i is the partition of Li.

The partition Pi of Li can be computed with the following algorithm.

Algorithm 3.5 Partition (Fast version)

Input: Subfield factorization f1, . . . , fr, an index i and a good k-ideal p.

Output: The partition Pi of {1, . . . , r} defined by Lfi .

1. Compute S̃i using subroutine SystemModP.

2. Compute a {0, 1}-echelon basis {s1, . . . , st} of S̃i (see Remark 3.37).

3. if Step 2 fails then

4. Compute more equations with SystemModP.

5. Go to Step 2.

6. Let P̃i := {P (1), . . . , P (t)}, where P (l) is as in Corollary 3.38.

7. Let ĝ1, . . . , ĝt be the P̃i-products. //

8. Let q be an ideal as in Lemma 3.41. //

9. for j = 1, . . . , t do // Correctness check (Theorem 3.43).

10. if σi(g̃j) 6≡ g̃j mod q then //

11. Go to Step 4. //

12. return P̃i.
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We were not able to bound the number of calls to EquationsModP

when computing the partition Pi. However, based on our experiments for k = Q,

the average number of calls to EquationsModP appears to be bounded by a constant

(in fact, this number never exceeded 3 in our examples). For this reason, we shall

assume that the number of calls to EquationsModP is O(1).

Example 3.44. Let f = x8−5 ∈ Q[x] and let f = (x−α)(x+α)(x2+α2)(x4+α4) be

its factorization over Q(α), where α is a root of f . In Example 3.40 we have found

a candidate P̃3 = {{1, 2, 3}, {4}} for the partition of the subfield L3. According

to Theorem 3.43, we need to show that the P̃3-products g̃1 = f1f2f3 = x4 − α4

and g̃2 = f4 = x4 + α4 satisfy Equation (3.9), for some ideal q of OQ(α) such that

f mod q is separable. In this case we choose q = 〈α− 3〉. Hence, for any β ∈ OQ(α),

β mod q ∈ Q. The only coefficient of g̃1 and g̃2 not in Q is α4. Hence, we have to

show that σ3(α4) ≡ α4 mod q. This is equivalent to

(x4 mod q) mod (f3 mod q) = α4 mod q. (3.10)

Notice that the left-hand side is computed over Q. Moreover, if we choose a prime

number p according to Remark 3.42, then we can also check the equality in (3.10)

modulo the prime number p. In this case, we choose p = 11. We have f3 mod q =

x2 + 32 = x2 + 9 and hence,

l.h.s. = x4 mod x2 + 9 = 4 (mod 11).

On the other hand, the right-hand side of Equation (3.10) becomes

r.h.s. = α4 mod q = 34 = 4 (mod 11).

This is enough to conclude that P̃3 is the correct partition of L3. Let us suppose that

we had erroneously guessed the partition for L3 (given by P = {{1, 2}, {3}, {4}}).

In this case, the P -products are x2 − α2, x2 + α2 and x4 + α4. The only coefficients

not in Q are α2 and α4. We already showed that σ3(α4) ≡ α4 mod q. However,
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σ3(α2) mod q = x2 mod x2 − 9 = 2 (mod 11) and α2 mod q = 32 = 9 (mod 11).

This proves that the partition {{1, 2}, {3}, {4}} is not the partition of L3.

Theorem 3.45. If the Algorithm Join finishes, the output is the partition Pi of the

principal subfield Li. Moreover, assuming that the number of calls to SystemModP is

bounded by a constant, when k = Q, the number of CPU operations for computing

the partition Pi is

Õ(n(n2 + dir
ω−1 + n log ‖f‖)),

where we omit log p factors in Õ notation (see Remark 3.46).

Proof. Let P̃i be the output of Algorithm Partition, that is, P̃i is the partition

at step 6. Since P̃i comes from the {0, 1}-echelon basis of S̃i, and S̃i is a sub-

set of Si reduced modulo a prime ideal p, it follows that P̃i is a refinement of

Pi. Moreover, if the P -products g̃1, . . . , g̃t satisfy Equation 3.9, then P̃i = Pi, by

Theorem 3.43. To prove the complexity bound, we first bound the cost of calling

algorithm SystemModP. The integer coefficients of f ′(α)fj ∈ Z[α][x] can be bounded

by n4n‖f‖2 (see Lemma 4.18, Appendix 4.4). Hence, computing f ′(α)fj(c) modulo

p, for 1 ≤ j ≤ r, has a cost of Õ(n2(n + log ‖f‖)) CPU operations. The divisions

f ′j(c)/fj(c) mod p = f ′(α)f ′j(c)/f
′(α)fj(c) mod p in step 3 of SystemModP can be

executed with Õ(rn log p) CPU operations and step 4 has a cost of Õ(rn2 log p)

CPU operations. Hence, by omitting log p factors, one call of SystemModP has a

cost of Õ(n2(n + log ‖f‖)) CPU operations. In our experiments, the number of

calls to algorithm SystemModP from algorithm Partition was never more than 3.

Usually 1 call sufficed to find the partition Pi. In this case, the system S̃i has at

most ndi equations in r variables and hence, a solution basis can be found with

O(ndir
ω−1) field operations in Fp or Õ(ndir

ω−1 log p) CPU operations. The cost of

steps 7-11 in algorithm Partition is given by the cost of computing the polynomials

g̃j, 1 ≤ j ≤ t, which can be done with at most r − 1 polynomial multiplications in
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Fp(α)[x], and the cost of nt divisions in Fp[x]. The result follows by omitting log p

factors.

Remark 3.46. One can design the algorithm to work with any prime p for which

f mod p is separable and p does not divide the leading coefficient of f . Then log p

can be bounded by O(log(n+ ‖f‖)) by Equation (3.9) in [35]. However, it is best to

choose p for which f has a root modp. The probability that f has a root modp for

a random prime p is asymptotically at least 1/n, by Chebotarev’s density theorem.

With the (unproven, but true in experiments) assumption that this probability is not

much smaller for small p, the expected size for log p is still bounded by O(log(n +

‖f‖)).

3.4 General Algorithm and Generators

In this section we combine the ideas of Sections 3.1, 3.2 and 3.3 and

give a general algorithm for computing the subfields of K/k.

3.4.1 The Subfields Algorithm

The following algorithm returns the partition-vectors corresponding to

all subfields of K/k. Step 1 asks for a subfield factorization of f , which can be

computed by fully factoring f over K (or an extension of). When k = Q, one

can also use p-adic factorization and LLL (see next Chapter). Steps 2-4 involve

computing the partition of the principal subfields, according to Section 3.3. Finally,

Steps 5-8 compute the partition-vectors of all subfields of K/k.
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Algorithm 3.6 Subfields

Input: An irreducible squarefree polynomial f ∈ k[x].

Output: A data structure that lists all subfields of K/k (given by partition-

vectors).

1. Compute a subfield factorization f1 · · · fr of f in K[x].

2. for i = 1, . . . , r do

3. Compute the partition Pi using algorithm Partition.

4. vi := the vector of Pi (see Definition 3.20).

5. S0 := {v1, . . . ,vr}.

6. S := S0.

7. for v in S0 do

8. S := S ∪ {v ∨w : w in S}.

9. return S and [f1, . . . , fr].

The output of algorithm Subfields is a set S which contains the

partition-vector for every subfield of K/k. This output is particularly useful if

one wants the subfield lattice of the extension K/k. On the other hand, the set

S and the subfield factorization of f allow us to give the subfield polynomial of

each subfield of K/k in (partially) factored form. One can also compute generators

for each subfield, see Section 3.4.2. Next, we analyze the complexity of algorithm

Subfields for the case k = Q.

Theorem 3.47. Let m be the number of subfields of K/k. When k = Q, algorithm

Subfields has an expected cost of Õ(rn7 + rn5 log2 ‖f‖2 + mr2) CPU operations,

where n is the degree of the extension K/k and r is the number of factors in the

subfield factorization.

Proof. In Step 1 we have to compute a subfield factorization of f over K. To find

such factorization one can compute the irreducible factorization of f over Q(α)
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(see [47, 8, 40], complexities not stated). Alternatively, one can use Algorithm

SubfFact, presented in Chapter 4, which finds a subfield factorization with Õ(rn7 +

rn5 log2 ‖f‖) CPU operations. In Steps 2-4 we have to compute r partitions, where

each partition can be computed with an expected number of Õ(n(n2 + dir
ω−1 +

n log ‖f‖)) CPU operations, where di is the degree of fi. Finally, the set S never

has more than m elements, and the set S0 has at most r elements. Therefore, the

number of times we compute v ∨ w is bounded by rm. Since the cost of each

partition join is Õ(r), the cost of steps 7-8 is given by Õ(mr2) CPU operations.

Steps 7-8 compute all intersections of the principal subfields, but (this

simple implementation) may compute the same subfield several times. Although the

number of intersections is bounded by rm, this part can be improved by using the

Algorithm AllSubfields from [51]. While the bound for the number of intersec-

tions in AllSubfields is still rm, this algorithm avoids computing a subfield already

computed, which can be a big improvement when we have several subfields. Since

the number of subfields m is not polynomially bounded, the theoretical worst-case

complexity is dominated by the cost of all intersections of the principal subfields

L1, . . . , Lr. Since each subfield is represented by a partition and the intersection of

subfields can be computed by joining partitions, we were able to improve the theoret-

ical complexity. Moreover, computing all subfields using partitions only contributes

to a small percentage of the total CPU time.

3.4.2 From a Partition to a Subfield

In addition to returning the subfield lattice (in terms of partition-

vectors), one can also compute generators for any subfield of K/k. Let f1, . . . , fr

be a subfield factorization and let L1, . . . , Lr be the principal subfields. Given a

partition PL, corresponding to a subfield L of K/k, one can find a set of generators
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of L by computing the subfield polynomial gL of L (given by the product of fj, for

j ∈ P (1)
L ) and taking its coefficients (see Theorem 3.4).

Algorithm 3.7 Generators (Slow version).

Input: Subfield factorization f1, . . . , fr of f and the partition PL.

Output: A set of generators of the subfield L of K/k.

1. Compute gL :=
∏

j∈P (1)
L
fj.

2. return the set of coefficients of gL.

However, expanding the subfield polynomial can be an expensive task,

especially when gL has high degree. Alternatively, one can compute only a few (easy

to compute) coefficients of gL (for example, if d = deg(gL), then the coefficients of

xd−1 and x0 are easy to compute from the partial factorization of gL) or one can

compute gL(c) =
∏

i∈P (1)
L
fi(c), for c ∈ k, for as many c as we want. Let us denote

by NextElem( ) a procedure that returns elements of L. What we need now is a

practical criterion that tells us when a set of elements of L generates L.

Theorem 3.48. Let β1, . . . , βs ∈ L and let PL be the partition defined by L. Then

L = k(β1, . . . , βs) if and only if, for any j /∈ P
(1)
L there exists l ∈ {1, . . . , s} with

βl /∈ Lj.

Proof. Notice that L∩Lj ( L, for any j /∈ P (1)
L . Hence, if there exists some j /∈ P (1)

L

such that βi ∈ Lj, for every βi, then k(β1 . . . , βs) ⊆ L ∩ Lj ( L. Conversely, let

β1 . . . , βs ∈ L be such that for any j /∈ P
(1)
L , there exists βi such that βi /∈ Lj.

Let L̃ := k(β1 . . . , βs) and suppose that L̃ ( L. Let PL̃ be the partition defined

by L̃. By Lemma 3.16 we have P
(1)
L ( P

(1)

L̃
and hence, there exists j ∈ P (1)

L̃
such

that j /∈ P
(1)
L and βi ∈ Lj, for any i ∈ P

(1)
L , which is a contradiction. Therefore,

L = k(β1 . . . , βs).
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Recall that for any element β ∈ K, there exists g(x) ∈ k[x]<n such that

β = g(α) and that β ∈ Lj if and only if, g(x) ≡ g(α) mod fj. To show that β /∈ Lj,

it is enough to show that g(x) 6≡ g(α) mod (fj, p), where p is as in Definition 3.39.

Theorem 3.48 allows us to write an algorithm for finding a set of generators of L.

Algorithm 3.8 Generators (Fast version)

Input: Subfield factorization f1, . . . , fr of f and the partition PL.

Output: A set of generators of the subfield L of K/k.

1. S := ∅.

2. J := {1, . . . , r} − P (1)
L .

3. β := NextElem( ), where β = g(α), for some g(x) ∈ k[x]<n.

4. S := S ∪ {β}.

5. for j ∈ J do

6. if g(x) 6≡ g(α) mod (fj, p) then J := J − {j}.

7. if J 6= ∅ then Go to Step 3 else return S.

Theorem 3.49. The output of Algorithm 3.8 is a set S ⊆ L which generates L.

Proof. If g(x) 6≡ g(α) mod (fj, p) in Step 6, then g(x) 6≡ g(α) mod fj and hence,

g(α) /∈ Lj. If S is the output of Algorithm Generators, then for any j /∈ P (1)
L , there

exists β ∈ S such that β /∈ Lj. By Theorem 3.48, S generates L.

This algorithm can also be used to decide if β ∈ Q(α) is a generator

for a subfield L. Algorithm Generators, as it is stated, is not guaranteed to finish.

However, if the algorithm has not found a generating set after a certain number

of elements computed, one could compute the subfield polynomial and return its

coefficients.
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4 THE NUMBER FIELD CASE

Let K/k be a finite and separable field extension, let α be a primitive

element and let f ∈ k[x] be the minimal polynomial of α over k. In light of the

previous chapter, given a subfield factorization f1 · · · fr of f , we can use Algorithm

Partitions to compute the partitions P1, . . . , Pr of the principal subfields L1, . . . , Lr

and compute their intersections using Algorithm Join. This gives us the partition

of every subfield of K/k and we can compute generators for each of them using

Algorithm Generators. When k = Q, we have two methods to find a subfield

factorization:

Method 1. Fully factoring f over K = Q(α). One can use Trager’s method [47]

or Belabas’s Algorithm [8] (a generalization of van Hoeij’s factorization

algorithm for number fields).

Method 2. Use a p-adic factorization of f , for appropriate p, and LLL to find the

principal subfields (as in van Hoeij et al. [51]).

We compared both methods to see which works best when adjusted to

our new approach for the intersections. Based on timings in Magma (see the columns

SubfFact and (Factorization) in Table 4.1) and since the cut-off bound for the LLL

given in [51] is essentially optimal, we expected Method 2 to be faster. However,

we noticed that this was not the case after trying to factor f over Q(α) using the

algorithm from Belabas [8] in Pari/GP [45]. Method 2 and Belabas’ factorization

algorithm both use LLL, but Method 2 does this for every p-adic factor separately,

introducing a factor r̃. Without additional results, (could the LLL-work for each p-

adic factor in Method 2 be shared?), Method 1 with Belabas’ factorization algorithm

gives the best timings. However, we still develop Method 2 to get a complexity bound

(as there is no complexity bound for Belabas’ factorization algorithm).
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4.1 Computing a Subfield Factorization (Method 2)

In this section, we show how one can use p-adic factorization and LLL

to directly compute a subfield factorization. The idea is to find a primitive element

of L which, in turn, gives us the subfield polynomial of L (recall Theorem 3.4, item

6.). Once we have the subfield polynomial of all principal subfields, we construct a

subfield factorization.

As usual, we start by choosing a prime p such that p does not divide

the leading coefficient of f ∈ Z[x], f mod p is separable and has at least one linear

factor in Fp[x], which we denote by f̄1. Let K̂ = Qp be the field of p-adic numbers.

The factorization f̄1, . . . , f̄r̂ of f mod p lifts to a factorization f̂1 · · · f̂r̂ of f into

irreducible factors over Qp, with f̂1 linear. Computationally, we can only compute

p-adic factors with finite accuracy. For i = 1, . . . , r̂ and a positive integer a, let

f
(a)
i ∈ paZ[x] be an approximation of f̂i with accuracy a, that is, f̂i ≡ f

(a)
i mod pa

(Hensel lifting). By mapping α ∈ Q(α) to the root α̂ of f̂1 in Qp, we can view Q(α)

as a subfield of Qp.

For g ∈ Q(α)[x], we will denote by ḡ ∈ Fp[x], the image of g under the

map α → ᾱ, where ᾱ is the root of f̄1, and by ĝ ∈ Qp[x], the image of g under the

map α → α̂, where α̂ is the root of f̂1. Furthermore, for g, h ∈ Q(α)[x], we denote

by gcdp(g, h) the gcd of the images ḡ and h̄ over Fp.

As shown in [51], one can use LLL to compute linearly independent

algebraic numbers β1, . . . , βmi ∈ Q(α) which (likely) form a Q-basis of Li (it is only

guaranteed that Li ⊆ Q·β1+· · ·+Q·βmi as vector spaces). Recall that f1, . . . , fr is a

subfield factorization if for every principal subfield Li with subfield polynomial g, we

have g ∈ {f1, . . . , fr}π (recall Notation 3.8). The idea of the algorithm below comes

from the following fact: let g1, . . . , gs be any factorization of f . If, for every j such
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that G := gcd(gj, g) 6= 1, we replace gj by G and gj/G, then the new factorization

G1, . . . , GS is such that g ∈ {G1, . . . , GS}π.

Algorithm 4.1 PartialSubfFact

Input: A Q-basis β1, . . . , βmi of some V such that Li ⊆ V and a factorization

g1, . . . , gs of f .

Output: A partial factorization G1, . . . , GS of f over Q(α), with s ≤ S, and such

that gLi ∈ {G1, . . . , GS}π or Error.

1. Let SF := {g1, . . . , gs} and let T ⊆ k finite.

2. Let β be a random T -combination of β1, . . . , βmi .

3. Let H := h(x)− h(α), where h(x) ∈ Z[x]<n and h(α) = β.

4. Compute g0 := gcdp(f,H) in Fp[x].

5. if deg(g0) ·mi 6= n then go to Step 2.

6. for j = 1, . . . , s do

7. Compute g := gcdp(gj, H) in Fp[x].

8. if 0 < deg(g) < deg(gj) then

9. Compute G := gcd(gj, H) in Q(α)[x].

10. if f̄i | ḡj but f̄i - Ḡ then return Error.

11. SF := (SF − {gj}) ∪ {G, gj/G}.

12. return SF

The purpose of the gcd computations mod p in Steps 4 and 7 is to avoid

expensive gcd computations over Q(α). Since β1, . . . , βmi is not guaranteed to be a

Q-basis for Li, we might run into some problems. For instance, if β1, . . . , βmi is not a

Q-basis of Li, the element β in step 2 might never be a primitive element and hence,

Step 5 sends the algorithm into an infinite loop. Otherwise, deg(g0)·mi 6= n when the

random element β is not a generator of Li, which happens with probability at most

(mi − 1)|T |mi(1−q)/q, where q is the smallest prime that divides mi (see Appendix

4.3). To prove the correctness of the algorithm, we use the following remark.
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Remark 4.1. As a consequence of Lemma 3.41, if g, h ∈ Q(α)[x] are factors of

f then one can quickly verify whether or not h | g by checking whether the image

of h in Fp[x] divides the image of g in Fp[x]. The same holds for deciding when

gcd(g, h) ∈ Q(α)[x] is trivial or not.

Lemma 4.2. If algorithm PartialSubfFact does not end in an error message, then

the input β1, . . . , βmi is a basis of Li, and moreover, Li = Q(β), with β from Step

2. If Step 10 returns an error message, then β1, . . . , βmi is not a basis of Li.

Proof. Let gLi be the subfield polynomial of Li and let gβ := gcd(f, h(x)− h(α)) be

the subfield polynomial of Q(β) (see Theorem 3.4, item 6.). Let g0 ∈ Fp[x] be as in

Step 4. It follows that

deg(g0) ≥ deg(ḡβ) = deg(gβ). (4.1)

Furthermore, since Li ⊆ V as Q-vector spaces, we have dim(V ) ≥

dim(Li). But dim(Li) = n/ deg(gLi) and dim(V ) = mi. Hence,

deg(gLi) ≥ n/mi. (4.2)

If Step 5 does not generate an infinite loop (in which case the algorithm

should return an error message), then deg(g0) ·mi = n and hence, Equations (4.1)

and (4.2) tell us that

deg(gLi) ≥ n/mi = deg(g0) ≥ deg(gβ). (4.3)

Now suppose that Step 10 did not return an error message. Since f is

separable modulo p, there is only one index I, 1 ≤ I ≤ s, such that f̄i | Ḡ, where

G = gcd(gI , H). If F is the irreducible factor of f over Q(α) such that f̄i | F̄ , then

using Remark 4.1 one can show that F | G | gβ and hence, Q(β) = Lgβ ⊆ LF . On

the other hand, if f̂i is the p-adic factor of f which reduces to f̄i modulo p, then

f̂i | F̂ and hence, LF ⊆ LF̂ ⊆ Lf̂i = Li. Therefore Q(β) ⊆ Li and thus, gLi | gβ,
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by Lemmas 3.13 and 3.16. By Equation (4.3), we have gLi = gβ = gcd(f,H) and

hence,

Li = Q(β) = V.

Notice that this also shows that the polynomials g in Step 7 and G in

Step 9 have the same degree. If the algorithm does return an error message in Step

10, then f̄i | ḡI but f̄i - Ḡ (and hence, f̄i - H̄). By looking at the images over the

p-adic numbers, we also must have f̂i - Ĥ, which means that h(α) = β /∈ Li. Hence,

β1, . . . , βmi is not a basis of Li.

Theorem 4.3. Let gLi be the subfield polynomial of Li. Given a Q-basis of V ⊇ Li

and a (partial) factorization of f , Algorithm PartialSubfFact returns a (partial)

factorization G1, . . . , GS of f such that gLi ∈ {G1, . . . , GS}π or an error message.

Proof. If the algorithm does not return an error message, then by Lemma 4.2 it

follows that gLi = gcd(f,H). Hence, by computing the gcd of H with the partial

factorization of f and updating the set SF (Step 11), it follows that the output SF

in Step 12 is such that gLi ∈ SF π.

Different bases for Q(α) give different bounds on the bit-size of β1, . . . , βmi .

While the standard basis {1, α, . . . , αn−1} simplifies implementation, the rational

univariate representation basis {1/f ′(α), . . . , αn−1/f ′(α)} can improve running times

and provide better complexity results, see [5] and [15].

Besides giving better bounds, there are more advantages in using the

rational univariate representation basis. For example, if g is a monic factor of f in

Q(α)[x], then f ′(α)g ∈ Z[α][x] (see [54]). This allows us to make simplifications in a

general algorithm for computing gcd’s in Q(α)[x], giving better complexity results.

See Appendix 4.4.
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Remark 4.4. Suppose that β1, . . . , βmi is a Q-basis of V ⊇ Li. Let β be a random

T -combination of β1, . . . , βmi and let b0, . . . , bn−1 ∈ Z be such that β =
∑
bj

αj

f ′(α)
.

If h̃(x) =
∑
bjx

j ∈ Z[x], then one should define H(x) as h̃(x)f ′(α) − h̃(α)f ′(x) ∈

Z[α][x] in Step 3 of Algorithm PartialSubfFact.

Lemma 4.5. Given a Q-basis of V ⊇ Li (computed in the rational univariate repre-

sentation basis) and a partial factorization g1, . . . , gs of f , the number of CPU oper-

ations for running Algorithm PartialSubfFact is bounded by Õ(n3(r+ log ‖f‖2)).

Proof. The cost of Steps 4 and 7 is less than the cost of Step 9. The cost of the

division gj/G in Step 11 is similar to the cost of the gcd in Step 9 (this division

can be computed by dividing the images of gj and G in Fp(α)[x] and then Chinese

remaindering). Since f is separable modulo p, there is only one gI such that f̄i | ḡI
and if

f̄i | Ḡ, where G = gcd(gI , H), (4.4)

then, by the proof of Lemma 4.2, we have

deg(gcd(gj, H)) = deg(gcdp(gj, H)), for any 1 ≤ j ≤ s

and hence, when computing gcd(gj, H), j 6= I, we can skip the trial divisions in

the modular gcd algorithm (see [52] and Appendix 4.4). That is, we have one gcd

computation with trial divisions, which costs Õ(n3 log ‖f‖2) CPU operations, and if

(4.4) holds, then we can skip the trial divisions in the remaining gcd’s, where each

such gcd costs Õ(n2(n+log ‖f‖2)) CPU operations (see Appendix 4.4). Furthermore,

each division test in step 10 costs Õ(n log p) CPU operations. The result follows by

omitting log p terms and using the fact that s ≤ n.

The algorithm PartialSubfFact creates a factorization that contains

the subfield polynomial of a single principal subfield. By iterating through all prin-

cipal subfields we get a subfield factorization. A general description of the algorithm

to compute a subfield factorization of f over Q(α) is given below.
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Algorithm 4.2 SubfFact.

Input: A squarefree irreducible polynomial f ∈ Z[x].

Output: A subfield factorization of f over Q(α).

1. Let p prime for which f̄ is separable, has a linear factor and deg(f) = deg(f̄).

2. Compute the irreducible factorization f̄1, . . . , f̄r̂ of f̄ ∈ Fp[x].

3. SF0 := {x− α, f/(x− α)}.

4. for i = 1, . . . , r̂ do

5. Hensel lift f̄1, . . . , f̄r̂ to a factorization f
(a)
1 , . . . , f

(a)
r̂ of f mod pa, for some a.

6. Use LLL to compute a basis β1, . . . , βmi of some V ⊇ Li.

7. SFi:=PartialSubfFact({β1, . . . , βmi}, SFi−1).

8. If SFi = Error, increase the lifting precision a, go to Step 5.

9. return SFr̂.

The starting precision a from Step 5 is the same as that from [51].

Likewise, the basis β1, . . . , βmi is computed as explained in [51].

Remark 4.6. While computing the subfield factorization, whenever we find a linear

factor x − h1(α) ∈ Q[α][x] of f , we can use it to find new linear factors in the

following way: if x− h2(α) is another linear factor, then h1(h2(α)) is also a root of

f . This follows from the fact that φ : K → K, α 7→ h1(α) is an automorphism of

K/k (which permutes the roots of f). This is particularly helpful when f has several

roots in K, since the number of LLL calls can be reduced significantly.

Example 4.7. Let f = S3(x) = x8 − 40x6 + 352x4 − 960x2 + 576 ∈ Q[x] be the

Swinnerton-Dyer polynomial of index 3 and let α be a root of f . Let us compute a

subfield factorization for Q(α)/Q. First of all, we need to choose a prime p such

that f mod p is separable, has a linear factor and the same degree as f . One such

prime is p = 1009 since f mod p factors as

f mod p = (x+ 46)(x+ 177)(x+ 344)(x+ 475)(x+ 534)(x+ 665)(x+ 832)(x+ 963),
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whose factors we call f̄1, . . . , f̄8, respectively. This prime is chosen as the first prime

greater than 1000 with the required properties1. Now, let ᾱ = −46 = 963 be the root

of f̄1 and let α̂ be the p-adic root of f such that α̂ ≡ ᾱ mod p. The principal subfield

corresponding to f̄1 = x + 46 we already know to be Q(α). So we start with r = 2

and f̄2 = x+ 177. By Hensel Lifting the factorization above and using LLL, we get

a Q-basis for some V such that L2 ⊆ V , given by

β1 = (α4 − 4α2 − 24)/f ′(α),

β2 = (α5 − 12α3 + 24α)/f ′(α),

β3 = (α7 − 19α5 + 44α3 + 24α)/f ′(α),

β4 = (α6 − 19α4 + 68α2 − 24)/f ′(α).

These elements are computed in the rational representation basis. Notice that if we

rewrite, for instance, the element β1 in the canonical representation (i.e., in the

basis 1, α, α2, . . . , α7), we get

β1 = − 1

6144
α7 +

47

7680
α5 − 11

256
α3 +

1

15
α,

which have much larger coefficients2. Now we need to call Algorithm PartialSubfFact.

Let T = {−10, . . . , 10}. The first step is to compute a random T -combination of

β1, . . . , β4, say

β := 10β1+5β2−β3−6β4 = (−α7−6α6+24α5+124α4−104α3−448α2+96α−96)/f ′(α).

According to Remark 4.4, let H(x) = h̃(x)f ′(α) − h̃(α)f ′(x) (too long to display),

where

h̃(x) = −x7 − 6x6 + 24x5 + 124x4 − 104x3 − 448x2 + 96x− 96.

1If the prime p is very small, we may not have enough elements to compute the partitions
(though the primes used to compute the partitions and the subfield factorization could be different,
we shall use the same one), recall Example 3.40. This is why p is chosen this way.

2Larger in the sense that more bits of information are needed to represent β1.
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The next step is to compute the gcd of the images f̄ and H̄ of f and H in Fp[x],

that is, replacing α by ᾱ and considering the resulting polynomial over Fp. By doing

so we have H̄ = 539x7 + 32x6 + 6x5 + 684x4 + 643x3 + 35x2 + 560x+ 512 and hence

g0 := gcdp(f,H) = gcd(f̄ , H̄) = x2 + 223x+ 70.

Notice that deg(g0) ·mi = 2 · 4 = 8 = n (where mi is the dimension of V , defined

by β1, . . . , β4). At this point, our partial subfield factorization is just SF0 = {x −

α, f/(x−α)} =: {g1, g2}. Now we compute the gcd of the images of H and the gi’s.

Since g1 = x− α, we can skip this factor. For g2 = f/(x− α), we have

g := gcdp(g2, H) = x+ 177.

Since 0 < deg(g) < deg(g2), we compute the G := gcd(g2, H) (now over Q(α)),

which yields

G := gcd(g2, H) = x−
(
− 1

288
α7 +

7

72
α5 +

7

36
α3 − 7

3
α

)
=: x− h1(α).

Notice that f̄2 = x + 177 | ḡ2 and f̄2 | Ḡ = x + 177, which proves that gcd(f,H) is

indeed the subfield polynomial of L2 (recall Lemma 4.2). Hence, the partial subfield

factorization is now

SF2 := {x− α,G = x− h1(α), g2/G} =: {g1, g2, g3}.

We now use f̄3 = x+ 344. Hensel lifting and LLL return the Q-basis

β1 = (α4 + 4α2 − 24)/f ′(α),

β2 = (α5 − 8α3 + 24α)/f ′(α),

β3 = (α6 − 20α4 + 72α2)/f ′(α),

β4 = (α7 − 19α5 + 88α3 + 24α)/f ′(α).

of some V such that L3 ⊆ V . Again, we call Algorithm PartialSubfFact. The

random T -combination we choose this time is

β := 3β1+10β2+β3−9β4 = (−9α7+α6+181α5−17α4−872α3+84α2+24α−72)/f ′(α).
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Again, we define H(x) = h̃(x)f ′(α)− h̃(α)f ′(x), where

h̃(x) = −9x7 + x6 + 181x5 − 17x4 − 872x3 + 84x2 + 24x− 72

and compute g0 := gcdp(f,H) = gcd(f̄ , H̄) = x2 + 390x + 689. Again, we have

deg(g0) ·mi = 8 = n, and hence, we may continue. Now we compute gcdp(gj, H),

for every gj ∈ SF2 = {g1, g2, g3}. The only gj for which gcdp(gj, H) is not trivial is

g3, yielding g := gcdp(g3, H) = x+ 344 and

G := gcd(g3, H) = x−
(

1

48
α7 − 37

48
α5 +

61

12
α3 − 13

2
α

)
=: x− h2(α).

Again, we have f̄3 = x + 344 | ḡ3 and f̄3 | Ḡ = x + 344, so we may continue. We

now update the partial subfield factorization

SF3 := {x− α, x− h1(α), G = x− h2(α), g3/G} =: {g1, g2, g3, g4}.

Since we now have 2 linear factors (distinct from x − α), we may try to find a

distinct linear factor using Remark 4.6. To do so, consider

x− h1(h2(α)) = x−
(

5

288
α7 − 97

144
α5 +

95

18
α3 − 59

6
α

)
=: x− h3(α).

We can check that x − h3(α) is indeed a distinct linear factor of f (not already

computed) and we may update the partial subfield factorization to

SF3 := {x− α, x− h1(α), x− h2(α), x− h3(α), g4/(x− h3(α))}.

For x − h3(α), there exists only one factor f̄j such that f̄j = x − h3(ᾱ) = x + 475.

That is, we may skip the factor f̄4 = x+ 475 (after all, this is the reason of Remark

4.6, to skip expensive LLL calls). For the next factor f̄5 = x + 534, we find yet

another linear factor x−h4(α) and using Remark 4.6, we find 3 more linear factors.

That is, we have found 8 linear factors of the degree-8 polynomial f . Thus, we have

found a subfield factorization (which, in this case, coincides with the factorization

of f over Q(α) into irreducible factors).
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Theorem 4.8. Assuming a prime p of suitable size (see Remark 3.46) is found,

and assuming the Hensel Lifting accuracy a from [51] is large enough (see Remark

4.9 below), the number of CPU operations executed by Algorithm SubfFact can be

bounded by Õ(rn7 + rn5 log2 ‖f‖).

Proof. Steps 1 and 2 involve factoring f modulo a few primes p until we find a prime

that satisfies the conditions from Step 1. Factoring f over Fp can be executed with

Õ(n2+n log p) operations in Fp (see [57], Corollary 14.30). Multifactor Hensel lifting

takes Õ(n2(n+ log ‖f‖2)) CPU operations (see [57], Theorem 15.18). For each i in

Step 4 we have one LLL call, costing Õ(n7 +n5 log2 ‖f‖2) CPU operations (see [53]),

and one PartialSubfFact call, which costs Õ(n3(r + log ‖f‖2)) CPU operations

according to Lemma 4.5. The theorem follows by omitting log p factors.

Remark 4.9. If the initial value of a is low, our implementation increases a. How-

ever, this has little impact on CPU timings or complexity. The highest degree term

in the complexity comes from the LLL reduction. To bound the LLL cost, one must

bound the vector lengths that can occur during LLL, and the total number of LLL

switches. Gradual sublattice reduction (such as [53]) makes those bounds indepen-

dent of a. More details can also be found in [50], which explains why the highest

degree term in the complexity of factoring in Q[x] depends only on r. To prove an

upper bound for a, we need to bound the coefficients of a basis element βj ∈ V −Li by

multiplying the LLL cut-off bound n2‖f‖ from [51] with the LLL fudge factor 2O(n).

Then bound the norm of the resultant of f(x) and H(x) from Remark 4.4, and use

the fact that it must be divisible by pa because f̂i is a common factor mod pa but not

mod p∞ if βj ∈ V − Li.
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4.2 CPU Time Comparison

In this last section we give a few timings comparing Algorithm SubfFact

and factorization algorithms over Q(α) (recall that both algorithms yield a subfield

factorization). We also compare our algorithm Subfields with that from [51]. Our

algorithm was implemented in the computer algebra system Magma, since there

exists an implementation of [51] in Magma as well. All timings displayed in this

and in the next chapter were obtained on an IntelR© Core i7-3770 CPU @ 3.40GHz

with 32GB of RAM. All examples were computed only once, as timings do not vary

significantly at each run.

4.2.1 SubfFact vs. Factoring over Q(α)

Algorithm Subfields is based on the definition of a subfield factor-

ization of f . As noted before, the irreducible factorization of f over Q(α) is

a subfield factorization. In this section we compare the time necessary to find

a subfield factorization of fi, for several polynomials fi ∈ Z[x], using algorithm

SubfFact, presented above, with the time necessary to completely factor fi over

Q(α) in Magma and in Pari/GP. We also list s, the number of irreducible fac-

tors of fi and r, the number of factors in the subfield factorization obtained us-

ing SubfFact. The polynomials fi used to construct this table can be found at

http://www.math.fsu.edu/~jszutkos/MySubfields. Most of these polynomials

can also be found in [51] and they are carefully chosen so as to give interesting Galois

groups, as “random” polynomials will not have interesting Galois groups.
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fi deg(fi) s r
Magma v2.21-3

SubfFact

Magma v2.21-3

(Factorization)

Pari/GP v2.9.2

(nffactor)

f1 32 32 32 0.56s 4.71s 0.46s

f2 36 24 16 3.76s 4.20s 0.63s

f3 45 3 3 3.66s 20.01s 94.54s

f4 48 20 16 21.10s 34.23s 3.30s

f5 50 26 11 24.08s 20.51s 2.89s

f6 56 14 6 50.26s 127.34s 26.48s

f7 60 33 18 107.22s 1,836.80s 38.75s

f8 60 60 32 117.43s 9,069.22s 40.70s

f9 64 16 12 101.82s 190.99s 48.82s

f10 72 3 3 77.76s 300.62s 133.54s

f11 72 32 24 175.85s 130.40s 17.23s

f12 75 20 6 542.30s > 24h 518.40s

f13 75 21 9 199.70s 180.06s 114.38s

f14 80 3 3 117.03s 280.18s 136.21s

f15 81 42 28 680.24s 13,661.89s 96.00s

f16 90 24 7 921.53s > 24h 516.14s

f17 96 32 32 555.24s 622.33s 137.23s

f18 96 96 56 2,227.06s 16,352.01s 91.43s

Tabela 4.1: Subfield Factorization vs. Factoring in Q(α)[x].

In a few cases, factoring fi over Q(α) in Magma is faster than SubfFact.

However, when it is not, using SubfFact to find a subfield factorization is usually

much faster. Factoring fi over Q(α) in Pari/GP is usually faster still, except in

cases where Pari/GP struggles to find an integral basis for K (a step that is not

necessary because one can use rational univariate representation instead).
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Remark 4.10. The timing difference between the factorization algorithms from

Magma and Pari/GP might be explained by the fact that Magma uses a version

of the factorization algorithm from [47], while Pari/GP uses the factorization algo-

rithm from [8]. The reader might be tempted to conclude that it would be best to im-

plement our algorithms in Pari/GP, however, to the best of the author’s knowledge,

Pari/GP does not currently support multivariate polynomial factorization (which

will be needed in the next chapter). Moreover, Pari/GP does not contain an imple-

mentation of the algorithm from [51], which we are improving and with which we

wish to compare3.

Remark 4.11. In Step 6 of Algorithm SubfFact, the subfield Li (to be precise: a

subspace V containing Li, but these are practically always the same) is computed

with LLL techniques. Factoring f in Pari/GP is done with LLL techniques as well

[8]. We expect the computation of Li to be faster than factoring f in Pari/GP,

because the bound in [51, Theorem 12] used by SubfFact is very good. The above

table shows that, compared with [8], the CPU time saved by this tight bound does

not compensate for the fact that Step 6 in Algorithm SubfFact is done r times.

In contrast, the cost of computing one factor with [8] is the same as the cost of

computing all irreducible factors. This is why [8] is faster.

4.2.2 Comparing Algorithms

Finally, we compare the running time of our algorithm Subfields

(where the subfield factorization is computed using SubfFact) and the algorithm

from [51] (currently built-in Magma). In order to give a better comparison of the

running time for both algorithms, we also compute a generator for every subfield

(according to Section 3.4.2). To compare the algorithms we need interesting ex-

amples (i.e., polynomials defining extensions with several subfields). Hence, these

3Pari/GP does have a command for computing subfields, but it is based on different algorithms.
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polynomials have to be chosen carefully, as random polynomials will likely define an

extension with no (non-trivial) subfields. Most of the polynomials used to construct

the table below were taken from [51].

As noted before, the main contribution of our work is in the way the

intersections of the principal subfields are computed. In the table below, r̂ is the

number of irreducible factors of fi in Fp[x] and r is the number of principal subfields.

We also list the number of LLL calls used by algorithm Subfields, di = deg(fi)

and m, the total number of subfields of the extension defined by fi.

ex. di r̂ r
LLL

calls
m m/r

Magma v2.21-3

(built-in)

Magma v2.21-3

(Subfields)

f1 32 32 32 5 374 11.68 11.42s 1.15s

f2 36 24 16 19 24 1.50 5.14s 3.84s

f3 48 28 16 26 25 1.56 24.52s 21.21s

f4 50 26 11 19 12 1.09 26.06s 24.16s

f5 56 20 6 19 6 1.00 52.29s 50.31s

f6 60 33 18 31 19 1.05 112.90s 107.53s

f7 60 60 32 24 59 1.84 205.46s 118.50s

f8 64 24 12 22 14 1.16 110.89s 101.99s

f9 64 40 30 35 93 3.10 167.13s 122.24s

f10 64 64 64 6 2,825 44.14 1,084.91s 43.62s

f11 72 40 24 35 42 1.75 219.30s 176.65s

f12 75 20 6 19 6 1.00 516.45s 542.60

f13 75 21 9 19 10 1.11 200.42s 199.85s

f14 80 48 27 37 57 2.11 1,021.22s 685.65s
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ex. di r̂ r
LLL

calls
m m/r

Magma v2.21-3

(built-in)

Magma v2.21-3

(Subfields)

f15 81 42 28 40 56 2.00 715.70s 681.35s

f16 81 45 25 40 36 1.44 746.33s 716.12s

f17 90 24 7 23 7 1.00 923.74s 921.77s

f18 96 32 32 20 134 4.18 1,159.04s 558.96s

f19 96 96 56 68 208 3.71 4,026.65s 2,239.54s

f20 100 100 57 62 100 1.75 7,902.09s 4,250.39s

f21 128 128 128 7 29,211 228.21 306,591.68s 5,164.75s

Tabela 4.2: Comparison Table - Number Fields.

Notice that when m is close to r (i.e., when there are not many subfields

other than the principal subfields and hence, very few intersections to be computed)

our algorithm performs similarly as [51]. However, we see a noticeable improvement

when m is very large compared to r, since in this case there are a large number of

intersections being computed (see examples f1, f10 and f21).

It has to be noted that the time improvement in these particular cases

(that is, examples4 f1, f10 and f21) is not only due to the new intersection algorithm,

but also to Remark 4.6. In these cases, f factors linearly over Q(α) and hence, many

of these factors can be found using Remark 4.6, which helps improve CPU timings

(since most LLL calls can be skipped). For instance, without attempting to find

new linear factors using Remark 4.6, example f10 calls LLL 62 times and the total

time in this case is 322.13s.

4These particular cases are the Swinnerton-Dyer polynomials S5(x), S6(x) and S7(x), respec-
tively. These polynomials have interesting properties and are often the worst case for several
algebraic algorithms.
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Other examples also benefit from Remark 4.6, but not as much as ex-

amples f1, f10 and f21. To check the number of LLL’s skipped in each example, we

refer the reader to http://www.math.fsu.edu/~jszutkos/Timings. More details

about these timings (for instance, the time to compute the subfield factorization,

the partitions and the intersections given separately) can also be found there. The

implementation of our algorithm, as well as the polynomials used in this comparison

table, can be found at http://www.math.fsu.edu/~jszutkos/MySubfields.

4.3 (Appendix) Primitive Element Probability

Let L/k be a separable field extension and let β1, . . . , βm be a k-basis

of L. Let T ⊆ k finite and let S = {
∑
aiβi : ai ∈ T}. In this section we compute

the probability that a random element s ∈ S is a primitive element of L.

Lemma 4.12. Let V be a k-vector space with basis v1, . . . , vm. Let W ⊆ V be a

subspace of dimension d. Let T ⊆ k be a finite set and let S = {
∑m

i=1 aivi : ai ∈ T}.

Then

|S ∩W | ≤ |T |d.

Proof. Let w1, . . . , wd be a basis of W . For every j there exist ci,j ∈ k, 1 ≤ i ≤ m,

such that

wj =
m∑
i=1

ci,jvi. (4.5)

Let w ∈ W , then

w =
m∑
i=1

aivi =
d∑
j=1

bjwj, (4.6)

for some ai ∈ k, 1 ≤ i ≤ m and some bj ∈ k, 1 ≤ j ≤ d. Combining equations (4.5)

and (4.6), it follows that ai =
∑d

j=1 ci,jbj, 1 ≤ i ≤ n. That is, we have the following
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equation 

a1

...

am


=



c1,1 · · · c1,d

...
...

cm,1 · · · cm,d




b1

...

bd

 . (4.7)

If C is the m × d matrix in (4.7), then C has d linearly independent rows. That

is, only d of the values ai suffice to determine w, while the remaining values are

dependent. Therefore,

|S ∩W | ≤ |T |d.

Theorem 4.13. Let L/k be a separable field extension and let β1, . . . , βm be a k-basis

of L. If T ⊆ k is a finite set and S = {
∑
aiβi : ai ∈ T}, then

|{s ∈ S : k(s) ( L}| ≤ (m− 1) · |T |m/p,

where p is the smallest prime that divides m.

Proof. Let L1, . . . , Lr be the principal subfields of L/k. Since every subfield of

L/k is an intersection of some of the principal subfields of L/k, it suffices to find

|{s ∈ S : s ∈ Li ( L, for some 1 ≤ i ≤ r}|. The number of principal subfields (not

equal to L) is at most m− 1 and [Li : k] ≤ m/p, where p is the smallest prime that

divides m. According to Lemma 4.12, |S ∩ Li| ≤ |T |m/p. Therefore,

|{s ∈ S : k(s) ( L}| ≤ (m− 1) · |T |m/p.

Corollary 4.14. Let L/k be a separable field extension and let β1, . . . , βm be a k-

basis of L. Let T ⊆ k finite and let S = {
∑
aiβi : ai ∈ T}. If s is a random element

of S and p is the smallest prime that divides m, then

Prob(k(s) ( L) ≤ (m− 1) · |T |m(1−p)/p.
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4.4 (Appendix) Bounding the coefficients of H(x) and

GCD’s in Q(α)[x]

The bottleneck of Algorithm PartialSubfFact in Section 4.1 is the

computation of the gcd’s in Q(α)[x]. If p is a prime, Fp(α) := Fp[t]/(f(t)) is a finite

ring. Let g1, g2 ∈ Q(α)[x]. The modular gcd algorithm reconstructs g := gcd(g1, g2)

from its images in Fp(α)[x] for suitable primes. In other words, there are mainly

four steps to be carried out (see [52])

1) Compute g1 mod p, g2 mod p, for several suitable primes p.

2) Compute gcd(g1 mod p, g2 mod p), for each prime p.

3) Chinese remaider the polynomials in 2) and use rational reconstruction

to find a polynomial g ∈ Q(α)[x].

4) Trial Division: check if g|g1 and g|g2.

The number of primes needed depends on the coefficient size of g. But

the (bound for) coefficient size of f ′(α)g ∈ Z[α][x] is much better than that of g ∈

Q(α)[x]. Hence, to get a good complexity/run time we choose to reconstruct f ′(α)g

from its modular images instead of g. Furthermore, if we have some information

about g (for instance, its degree), then step 4 can be skipped.

In our case, we need to compute gcd(H, gj), where H = f ′(x)h̃(α) −

f ′(α)h̃(x) ∈ Z[α][x] is as in Remark 4.4 and gj is a factor of f over Q(α). In what

follows we compute a bound for the coefficients of H and a bound for the coefficients

of a factor of H. Let α1, . . . , αn be the complex roots of f and let σi be the i-th

embedding of Q(α) into C such that σi(α) = αi. For β ∈ Q(α), we define the

T -norm of the element β to be

T (β) :=
n∑
i=1

|σi(β)|2.
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If β ∈ Z[α], then there exists b0, . . . , bn−1 ∈ Z such that β =
∑
biα

i and one can

also define

‖β‖2 := ‖(b0, . . . , bn−1)‖2.

The relation between ‖ · ‖2 and the T -norm is the following

Lemma 4.15 (Lemma 18 of [51]). Let β ∈ Q(α). If f ′(α)β =
∑
biα

i, with bi ∈ Z,

then

‖f ′(α)β‖2 = ‖(b0, . . . , bn−1)‖2 ≤ n3/2‖f‖2

√
T (β).

Let β1, . . . , βm be generators of L as a Q-vector space, where

f ′(α)βi =
∑

bi,jα
j

with bi,j ∈ Z and ‖(bi,0, . . . , bi,n−1)‖2 ≤ n2‖f‖2 (See [51]). Let β be a random

T -combination of β1, . . . , βm. That is,

β =
∑

tiβi ∈
1

f ′(α)
Z[α]<n,

with ti ∈ T. Let h0, . . . , hn−1 ∈ Z be such that f ′(α)β =
∑
hiα

i and let h̃(x) =∑
hix

i ∈ Z[x]. By expanding the summations, one can show that

hi =
∑

tjbj,i

and hence

|hi| ≤ nTB max{‖βj‖∞} ≤ n3TB‖f‖2, (4.8)

where TB is a bound for the elements of T . Let us now bound the integer coefficients

of H(x) := f ′(x)h̃(α) − f ′(α)h̃(x) ∈ Z[α][x]. If c ∈ Z is a coefficient of f ′(x), then

|c| ≤ n‖f‖∞. Now if ch̃(α) ∈ Z[α] is a coefficient of f ′(x)h̃(α), then

‖ch̃(α)‖2 = ‖
∑

chiα
i‖2 ≤ |c|

√∑
|hi|2 = |c|

√
nmax{|hi|} ≤ n9/2TB‖f‖∞‖f‖2.

Likewise, if hif
′(α) is a coefficient of f ′(α)h̃(x), then one can show that

‖hif ′(α)‖2 ≤ n9/2TB‖f‖2‖f‖∞.

This shows the following theorem.
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Theorem 4.16. If c =
∑
ciα

i ∈ Z[α] is a coefficient of H(x), then ‖(c0, . . . , cn−1)‖2 ≤

2n9/2TB‖f‖2‖f‖∞.

Now let us bound the coefficients of any factor of f and H(x). We use

the following result (Landau-Mignotte bound).

Theorem 4.17 (Theorem 6.32 of [57]). If h =
∑m

i=0 hix
i ∈ C[x] divides f =∑n

i=0 fix
i ∈ C[x], then ‖h‖2 ≤ ‖h‖1 ≤ 2mM(h) ≤

∣∣∣hmfn ∣∣∣ 2m‖f‖2.

Lemma 4.18. Let g ∈ Q(α)[x] be a factor of f and let c be a coefficient of g.

Furthermore, let b0, . . . , bn−1 ∈ Z such that f ′(α)c =
∑
biα

i ∈ Z[α]. Then

‖(b0, . . . , bn−1)‖∞ ≤ n4n‖f‖2
2.

Proof. Let c(1), . . . , c(n) be the evaluation of c in the complex roots α1, . . . , αn of f ,

respectively. Since g is a factor of f , the Landau-Mignotte bound [36] tells us that

|c(i)| ≤ 2n‖f‖2. As shown in [54], Lemma 4.2, we can write f ′(α)c = P (α), where

P (x) =
n∑
i=1

c(i) f(x)

x− αi
∈ Z[x].

Hence

‖P (x)‖∞ ≤ ‖P (x)‖2 =

∥∥∥∥∥
n∑
i=1

c(i) f(x)

x− αi

∥∥∥∥∥
2

≤
n∑
i=1

|c(i)|
∥∥∥∥ f(x)

x− αi

∥∥∥∥
2

.

Again using the Landau-Mignotte bound, we get ‖P (x)‖∞ ≤ n4n‖f‖2
2.

To bound the integer coefficients of any factor of H we need some results.

Lemma 4.19. Let c be a coefficient of Hσi ∈ C[x], the image of H under the

embedding σi. Then |c| ≤ 2TBn
5‖f‖2‖f‖∞Bn−1

r , where 1 ≤ Br is a bound for the

complex roots of f .

Proof. First of all, notice that

Hσi = σi(H(x)) = f ′(x)h̃(σi(α))− f ′(σi(α))h̃(x) =
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= f ′(x)h̃(αi)− f ′(αi)h̃(x).

Hence, if ch̃(αi) is a coefficient of f ′(x)h̃(αi), then

|ch̃(αi)| = |c||h̃(αi)| ≤ n‖f‖∞|
∑

hjα
j
i | ≤ n‖f‖∞

∑
|hj||αi|j

If 1 ≤ Br is a bound for |αi|, for any i, and by Equation (4.8), it follows that

|ch̃(αi)| ≤ TBn
5‖f‖2‖f‖∞Bn−1

r .

Likewise, if hjf
′(αi) is a coefficient of f ′(αi)h̃(x), one can show that

|hjf ′(αi)| ≤ TBn
5‖f‖2‖f‖∞Bn−1

r .

The result follows by the triangle inequality.

Let us now bound the integer coefficients of any factor of H.

Theorem 4.20. Let G =
∑
gix

i be a monic factor of H
lc(H)

and let gi =
∑
g̃i

αi

f ′(α)
,

with g̃i ∈ Z. Then f ′(α)lc(H)gi ∈ Z[α] and

‖f ′(α)lc(H)gi‖2 ≤ n7.52TB‖f‖2
2‖f‖∞(2(1 + ‖f‖∞))n.

Proof. Notice that lcoeff(H) ∈ Z[α] and that f ′(α)gi =
∑
g̃iα

i ∈ Z[α]. Hence,

f ′(α)lc(H)gi ∈ Z[α]. By Lemma 4.15, it follows that

‖f ′(α)lc(H)gi‖2 ≤ n3/2‖f‖2

√
T (lc(H)gi). (4.9)

Furthermore,

T (lc(H)gi) =
∑
σ

|lc(Hσ)gσi |2 =
∑
σ

|lc(Hσ)|2|gσi |2,

where gσi is the i-th complex coefficient of the monic factor Gσ of Hσ. By Theorem

4.17, it follows that

|gσi | ≤
∣∣∣∣ 1

lc(Hσ)

∣∣∣∣ 2n‖Hσ‖2.
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Hence,

T (lc(H)gi) ≤
∑
σ

|lc(Hσ)|2
(∣∣∣∣ 1

lc(Hσ)

∣∣∣∣ 2n‖Hσ‖2

)2

=
∑
σ

(2n‖Hσ‖2)2

Using Lemma 4.19, it follows that

T (lc(H)gi) ≤
∑
σ

(2n‖Hσ‖2)2 ≤ n
(√

n2n+1TBn
5‖f‖2‖f‖∞Bn−1

r

)2
(4.10)

By Equations (4.9) and (4.10), it follows that

‖f ′(α)lc(H)gi‖2 ≤ 2n7.5TB‖f‖2
2‖f‖∞(2Br)

n.

The result follows by applying the Cauchy bound for the roots of a monic polynomial

Br ≤ 1 + ‖f‖∞.

Let us now determine the cost (in CPU operations) for computing

f ′(α) gcd(H, f ′(α)gj) ∈ Z[α][x].

Let B be a bound for the integer coefficients of f ′(α) gcd(H, f ′(α)gj) (Lemma 4.18).

• Step 1) First of all, we compute the images of H and f ′(α)gj in Fp(α)[x],

which can be done with O(n2) integer reductions modulo several primes

p. The number of primes is O(logB) = Õ(n+ log ‖f‖2). According to

[57, Theorem 10.24], the complexity of this step is bounded by Õ(n2(n+

log ‖f‖2)).

• Step 2) Secondly, we have to compute one gcd in Fp(α)[x], for O(logB)

primes p. Using the Extended Euclidean Algorithm (see [57, Corollary

11.6]), one gcd in Fp(α)[x] can be computed with Õ(n) operations in

Fp(α) or Õ(n2) operations in Fp. Hence, this step can be bounded by

Õ(n2(n+ log ‖f‖2)).
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• Step 3) In this step we need to find a polynomial f ′(α)G ∈ Z[α][x] whose

images modulo several primes are given in Step 2. For this we use the

Chinese Remainder Algorithm (CRA). There are n(d + 1) integers to

be reconstructed, where d = deg(gcd(H, gj)), and each CRA call costs

Õ(logP ), where P =
∏
p (see [57, Theorem 10.25]). Since P = O(B),

the total cost of this step is Õ(n2(n+ log ‖f‖2)).

• Step 4) Instead of computing the division H/G (and gj/G, whose com-

plexity is hard to bound), we can substitute this trial division by recon-

struction from modular images followed by a trial multiplication. That

is, we can compute the images of H and G modulo several primes p,

compute H/G modulo p and then reconstruct f ′(α)lc(H)(H
G

) ∈ Z[α][x]

and verify that f ′(α)lc(H)(H
G

)·G = f ′(α)H. The cost is similar to steps

1), 2) and 3) above, the only difference is the number of primes needed

(since what we want to reconstruct is a factor of H, the bound B is

given by Lemma 4.20) and the trial multiplication at the end (which

can be executed with Õ(n3 log ‖f‖2) CPU operations). Hence, this step

has complexity Õ(n3 log ‖f‖2).
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5 RATIONAL FUNCTION

DECOMPOSITIONS

Given rational functions (resp. polynomials) g, h, the composition g ◦h

of g and h is again a rational function (resp. polynomial). The inverse problem, i.e.,

given f , find g, h such that f = g ◦ h, is called the (univariate) rational functional

decomposition problem. Finding a decomposition of a rational function f ∈ K(t)

has been studied by several authors. We highlight the work of Zippel [60], which

presents the first polynomial time algorithm that finds (if it exists) a nontrivial

decomposition of f . In [4], Alonso et al. give an exponential time algorithm that

computes all decompositions of f by generalizing the ideas for the polynomial case

from Barton and Zippel [7]. More recently, Ayad & Fleischmann [6] presented

improvements on [4], though the complexity is still exponential on the degree of f .

The particular case of polynomial decomposition has long been studied.

As far as the author’s knowledge goes, the first work on polynomial decomposition is

from Ritt [39], who presented a strong structural property of polynomial decompo-

sitions over the complex numbers. Barton and Zippel [7] presented two (exponential

time) algorithms for finding the decompositions of a polynomial over a field of char-

acteristic zero. Some simplifications are suggested by Alagar and Thanh [2] and

Alonso et al. [4]. Kozen and Landau [29] give the first polynomial time algorithm,

which works over any commutative ring containing an inverse of deg(g). van zur

Gathen [55, 56] further improves the work of [29]. More recently, Blankertz [10],

following the ideas of Zippel [60], gives a polynomial time algorithm that finds all

minimal decompositions of f , with no restrictions on deg(g).

Rational Functional Decomposition (of either a rational function or a

polynomial) is closely related to the subfield lattice of the field extensionK(t)/K(f(t))

(see Theorem 5.8 below). However, in general, the number of subfields is not poly-
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nomially bounded and algorithms for finding all complete decompositions, such as

Ayad & Fleischmann [6], can suffer from its combinatorial nature. In this last chap-

ter, we use the algorithms presented in Chapter 3 to find the subfield lattice of

K(t)/K(f(t)) and hence, all complete decompositions of f .

5.1 Basic Definitions

In this section we recall some basic definitions regarding rational func-

tion fields and rational function decompositions. Most of the results presented in

this section can be found in [4], [6] or in the references therein. Let K be an arbitrary

field and let K(t) be the rational function field over K. As usual, let S = K(t)\K be

the set of non-constant rational functions and let f = fn/fd ∈ S be a rational func-

tion with fn, fd ∈ K[t] coprime. The degree of f is defined as max{deg(fn), deg(fd)}

and denoted by deg(f). The set S, together with composition, is equipped with the

structure of a monoid. The K-automorphisms of K(t) are the fractional transfor-

mations u = (ax+ b)/(cx+ d) such that ad− bc 6= 0. The group of automorphisms

is isomorphic to the group PGL2(K) and also to the group of units of S under

composition. An element f ∈ K(t) is said to be indecomposable if 1) f is not a unit

and 2) f = g ◦ h implies g or h is a unit. Otherwise, f is called decomposable.

Definition 5.1. A decomposition of f is a list of rational functions (gm, . . . , g1)

such that f = gm ◦ · · · ◦g1. A complete decomposition is a decomposition (gm, . . . , g1)

where each gi is indecomposable. Moreover, two decompositions (gm, . . . , g1) and

(g̃n, . . . , g̃1) of f are equivalent if m = n and there are rational functions u1, . . . , um−1

of degree 1 such that gm = g̃m ◦ u−1
m−1, g1 = u1 ◦ g̃1 and

gi = ui ◦ g̃i ◦ u−1
i−1, 1 < i < m,
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If f is decomposable with f = g ◦ h, then h (resp. g) is called the

right component (resp. left component) of the decomposition g ◦ h. Furthermore, a

decomposition f = g ◦ h is minimal if h is indecomposable.

Example 5.2. Consider the rational function

f =
t3 + t2 + t

(t2 + 1)2
∈ Q(t).

This rational function admits a decomposition f = g ◦ h, where g = t2 + t and h =

t/(t2 + 1). Since h is indecomposable, this is a minimal decomposition. Moreover, g

is also indecomposable and hence, (g, h) is a complete decomposition of f .

It is well known by Lüroth’s Theorem that if K ( L ⊆ K(t), then there

exists h ∈ S such that L = K(h(t)) (a proof can be found in van Der Waerden [48]).

The rational function h is not unique however, K(h(t)) = K(h′(t)), if and only if,

there exists a unit u ∈ S such that h′ = u ◦ h. As in Ayad & Fleischmann [6], we

define the normal form of a rational function f ∈ S.

Definition 5.3. A rational function f = p/q ∈ S is in normal form or normalized

if p, q ∈ K[t] are monic, coprime, p(0) = 0 and either deg(p) > deg(q) or m :=

deg(p) < deg(q) =: n and q = tn + qn−1t
n−1 + · · ·+ q0, with qm = 0.

The normal form of a rational function f can be computed via a certain

fractional transformation, i.e., there exists a rational function u of degree 1 such that

u ◦ f is in normal form. Moreover, given f ∈ S, there exists a unique normalized

f̂ ∈ S such that K(f(t)) = K(f̂(t)) (see [6, Proposition 2.1]). Hence, if NK is the

set of all normalized rational functions over K, then there exists a bijection between

NK and the set of fields L such that K ( L ⊆ K(t).

Remark 5.4. In particular, there is a bijection between normalized rational func-

tions h ∈ S such that f = g ◦ h, for some g ∈ S, and the fields L = K(h(t)) such

that K(f(t)) ⊆ L ⊆ K(t). That is, by finding the subfield lattice of K(t)/K(f(t)),

we obtain all decompositions of f ∈ K(t).



106

Definition 5.5. For a rational function g = gn/gd ∈ S, with gn, gd ∈ K[t] coprime,

define ∇g(x, t) = ∇gn,gd(x, t) := gn(x)gd(t)− gn(t)gd(x) ∈ K[x, t] and

Φg(x) := gn(x)− g(t)gd(x) ∈ K(g(t))[x].

A bivariate polynomial a(x, t) ∈ K[x, t] is called near-separate if a(x, t) = ∇gn,gd(x, t),

for gn, gd ∈ K[t] coprime polynomials.

Remark 5.6. By Gauss’ Lemma, one can show that the polynomial Φf (x) ∈ K(f(t))[x]

is irreducible. If Φf (x) ∈ K(f(t))[x] is monic, then Φf (x) is the minimal polynomial

of t over K(f(t)). Otherwise, let f̃ = f̃n/f̃d be the normalization of f . By Definition

5.3, either deg(Φf̃ (x)) = deg(f̃n) > deg(f̃d) or deg(Φf̃ (x)) = deg(f̃d) > deg(f̃n). In

the latter case, Φf̃ (x) is not monic; however,

Φ1/f̃ (x) = f̃d(x)− 1/f̃(t)f̃n(x) ∈ K(1/f̃)[x]

is monic, irreducible and vanishes at x = t. Since 1/f̃ = u ◦ f , where u is a unit,

it follows that K(1/f̃) = K(f(t)) and hence, Φ1/f̃ (x) is the minimal polynomial of

t over K(f(t)). Conversely, if f̃ = u ◦ f , where u is a unit, and (gm, . . . , g1) is a

complete decomposition of f̃ , then (u−1 ◦ gm, gm−1, . . . , g1) is a complete decompo-

sition of f . Therefore, we can assume, without loss of generality, that f ∈ K(t) is

such that Φf (x) ∈ K(f(t))[x] is the minimal polynomial of t over K(f(t)).

Remark 5.7. Let f ∈ K(t) of degree n and let G1, . . . , Gr be the irreducible factors

of ∇f (x, t) ∈ K[x, t]. Let m1, . . . ,mr ∈ K[t] be the leading coefficients of G1, . . . , Gr

w.r.t. x. Then m1 · · ·mr = fd(t) and Fi := Gi/mi ∈ K(t)[x] are monic, irreducible

and ∇f/fd(t) = Φf (x) = F1 · · ·Fr.

In particular, if the exponents of t in Gi are bounded by di, then
∑
di =

n. The following theorem is the key result behind all rational (and also polynomial)

function decomposition algorithms based on near-separate polynomials, such as [4]

and [6] (see also [7] for the polynomial case).
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Theorem 5.8 ([4], Proposition 3.1). Let f, h ∈ S be rational functions. The follow-

ing are equivalent:

a) K(f(t)) ⊆ K(h(t)) ⊆ K(t).

b) f = g ◦ h, for some g ∈ S.

c) ∇h(x, t) divides ∇f (x, t) in K[x, t].

d) Φh(x) divides Φf (x) in K(t)[x].

If G1, . . . , Gr are the irreducible factors of ∇f in K[x, t], then the prod-

uct of any subset of {G1, . . . , Gr}, which is a near-separate multiple of x− t, yields

a right component h and hence, a decomposition f = g ◦ h. Many authors use this

approach to compute all decompositions of f : factor∇f and search for near-separate

factors (see [4, 6, 7]). However, this approach leads to exponential time algorithms

due to the number of factors we have to consider.

In the following sections we will use the algorithms developed so far,

based on principal subfields and fast subfield-intersection techniques, to compute

the subfield lattice of K(t)/K(f(t)). As previously mentioned, this yields all com-

plete decompositions of f . The general algorithms given in Chapter 3 apply for

K(t)/K(f(t)). In this Chapter we will explicitly re-state the algorithms in Chap-

ter 3 to this particular case. We do this in order to find simplifications in our

computations.

5.2 Principal Subfields of K(t)/K(f(t))

In this section we describe the principal subfields of the field extension

defined by the rational function f(t) ∈ K(t), given by K(t)/K(f(t)). We start by

making some remarks on the separability of Φf .
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Remark 5.9. By Gauss’ Lemma, one can show that Φf is irreducible in K(f(t))[x].

Thus, if K has characteristic 0, then Φf is also separable. On the other hand, if K

has characteristic p > 0, then Φf (x) might not be separable. This happens only if

Φ′f (x) = 0 and hence

Φf (x) = g(xp
k

) = g ◦ xpk , (5.1)

for some k ≥ 1 and g ∈ K(f(t))[x] separable. Since Φf (x) = fn(x)− f(t)fd(x), this

means that fn(x) = f̃n(xp
k
) and fd(x) = f̃d(x

pk), for some f̃n, f̃d ∈ K[x], and hence,

f = f̃ ◦ tpk ∈ K(t),

where f̃ := f̃n/f̃d ∈ K(t) and Φf̃ is separable. Thus, if one is only interested in

the decompositions of f , it suffices to find the decompositions of f̃ . For this reason,

we may always assume that f ∈ K(t) is such that Φf (x) is separable (see also [22],

Section 4.6).

Definition 5.10. Let F1, . . . , Fr be the monic irreducible factors of Φf (x) over K(t).

For j = 1, . . . , r, define the set

Lj := {g(t) ∈ K(t) : Fj | Φg} . (5.2)

The irreducible factors of Φf (x) ∈ K(t)[x] can be computed by com-

puting the irreducible factors of the bivariate polynomial ∇f (x, t) ∈ K[x, t]. Since

Φf (x) is the minimal polynomial of t over K(f(t)), the irreducible factorization of

Φf (x) is a subfield factorization of K(t)/K(f(t)) and the subsets Lj above are the

principal subfields of K(t)/K(f(t)), as we shall prove below. If we assume that

F1 = x − t, then L1 = K(t). The next two results show that the sets defined in

Equation (5.2) are the principal subfields of K(t)/K(f(t)).

Theorem 5.11. Let F1, . . . , Fr be the monic irreducible factors of Φf (x) over K(t).

Then the sets L1, . . . , Lr are subfields of K(t)/K(f(t)).
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Proof. We show that Lj is closed under multiplications and taking inverses. The

remaining properties can be shown in the same fashion. Let g(t) = gn(t)/gd(t) and

h(t) = hn(t)/hd(t) be elements of Lj. By definition,

Fj | Φg and Fj | Φh. (5.3)

Now g(t)h(t) ∈ Lj if and only if, Fj | Φgh. By a simple manipulation, one can show

that

Φgh = gn(x)Φh + h(t)hd(x)Φg. (5.4)

Therefore, by Equation (5.3), it follows that Fj | Φgh and hence, g(t)h(t) ∈ Lj. To

show that the inverse of g(t) is in Lj, notice that

Fj | Φg if and only if Fj | Φ1/g, (5.5)

since Φg = −g(t)Φ1/g as polynomials in K(t)[x]. Therefore, 1/g(t) ∈ Lj.

Finally, we show that the subfields L1, . . . , Lr defined above are the

principal subfields of K(t)/K(f(t)).

Theorem 5.12. The set of subfields {L1, . . . , Lr} of K(t)/K(f(t)), where Lj is

defined as in (5.2), for 1 ≤ j ≤ r, is the set of principal subfields of K(t)/K(f(t)).

Proof. Given a subfield L of K(t)/K(f(t)), by Lüroth’s Theorem, there exists a

rational function h(t) ∈ K(t) such that L = K(h(t)) and therefore, f = g ◦ h, for

some g ∈ K(t). By Theorem 5.8 it follows that Φh | Φf . Therefore, there exists a

set IL ⊆ {1, . . . , r} such that Φh =
∏

i∈IL Fi. We shall prove that

L = {g(t) ∈ K(t) : Φh | Φg} =
⋂
i∈IL

Li. (5.6)

Let g(t) ∈ K(t). Then g(t) ∈ L = K(h(t)) if and only if g(t) = g̃ ◦h(t),

for some g̃(t) ∈ K(t), if and only if Φh | Φg, by Theorem 5.8. For the second equality,

suppose that g(t) ∈ ∩i∈ILLi. Then Fi | Φg, for every i ∈ IL. Since we are assuming
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Φf to be separable (see Remark 5.9), it follows that Φh =
∏

i∈IL Fi | Φg. Conversely,

if Φh | Φg, then Fi | Φg, for every i ∈ IL, that is, g(t) ∈ Li, for every i ∈ IL and

hence, g(t) ∈ ∩i∈ILLi.

5.3 The Partition of a Principal Subfield of K(t)/K(f(t))

In this section we present two algorithms for computing the partitions

P1, . . . , Pr of the principal subfields L1, . . . , Lr of K(t)/K(f(t)), one deterministic

and one probabilistic. These algorithms are based on the general algorithms given

in Chapter 3, applied to the special case of K(t)/K(f(t)).

Recall that to find the partition of Li, it is enough to find a basis of the

vectors (e1, . . . , er) ∈ {0, 1}r such that
∏r

j=1 F
ej
j ∈ Li[x]. Moreover, let c1, . . . , c2n ∈

K(f(t)) be distinct elements and let hj,k(t) := F ′j(ck)/Fj(ck) ∈ K(t). If (e1, . . . , er) ∈

{0, 1}r is such that
∑r

j=1 ejhj,k(t) ∈ Li, for k = 1, . . . , 2n, then, by Lemmas 3.34

and 3.35, it follows that
r∏
j=1

F
ej
j ∈ Li[x].

In the number field case, f ′j(ck)/fj(ck) ∈ Q(α) can be rewriten as g(α),

for some g(x) ∈ Q[x]<n. In the function field case, however, this is a bit different.

5.3.1 Deterministic Algorithm

Let us consider e1, . . . , er above as variables. To show that
∑
ejhj,k(t) ∈

Li we need an expression of the form a(t)/b(t), where a, b ∈ K[t] are coprime. For

a rational function g(t) = gn(t)
gd(t)

∈ K(t), with gn(t), gd(t) ∈ K[t] coprime, define

functions Num,Den : K(t) → K[t], with Num(g) = gn(t) and Den(g) = gd(t).
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Hence
r∑
j=1

ej
F ′j(ck)

Fj(ck)
=

r∑
j=1

ejhj,k(t) =
r∑
j=1

ej
nj,k(t)

dj,k(t)
,

where nj,k(t) := Num (hj,k(t)) ∈ K[t] and dj,k(t) := Den (hj,k(t)) ∈ K[t], for 1 ≤ j ≤

r. Furthermore, let lk(t) ∈ K[t] be the least common multiple of d1,k(t), . . . , dr,k(t) ∈

K[t]. Hence
r∑
j=1

ejhj,k(t) =
r∑
j=1

ej
nj,k(t)

dj,k(t)
=

∑r
j=1 ejpj,k(t)

lk(t)
, (5.7)

where pj,k(t) := lk(t)
nj,k(t)

dj,k(t)
∈ K[t]. Hence,

∑r
j=1 ejhj,k(t) ∈ Li if, and only if (see

Definition 5.10) [
r∑
j=1

ejpj,k(x)−
∑r

j=1 ejpj,k(t)

lk(t)
lk(x)

]
mod Fi = 0, (5.8)

where a mod b is the remainder of division of a by b. By manipulating Equation

(5.8) we have
r∑
j=1

ej [(pj,k(x)− hj,k(t)lk(x)) mod Fi] = 0. (5.9)

Hence, if (e1, . . . , er) ∈ {0, 1}r is a solution of Equation (5.9), for k =

1, . . . , 2n, then it follows that
∏r

j=1 F
ej
j ∈ Li[x]. We will now explicitly present the

system given by Equation (5.9). This will help us analyse the complexity of the

algorithm. Let

qj,k(x) := pj,k(x)− hj,k(t)lk(x) ∈ K(t)[x]. (5.10)

Notice that degx(qj,k) ≤ dn, where d = degt(ck). Furthermore, let

ri,j,k(x) := qj,k(x) mod Fi ∈ K(t)[x]. (5.11)

Let mj(t) ∈ K[t] be the monic lowest degree polynomial such that mj(t)ri,j,k ∈

K[t][x] and let l ∈ K[t] be the least common multiple of m1(t), . . . ,mr(t). Hence

l

r∑
j=1

ejri,j,k =
r∑
j=1

ej r̂i,j,k ∈ K[t][x],
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where r̂i,j,k = lri,j,k ∈ K[t][x]. Notice that Equation (5.9) holds if and only if,∑r
j=1 ej r̂i,j,k = 0. Next, let us write

r̂i,j,k =

di−1∑
d=0

S∑
s=0

cj(s, d, k)tsxd, where cj(s, d, k) ∈ K,

where di is the degree of Fi and S ≥ 0 is a bound for the t-exponents. Therefore,

r∑
j=1

ej r̂i,j,k =

di−1∑
d=0

S∑
s=0

(
r∑
j=1

ejcj(s, d, k)

)
tsxd

and hence, the system in e1, . . . , er from Equation (5.9) is given by

Si :=


r∑
j=1

ejcj(s, d, k) = 0,

d = 0, . . . , di − 1,

s = 0, . . . , S,

k = 1, . . . , 2n.

(5.12)

By computing the {0, 1}-echelon basis of the system Si given in (5.12)

(notice that Si admits such basis), the partition defined by this basis is the partition

of Li. This is summarized in the next algorithm.

Algorithm 5.1 Partition (slow, rational function version)

Input: Irreducible factors F1, . . . , Fr of Φf (x) over K(t) and an index 1 ≤ i ≤ r.

Output: The partition Pi of Li.

1. Compute the system Si as in (5.12).

2. Compute the {0, 1}-echelon basis of Si.

3. Let Pi be the partition defined by this basis.

4. return Pi.

However, algorithm Partition is not efficient in practice due to the

(costly) 2nr polynomial divisions in K(t)[x] required to compute the system Si.

We shall present a probabilistic version of this algorithm in Subsection 5.3.3, which

allows us to compute Pi much faster.
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5.3.2 Valuation rings of K(t)/K

In this section we briefly recall the definition and some properties of

valuation rings of a rational function field. We will use valuation rings to simplify

and speed up the computation of the partition Pi of Li.

Definition 5.13. A valuation ring of K(t)/K is a ring O ⊆ K(t) such that K (

O ( K(t) and for every g ∈ K(t) we have g ∈ O or 1/g ∈ O.

Valuation rings are local rings, that is, if O is a valuation ring, then

there exists a unique maximal (and principal) ideal P ⊆ O.

Lemma 5.14 ([43]). Let p(x) ∈ K[x] be an irreducible polynomial. Define

Op := {g(t) ∈ K(t) : p(x) - Den(g(x))} and

Pp := {g(t) ∈ K(t) : p(x) - Den(g(x)) and p(x) | Num(g(x))} .

Then Op is a valuation ring of K(t)/K with maximal ideal Pp.

Furthermore, every valuation ring O of K(t)/K is of the form Op, for

some irreducible polynomial p(x) ∈ K[x], or is the place at infinity of K(t)/K, that

is, O = {g(t) ∈ K(t) : deg(Num(g(x))) ≤ deg(Den(g(x)))}.

Lemma 5.15 ([43]). Let Op be a valuation ring of K(t)/K, where p ∈ K[x] is an

irreducible polynomial and let Pp be its maximal ideal. Let Fp be the residue class

field Op/Pp. Then Fp
∼= K[x]/ 〈p(x)〉.

5.3.3 Probabilistic Algorithm

In this section we present a probabilistic version of Algorithm 5.1. As

in the number field case, we start noticing that fewer points are enough to find the

partition Pi (usually much less than 2n). Furthermore, the equations of the system
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Si come from the computation of ri,j,k ∈ K(t)[x] in (5.11), which involves a (costly)

polynomial division over K(t). Let us define a good ideal Pp:

Definition 5.16. Let f ∈ K(t) and let F1, . . . , Fr be the monic irreducible factors of

Φf (x) over K(t). Let Op ⊂ K(t) be a valuation ring with maximal ideal Pp, where

p = p(x) ∈ K[x] is irreducible. Let Fp be its residue field. We say that Pp is a good

K(t)-ideal (with respect to f) if

1) Fi ∈ Op[x], i = 1, . . . , r.

2) The image of f in Fp is not zero.

3) The image of Φf (x) in Fp[x] is separable.

To avoid the expensive computations of ri,j,k ∈ K(t)[x], we shall only

compute its image modulo a good K(t)-ideal Pp. These reductions will simplify our

computations and we will still be able to construct a system of equations S̃i which

is likely to give us the partition Pi.

Let Pp be a good K(t)-ideal, where p = p(x) ∈ K[x] is irreducible. Let

Op be its valuation ring and Fp be the residue class field. Let c ∈ K(f(t)) be such

that

hj,c(t) := F ′j(c)/Fj(c) ∈ Op ⊆ K(t),

for j = 1, . . . , r, and let pj,c(t), lc(t) ∈ K[t] be as in Equation (5.7), that is,∑
ejhj,c(c) =

∑
ejpj,c(t)

lc(t)
. Let F̃i be the image of Fi in Fp[x] and let h̃j,c be the

image of hj,c in Fp. Consider

q̃j,c := pj,c(x)− h̃j,clc(x) ∈ Fp[x] (5.13)

and let r̃i,j,c := q̃j,c mod F̃i ∈ Fp[x]. Let dp be the degree of p(x) ∈ K[x] and let α

be one of its roots. By Lemma 5.15 we have Fp
∼= K[α] and hence, we can write

r̃i,j,c =

di−1∑
d=0

dp−1∑
s=0

Cj(s, d)αsxd, where Cj(s, d) ∈ K.
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Consider the system S̃i,c given by

S̃i,c :=


r∑
j=1

ejCj(s, d) = 0,
d = 0, . . . , di − 1,

s = 0, . . . , dp − 1.
(5.14)

If (e1, . . . , er) ∈ {0, 1}r is a solution of Si in (5.12), then (e1, . . . , er)

must also satisfy the system S̃i,c in (5.14). The converse, however, need not be true.

A basis of solutions of S̃i,c is not necessarily a basis of solutions of Si. In fact, a

basis of solutions of S̃i,c might not even be a {0, 1}-echelon basis. If this happens

we need to consider more equations by taking c′ ∈ K(f(t)) such that hj,c′(t) ∈ Op,

for j = 1, . . . , r, and solving S̃i := S̃i,c ∪ S̃i,c′ , and so on.

Remark 5.17. Considering S̃i over Si has several advantages.

1. Smaller number of polynomial divisions to construct S̃i.

2. The polynomial divisions are now over K[x]/p(x), where p(x) ∈ K[x]

is the polynomial defining the good ideal P.

3. Smaller system: S̃i has at most ddidp equations, where d is the number

of c’s used to construct S̃i, while Si has at most 2ndiS equations in

r ≤ n variables. Usually, d � 2n and in several cases (e.g. when

char(K) = 0) we can take p(x) linear and hence dp = 1 and S̃i has at

most ddi equations (see Table 1 and Remark 5.24).

Although in practice very few elements c ∈ K(f(t)) are needed to find

Pi, we were not able to show that 2n elements are sufficient to correctly compute

Pi. Let S̃i,c be as in (5.14). Then S̃i,c might not have enough equations to correctly

compute Pi (the correct partition of Li). Thus, as mentioned above, we try to find

Pi by solving S̃i,c ∪ S̃i,c′ , for c, c′ ∈ K(f(t)), and so on. As in the general case, we

give a halting condition that tells us when to stop adding more equations, that is,

when the partition P̃i we computed by solving the system S̃i equals Pi.
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Let S̃i = ∪S̃i,c be a system constructed from several c ∈ K(f(t)). If S̃i

does not have a {0, 1}-echelon basis then we clearly need more equations. Now let us

suppose that S̃i has a {0, 1}-echelon basis. Then the partition P̃i corresponding to

this basis might still be a proper refinement of Pi. To show that P̃i = Pi it suffices to

show that the P̃i-products are polynomials in Li[x] (recall Theorem 3.43). In order

to apply this theorem, consider the following map

Ψi : K(t) → K(t, x)

g(t) 7→ gn(x) mod Fi
gd(x) mod Fi

.

Hence, g(t) ∈ Li if, and only if, Ψi(g) = g (see Definition 5.10) and therefore, we

can rewrite Li as Li = {g(t) ∈ K(t) : Ψi(g(t)) = g(t)}.

Theorem 5.18. Let Pi be the partition of Li and let P̃i be the partition found by

solving a system S̃i defined as above. Let Pp be a good K(t)-ideal. If g̃1, . . . , g̃s ∈

K(t)[x] are the P̃i-products and if

Ψi(g̃j) ≡ g̃j mod Pp, j = 1, . . . , s, (5.15)

where Ψi acts on g̃j coefficient-wise, then P̃i = Pi.

Proof. Since P̃i is a refinement of Pi, it suffices to show that the P̃i-products g̃1 . . . , g̃s

are polynomials in Li[x]. That is, we have to show that Ψi(g̃j) = g̃j, for j = 1, . . . , s.

Since

g̃1 · · · g̃s = Φf (x) = Ψi(Φf (x)) = Ψi(g̃1) · · ·Ψi(g̃s)

and Ψi(g̃j) = g̃j mod Pp, for 1 ≤ j ≤ s, then Theorem 3.43 implies that Ψi(g̃j) = g̃j.

Thus g̃j ∈ Li[x], for j = 1, . . . , s, and P̃i = Pi.

Here, we could just use Algorithm 3.5, where S̃i is computed as above

and the correctness check is given by Equation (5.15) in Theorem 5.18. However,

we notice that the polynomials q̃j,c ∈ Fp[x], j = 1, . . . , r, in Equation (5.13) can

be used to construct the system S̃i,c, for every 1 ≤ i ≤ r. Since computing q̃j,c is
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not free of charge, we want to use this fact. In the number field case, q̃j,c ∈ Fp[x]

corresponds to the element f ′j(c)/fj(c) mod p ∈ F[α] in step 3 of Algorithm 3.4,

which is easily computed. First, we will present an algorithm that checks when

we have the correct partition of Li from a given system S̃i. Then, we present the

algorithm that computes the partitions P1, . . . , Pr.

Algorithm 5.2 Check

Input: A linear system S in e1, . . . , er and an index i.

Output: The partition Pi of Li or false.

1. Compute a basis of solutions of S.

2. if this basis is not a {0, 1}-echelon basis then

3. return false *Need more equations.

4. Let P̃i be the partition defined by this basis.

5. Let F̃i be the image of Fi in Fp.

6. Let g̃1, . . . , g̃d be the P̃i-products.

7. for every coefficient c = cn(t)
cd(t)
∈ K(t) of g̃1, . . . , g̃d do

8. Let c̃ be the image of c in Fp.

9. if cn(x) mod F̃i 6= c̃ · (cd(x) mod F̃i) then

10. return false *Need more equations.

11. return P̃i

We shall now compute the complexity for one call of the algorithm

Check. To simplify the proof, we first prove the following lemma.

Lemma 5.19. Let f1, . . . , fr ∈ K[x, y] with
∑

degx fi = d and
∑

degy fi ≤ n. We

can compute F =
∏
fi with O(M(dn) log2 r) field operations.

Proof. First of all, recall that the product fg, with f, g bivariate polynomials can be

computed with O(M(dxdy)), where dx and dy are bounds for the degrees of f and g

in x and y, respectively. Let di = degx(fi). We may suppose that d1 ≤ d2 ≤ · · · ≤ dr.
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Moreover, let us first consider the case where r is a power of 2. We shall compute

F in log2 r steps. The first step is to compute the r/2 products f1 · f2, f3 · f4, . . .,

fr−1 · fr. The cost of each product fi−1 · fi is bounded by O(M(din)). Recall that

M is super-additive, so that we have

M(d2n) +M(d4n) + · · ·+M(drn) ≤M((d2 + d4 + · · ·+ dr)n) ≤M(dn),

and the cost of this step is bounded by O(M(dn)). The next step is to compute

the r/4 products (f1f2) · (f3f4), (f5f6) · (f7f8), and so on. The cost of each product

(fi−2fi−1) · (fifi+1) is bounded by O(M((di + di+1)n)). Again, by the super-additive

property of M , this step can be bounded by O(M(dn)). It is not difficult to see that

every step can be bounded by O(M(dn)). Since log2 r steps are sufficient, the total

cost is bounded by O(M(dn) log2 r). If r is not a power of 2, we can “complete”

the factorization f1, . . . , fr to a factorization f1, . . . , fr, fr+1, . . . , fr̃, where r̃ is the

smallest power of 2 greater than r and fr+1 = . . . = fr̃ = 1. The sum of the degrees

in each step is still bounded by d, so that each step is still bounded by O(M(dn)).

The number of steps is now log2 r̃ = dlog2 re ≤ log2 r+ 1, and the result follows.

Theorem 5.20. Let F1, . . . , Fr be the irreducible factors of Φf (x). Let S̃i be a

system computed as above. If algorithm Check returns a partition P , then P is the

partition of Li. Moreover, one call of Algorithm Check can be performed with

O(ner
ω−1 +M(n2) log2 r + nM(n)M(dp)) field operations,

where dp is the degree of the polynomial defining Op, ne is the number of equations

in S and ω is a feasible matrix multiplication exponent.

Proof. The correctness of the algorithm follows from Theorem 5.18. Suppose that we

are given the factors F1, . . . , Fr of Φf (x). A basis of solutions of S can be computed

with O(ner
ω−1) field operations. If this basis is not a {0, 1}-echelon basis, then the

algorithm returns false. If d̃i is the degree in x of g̃i, then g̃i can be computed with

O(M(d̃in) log2 r) field operations, by Lemma 5.19. By the super-additive property
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of M , the computation of the polynomials g̃1, . . . , g̃d in Step 5 can be done with

O(M(n2) log2 r) field operations. For each coefficient of g̃1, . . . , g̃d, we have to verify

the condition in Step 9, which can be performed with a reduction modulo Pp (to

compute c̃) and two polynomial divisions over Fp. Therefore, for each c, we can

perform Steps 8 and 9 with O(M(n)M(dp)) field operations. Since
∑

deg g̃i = n,

we have a total cost of O(nM(n)M(dp)) field operations for Steps 6-10.

Finally, the following probabilistic algorithm computes the partitions

P1, . . . , Pr of the principal subfields L1, . . . , Lr of K(t)/K(f(t)). The correctness of

the algorithm follows from the correctness of the algorithm Check.

Algorithm 5.3 Partitions (fast, rational function version)

Input: The irreducible factors F1, . . . , Fr of Φf and a good K(t)-ideal Pp
Output: The partitions P1, . . . , Pr of L1, . . . , Lr.

1. Let S̃i = { }, i = 1, . . . , r.

2. I := {1, . . . , r}.

3. while I 6= ∅ do

4. Let c ∈ K(f(t)) such that hj,c(t) ∈ Op, j = 1, . . . , r.

5. Compute q̃j,c ∈ Fp[x], j = 1, . . . , r.

6. for i ∈ I do

7. Compute the system S̃i,c (see Equation (5.14)).

8. Let S̃i := S̃i ∪ S̃i,c.

9. if Check(S̃i, i) 6= false then

10. Remove(I, i).

11. Let Pi be the output of Check(S̃i, i).

12. return P1, . . . , Pr.
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Remark 5.21. In general, the elements in Step 4 can be taken inside K. This will

work except, possibly, when K has very few elements, which might not be enough to

find Pi. If this happens we have two choices:

1) Choose c ∈ K(f(t))\K or

2) Extend the base field K and compute/solve the system S̃i over this ex-

tension.

We choose the latter. Recall that the solutions we are looking for are composed of

0’s and 1’s and hence can be computed over any extension of the base field K. Fur-

thermore, extending the base field does not create new solutions since the partitions

are determined by the factorization of Φf (x) computed over K(t), where K is the

original field.

In what follows, we determine the complexity of computing P1, . . . , Pr.

We assume, based on our experiments (see Table 5.1), that the algorithm finishes

using O(1) elements c ∈ K (or over a finite extension of K) to generate a system S̃i
which gives us the partition Pi.

Theorem 5.22. Assuming that Algorithm Partitions finishes using O(1) elements

inside K in Step 4, the partitions P1, . . . , Pr, corresponding to the principal subfields

L1, . . . , Lr of the extension K(t)/K(f(t)), can be computed with an expected number

of

O(r(rM(n)M(dp) +M(n2) log2 r)) field operations,

where dp is the degree of the polynomial defining the ideal Pp.

Proof. Given an element g = gn(t)
gd(t)

∈ Op, we can compute its image in Fp with

O(M(dg) + M(dp)) field operations, where dg is the degree of g(t) ∈ K(t). Hence,
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given the irreducible factors F1, . . . , Fr of Φf , we can compute their images over Fp

with O(n(M(n) +M(dp))) field operations.

Let c ∈ K. The first step is to compute hj,c := F ′j(c)/Fj(c) = G′j(c)/Gj(c) ∈

Op, j = 1, . . . , r (see Remark 5.7). Evaluating Gj ∈ K[x, t] at x = c costs

O(ndxj ), where dxj = degx(Gj). If dtj = degt(Gj), then simplifying the rational

function G′j(c)/Gj(c) to its minimal form costs O(M(dtj) log dtj). Keeping in mind

the super-additive property of M(·) and that
∑
dtj =

∑
dxj = n, one can com-

pute hj,c, j = 1, . . . , r, with O(n2 +M(n) log n) field operations. Furthermore, since

c ∈ K, then degt(hj,c) ≤ dtj and we can compute the image of hj,c, j = 1, . . . , r, in

Fp with O(M(n) + rM(dp)) field operations.

Let us write hj,c = nj,c/dj,c, where nj,c, dj,c ∈ K[t] are coprime. The

next step is the computation of lc(t) = lcm(d1,c(t), . . . , dr,c(t)), which can be done

with r lcm computations with a total cost of O(rM(n) log n) field operations. Next,

we compute pj,c(x) := lc(x)
nj,c(x)

dj,c(x)
, which involves one polynomial division and one

polynomial multiplication, for each j = 1, . . . , r. Hence, the total cost to compute

q̃j,c = pj,c(x)− hj,c(t)lc(x), j = 1, . . . , r, is O(rM(n)) field operations.

For each i = 1, . . . , r, to compute the partition Pi we have to compute

the system S̃i,c, which involves the division of q̃j,c by F̃i, for j = 1, . . . , r. Since

deg(q̃j,c(x)) ≤ n, each of these divisions cost O(M(n)M(dp)) field operations and

hence, we can compute the system S̃i,c with O(rM(n)M(dp)) field operations. This

system has at most didp equations and hence, one call of algorithm Check costs

O(didpr
ω−1 +M(n2) log2 r +M(n)M(dp)). The result follows by adding terms.

Remark 5.23. Let #c be the number of elements c ∈ K needed to correctly compute

all partitions P1, . . . , Pr. Then the total cost of Algorithm Partitions is bounded

by #c times the cost given in Theorem 5.22. In practice, however, #c � 2n (see

Table 5.1 for a few examples).
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Algorithm Partitions gives us the partitions of the principal subfields

of the extensionK(t)/K(f(t)). One can now compute the partitions of every subfield

of K(t)/K(f(t) by joining partition-vectors, as explained in Chapter 3. As the

complexity depends on the degree of p(x), we wish to find a bound for this number.

As it turns out, choosing p(x) of degree O(log n) suffices.

Remark 5.24 (A bound for the degree of p(x)). Condition 1) in Definition 5.16 is

equivalent to p(x) - fd(x) (see Remark 5.7) and condition 2) is equivalent to p(x) -

fn(x). Let Φ̄f be the image of Φf in Fp[x]. By Gauss’ Lemma, Φ̄f is separable if, and

only if, ∇̄f is separable, where ∇̄f is the image of ∇f = fn(x)fd(t) − fn(t)fd(x) ∈

K[x, t] in Fp[x]. Notice that ∇̄f = ∇f (x, α) ∈ Fp[x], where α is a root of p(x).

Consider α as a variable. Hence, ∇f (x, t) separable means that ∇f (x, α) is separable

in K[x, α] and by Gauss’ Lemma, ∇f (x, α) is separable in K(α)[x]. The latter is

equivalent to R := Resx(∇f (x, α),∇′f (x, α)) ∈ K[α] being a non-zero polynomial in

α of degree at most (2n − 1)n, where Resx is the resultant w.r.t. the variable x. If

we let α vary, for instance, be a root of p(x), then Φ̄f ∈ Fp[x] is separable if, and

only if, α is not a root of the polynomial R. If α is a root of R, then the ideal

is not a good ideal and we choose a different p(x). However, instead of choosing

a different p(x), we can pick a different element c ∈ K[x]/ 〈p(x)〉. We still need

to check whether c is a “good evaluation point” (i.e., fn(c) 6= 0, fd(c) 6= 0 and

Φ(x, c) ∈ Fp[x] is separable), but this gives us size(K)deg(p(x)) possible evaluation

points. Hence, if size(K)deg(p(x)) > deg(R) = (2n − 1)n, then there exists at least

one good evaluation point c such that Φf (x, c) is separable. Choosing a random

c ∈ K[x]/ 〈p(x)〉 instead of a root of p(x) might slow the computations down, but

this proves that the degree of p(x) does not have to be so high. Hence, it suffices to

choose p(x) with deg(p(x)) ∈ O(log n). In practice, however, we start by choosing

p(x) of lowest degree (e.g., 1,2,...). If we do not find a good ideal (i.e., a good

p(x)) for a certain degree d after a certain number of tries, then we increase the

number d and try to find a good p(x) of degree d. This is motivated by the fact
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that R appears to have only “few” irreducible factors over K[x]/ 〈p(x)〉, that is, R

appears to be the product of a few irreducible polynomials with high multiplicity (this

was observed in a few examples where R was computable in a reasonable amount of

time). Moreover, choosing a small p(x) (degree-wise) helps to speed up the algorithm,

since computations in Fp[x] depend on deg(p(x)). Notice that this is only necessary

in positive characteristic. In characteristic 0, we can always choose p(x) linear.

Theorem 5.25. Let f ∈ K(t) of degree n and let F1, . . . , Fr be the irreducible

factors of Φf (x) ∈ K(t)[x]. Let m be the number of subfields of K(t)/K(f(t)). One

can compute, using fast arithmetic, the subfield lattice of K(t)/K(f(t)) (in terms of

partitions) with Õ(rn2) field operations plus Õ(mr2) CPU operations.

Proof. Using fast arithmetic, by Theorem 5.22, we can compute the partitions of the

principal subfields with Õ(rn2dp) field operations. By Remark 5.24, dp ∈ O(log n)

in the worst case. The complete subfield lattice can be computed with Õ(mr2) CPU

operations, as in the general case.

5.4 General Algorithm, the Polynomial Case and some

Timings

In this section we briefly mention all steps for computing all complete

decompositions of a rational function and give an example. Some timings, comparing

our algorithm with [6], are also given. We also analyze the case f ∈ K[t], and

conclude that our algorithm has better complexity than that of [10].

5.4.1 General Algorithm

Let f ∈ K(t) be a rational function and let F1, . . . , Fr be the monic

irreducible factors of Φf . By Theorem 5.8, each complete decomposition corresponds
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to a maximal sequence of subfields of K(t)/K(f(t)) and vice-versa. Using Algorithm

5.3 to compute the partitions of every principal subfield and Algorithm Join from

Chapter 3, we can (quickly) compute the subfield lattice of K(t)/K(f(t)), where

each subfield is represented by a partition.

To actually compute the decompositions of f we need a Lüroth gen-

erator for each subfield. That is, given a partition PL of {1, . . . , r} representing a

subfield L of K(t)/K(f(t)), we want to find a rational function h ∈ K(t) such that

L = K(h(t)). An algorithm for computing h ∈ K(t) is given in Ayad & Fleischmann

[6]. In what follows we show a simpler way for computing this generator.

Theorem 5.26 (Lüroth Generator). Let f ∈ K(t) be a rational function and let

F1, . . . , Fr be the monic irreducible factors of Φf (x) ∈ K(t)[x]. Let L be a sub-

field of K(t)/K(f(t)) and let P = {P (1), . . . , P (s)} be the partition of L. Let

g :=
∏

i∈P (1) Fi ∈ L[x]. If c ∈ K(t) is any coefficient of g not in K, then L = K(c).

Proof. By Luröth’s Theorem, there exists a rational function h(t) ∈ K(t) such that

L = K(h(t)). Let Φh ∈ L[x]. By Remark 5.6 we may suppose that Φh ∈ L[x] is

the minimal polynomial of t over L. Let g =
∏

i∈P (1) Fi ∈ L[x]. Since 1 ∈ P (1)

(recall that F1 = x− t), it follows that g(t) = 0 and hence, Φh | g. However, Φh and

g are monic and irreducible polynomials (over L) and hence, g = Φh. Therefore,

g = hn(x)− h(t)hd(x). Let ci be the coefficient of xi in g, then

ci = hni − h(t)hd,i = (−hd,it+ hn,i) ◦ h(t),

where hn,i and hd,i are the coefficients of xi in hn(x) and hd(x), respectivly. If

hd,i 6= 0, then −hd,it+ hn,i is a unit and hence, L = K(h(t)) = K(ci).

The last ingredient we need for computing all complete decompositions

of f is the computation of the left component: given f, h ∈ K(t), find g ∈ K(t) such

that f = g ◦ h. It is known that g is unique (see [4]) and several methods exist for
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finding g. The most straightforward method is to solve a linear system of equations

in the coefficients of g, a detailed approach is given by Dickerson [16]. Another

approach is given by Giesbrecht [22] and uses O(nM(n) log n) field operations. We

shall not dwell on this step and use one of these known algorithms.

Example 5.27. Let f := (t24−2t12 + 1)/(t16 + 2t12 + t8) and consider the extension

Q(t)/Q(f). The minimal polynomial of t over Q(f(t)) is

Φf (x) = x24 − 12x12 + 1− t24 − 2t12 + 1

t16 + 2t12 + t8
(x16 + 2x12 + x8).

The irreducible factors of Φf (x) over Q(t) are

F1 = x− t, F2 = x+ t, F3 = x+
1

t
, F4 = x− 1

t
, F5 = x2 + t2, F6 = x2 +

1

t2
,

F7 = x8 +
t8 + 1

t8 + t4
x4 +

1

t4
and F8 = x8 +

t8 + 1

t4 + 1
x4 + t4.

Using Algorithm 5.3, we get the following partitions of the principal subfields L1, . . . , L8:

P1 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}

P2 = {{1, 2}, {3, 4}, {5}, {6}, {7}, {8}}

P3 = {{1, 3}, {2, 4}, {5, 6}, {7, 8}}

P4 = {{1, 4}, {2, 3}, {5, 6}, {7, 8}}

P5 = {{1, 2, 5}, {3, 4, 6}, {7}, {8}}

P6 = {{1, 2, 6}, {3, 4, 5}, {7, 8}}

P7 = {{1, 2, 5, 7}, {3, 4, 6, 8}}

P8 = {{1, 2, 3, 4, 5, 6, 7, 8}}.

By joining the partitions of all subsets of {P1, . . . , P8}, we get the following new

partitions:

P9 = P2 ∨ P4 = {{1, 2, 3, 4}, {5, 6}, {7, 8}}

P10 = P3 ∨ P6 = {{1, 2, 3, 4, 5, 6}, {7, 8}}.
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Hence, P1, . . . , P10 are the partitions corresponding to every subfield of

Q(t)/Q(f(t)). Next we compute all maximal sequences of subfields. Recall that the

subfield relation is translated as refinement of partitions, for instance, L5 ⊆ L2,

since P2 refines P5. Therefore, by looking at the partitions P1, . . . , P10, we see that

one maximal sequence of subfields is

Q(f) = L8 ⊆ L7 ⊆ L5 ⊆ L2 ⊆ L1 = Q(t).

Now, let us compute generators for these fields. As an example, let us compute a

generator for L7. Following Theorem 5.26, let

g =
∏
i∈P (1)

7

Fi = F1F2F5F7 = x12 −
(
t12 − 1

t8 + t4

)
x8 −

(
t12 − 1

t8 + t4

)
x4 − 1.

Hence, a generator of L7 is t12−1
t8+t4

∈ Q(t). That is, L7 = Q
(
t12−1
t8+t4

)
. By computing a

Lüroth generator for every subfield in this sequence of subfields we get

Q(f) ⊆ Q
(
t12 − 1

t8 + t4

)
⊆ Q(t4) ⊆ Q(t2) ⊆ Q(t).

Finally, we compute the corresponding complete decomposition of f by computing

left components. For instance, Q(f) ⊆ Q
(
t12−1
t8+t4

)
implies that there exists g ∈ K(t)

such that f = g ◦ t12−1
t8+t4

. In this case we have g = t2 and hence

f = t2 ◦ t
12 − 1

t8 + t4
.

Now Q( t
12−1
t8+t4

) ⊆ Q(t4) and we can write t12−1
t8+t4

= t3−1
t2+t
◦ t4, and so on. This yields the

following complete decomposition of f :

f = t2 ◦ t
3 − 1

t2 + t
◦ t2 ◦ t2.

Doing this for every maximal sequence of subfields yields all non-equivalent complete

decompositions of f . In Magma, all 6 non-equivalent complete decompositions of f

were computed in 0.02 seconds.
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5.4.2 The Polynomial Case

Finally, we consider the case where f ∈ K[t] is a polynomial. There are

already several algorithms for computing decompositions of polynomials, including

the polynomial time algorithm of Kozen & Landau [29] and the improvements from

von zur Gathen [55], which computes a decomposition f = g ◦ h with Õ(n) field

operations. However, these algorithms only work if deg(g) is invertible in K. Al-

gorithms with no restrictions on the degree of g are presented by Alonso et al. [4],

Ayad & Fleischmann [6] (based on Theorem 5.8) and more recently, by Blankertz

[10] (based on blocks of imprimitivity and Zippel’s work [60]). Our algorithm also

works when f ∈ K[t] as long as we normalize the subfield generators. In other

words, the output is the set of all (polynomial) decompositions of f . This follows

from the following fact.

Lemma 5.28 ([6], Corollary 2.3). Let L = K(h̃) ⊆ K(t), with h̃ ∈ K(t) normalized.

Then L contains a non-constant polynomial if and only if h̃ ∈ K[t].

Blankertz [10], following the ideas of Zippel [60] and Landau & Miller

[30], proposes an algorithm to compute all minimal decompositions of a polynomial

f ∈ K[t]. If f = g◦h is a minimal decomposition then K(h(t)) is a maximal subfield,

that is, there exists no subfield L of K(t)/K(f(t)) such that

K(h(t)) ( L ( K(t). (5.16)

That is, K(h(t)) must be a principal subfield. Thus, once the partitions P1, . . . , Pr

are computed, it is very easy to verify which of these partitions represent a maximal

subfield. For a principal subfield, a Lüroth generator can be obtained as a byproduct

of Algorithm Check. Hence, to compute all minimal decompositions of f , we need

to compute at most r left components.
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Theorem 5.29. Given f ∈ K[t] and the factorization of f(x)− f(t) in K[x, t], one

can compute, using fast arithmetic, all minimal decompositions of f with

Õ(rn2) field operations.

When char(K) > 0, the factorization of f(x) − f(t) can be computed

with Õ(nω+1) field operations, where 2 < ω ≤ 3 is a feasible matrix multiplication

exponent (see [12] and [34]) and hence, dominates the complexity. Moreover, our al-

gorithm has better complexity than the algorithm presented in [10], whose expected

complexity (for K finite) is Õ(n6) field operations.

5.4.3 Timings

In this last section we give some timings, comparing our algorithm

(column Decompose), which returns all non-equivalent complete decompositions of

f , with the algorithms full decomp(f) and all decomps(f), from Ayad & Fleis-

chmann [6]. The Algorithm full decomp(f) returns a single complete decomposi-

tion of f , while all decomps(f) returns all non-equivalent complete decompositions

of f . Both of these algorithms were implemented by the authors of [6], and are

available at http://www.kent.ac.uk/ims/personal/pf10/calais/decomp.

Some of the rational functions used in the table below were constructed

by composing rational functions of smaller degree, however, these examples are not

very interesting. Thus, for interesting examples, we need to pick rational functions

rather carefully. In the table below, n is the degree of f ∈ K(t), r is the number

of irreducible factors of Φf and #dec is the number of non-equivalent complete

decompositions of f . We also list dp, the degree of the polynomial defining the good

K(t)-ideal and #c, the number of elements in K (or an extension of K, see Remark

5.21), that were used to determine the partitions P1, . . . , Pr.
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K n r #dec dp,#c Decompose
Ayad & Fleischmann [6]

full decomp all decomps

F11 12 7 3 3,1 0.01 0.02 0.03

Q 24 8 6 1,4 0.02 0.00 0.09

Q 144 10 6 1,4 1.82 1.88 101.08

F11 24 10 8 3,1 0.02 0.01 0.20

F3 18 12 12 4,1 0.05 0.06 0.81

F11 24 14 12 4,1 0.07 0.51 10.57

F3 60 17 5 5,1 0.18 91.68 981.43

Q 60 17 5 1,8 0.77 485.19 4,338.47

F17 96 26 44 2,4 0.42 211.30 > 12h

F11 60 60 111 3,5 1.91 > 12h n.a.

F11 120 61 111 3,5 2.36 n.a. n.a.

F13 169 91 14 3,7 3.41 n.a. n.a.

F5 120 120 587 5,4 18.59 n.a. n.a.

F7 168 168 680 4,9 50.53 n.a. n.a.

n.a. - not attempted.

Tabela 5.1: Comparison Table - increasing values of r

In theory, our algorithm better compares to all decomps, since both

algorithms return all non-equivalent complete decompositions of f . According to

our experiments, for small values of r (see Table 5.1), the time spent by algorithm

Decompose to compute all complete decompositions is similar to the time spent by

full decomp to compute a single decomposition. However, as r increases, we see a

noticeable improvement compared to full decomp and more so to all decomps.

We remark that, even if the number of factors is small (say r ≤ 10)

and one only needs one complete decomposition (not all of them), then computing
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all decompositions using our algorithm is at least as fast as computing a single

decomposition using full decomp (we found only one example, with r = 4, where

our algorithm was slower than full decomp). See the following examples.

K n r #dec dp,#c Decompose
Ayad & Fleischmann [6]

full decomp all decomps

F3 130 3 1 4,1 58.25 59.35 61.51

Q 60 4 1 1,1 3.93 5.08 6.93

F2 360 4 1 4,1 0.44 0.31 4.55

Q 48 5 1 1,2 1.88 2.48 4.35

F3 64 7 3 4,1 2.62 2.68 5.01

Q 480 8 1 1,2 3.94 4.50 1,946.02

Q 192 11 7 1,5 1,802.23 4,063.16 35,386.89

Tabela 5.2: Comparison Table - small values of r

More examples and details about timings can be found at www.math.

fsu.edu/~jszutkos/timings and the implementation of our algorithm at www.

math.fsu.edu/~jszutkos/Decompose.



131

CONCLUSION

Computer Algebra is an interesting and important area of Mathematics

(and Computer Science!). Taking a handful of theorems and devising an algorithm

has always fascinated me. During my period as a Ph.D. student, I was able to do

just that. I have learned many results and ideas on various topics and being able

to use them and write an algorithm has been a satisfying experience. However, I

cannot not mention the countless hours trying to find bugs in the code and the

nights spent trying to understand why the result is wrong when it shouldn’t (and

sometimes, vice-versa). Nevertheless, this has been an interesting experience.

The approach given by van Hoeij et al. [51], to compute the subfield

lattice by intersecting principal subfields, has proven to be better than the algorithms

presented in [26], especially when the number of factors is large. This was already

noticed in [51]. Let L1, . . . , Lr be (any) subfields of K/k. If every subfield L of K/k

is the intersection of some of these subfields, then we say that {L1, . . . , Lr} is an

intersection-generating set for K/k. In another words, the set of principal subfields

is an intersection-generating set for K/k. If g is any factor of f , we define the set

Lg = {h(α) ∈ K : h(x) ≡ h(α) mod g(x)}.

The set Lg is also a subfield of K/k. Let g1, . . . , gr be any factorization of f over

K (that is, gi not necessarily irreducible over K). If g1 = x− α and if Lg1 , . . . , Lgr

is an intersection-generating set for K/k, then g1, . . . , gr is said to be a subfield

factorization for K/k. Thus, we can find all subfields of K/k with three steps:

1. Find a subfield factorization g1, . . . , gr for K/k.

2. Compute the subfields Lg1 , . . . , Lgr of K/k.

3. Compute all intersections of Lg1 , . . . , Lgr .
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Steps 1 and 2 can be executed in polynomial time (provided factor-

ization in K[x] can be done in polynomial time as well). However, step 3 can not

be executed in polynomial time. The number of intersections executed in step 3

can actually be bounded by rm, where m is the total number of subfields of K/k.

However, the number m is not polynomially bounded in the degree of the extension

K/k. Thus, the cost of step 3 is given by rm times the cost of each intersection,

which is done using Linear Algebra over k (as in [51]).

Let f1, . . . , fr be (a subfied) factorization of f over K into irreducible

factors. The main contribution of this work is the improvement of step 3 above.

To that end, we associated, to every subfield L of K/k, a partition PL of the set

{1, . . . , r}, where each i corresponds to the irreducible factor fi. The partition PL

is defined as follows: let g1, . . . , gs be the irreducible factors of f over L. Each gj

is the product of some of the fi’s. Define PL := {{i : fi | gj}, j = 1, . . . , s}. In the

example below, f has 5 irreducible factors over k(α) and 2 irreducible factors over

L, giving us the partition PL. Note that L ⊆ L′ if and only if, PL′ refines PL.

k(α) f = f1 · f2 · f3 · f4 · f5 PK = {{1}, {2}, {3}, {4}, {5}}

L f = (f1f2f3) · (f4f5) PL = {{1, 2, 3}, {4, 5}}

k f = (f1f2f3f4f5) Pk = {{1, 2, 3, 4, 5}}

One of the main results shown in this work is stated below.

Theorem 3.26. Let L,L′ be subfields of K/k and let PL and PL′ be the correspond-

ing partitions. Then PL∩L′ = PL ∨ PL′ .

The partition PL∨PL′ is called the join of PL and PL′ and is defined as

the finest partition that is refined by both PL and PL′ , and can be computed using

an algorithm proposed by Freese [19, 20]. We also presented an algorithm (which is
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similar to Freese’s algorithm) for computing this join. Its complexity is worse than

Freese’s algorithm however, it appears to be slightly faster in practice. Thus, given

two subfields Li, Lj, instead of directly computing their intersection Li ∩ Lj using

Linear Algebra over k (step 1 below), we first compute the partitions PLi , PLj (step

2), compute the join PLi ∨ PLj (step 3) and finally, compute a generator for Li ∩Lj
from the partition PLi ∨ PLj and the subfield factorization (step 4).

Li, Lj PLi , PLj

Li ∩ Lj PLi ∨ PLj

(1)

(2)

(4)

(3)

Steps (2), (3) and (4) are explained in Chapter 3. When working with number fields,

that is, k = Q, this method allowed us to show the following result.

Theorem 3.47. Let m be the total number of subfields of K/k. When k = Q, we

can compute all subfields of K/k (in terms of partitions) with an expected number

of Õ(rn7 + rn5 log2 ‖f‖2 + mr2) CPU operations, where r is the number of factors

in the subfield factorization and n is the degree of the extension.

Using partitions to compute all subfields also improves CPU timings,

especially when number of subfields is large (see Table 4.2). When k = Q, van

Hoeij et al. [51] also presented a method to compute the principal subfields using

the LLL algorithm [35], thus avoiding the need to factor f over Q(α). By following

these ideas, we showed how to compute a subfield factorization for Q(α)/Q. We also

showed how to improve this step (Remark 4.6), thus reducing the number of calls

to the LLL algorithm. For more details, see Chapter 4.

Finally, we looked at rational function fields. That is, if K is a field

and f(t) ∈ K(t) is a rational function, then K(f(t)) is a subfield of K(t) and thus,

K(t)/K(f(t)) is a finite degree extension. Moreover, we have a bijection between
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subfields of this extension and the decompositions of f , that is, L is a subfield of

K(t)/K(f(t)) if and only if, there exists h(t) ∈ K(t) such that L = K(h(t)) and

f = g ◦ h, for some g(t) ∈ K(t) (for more details, see [4]).

Hence, to find all decompositions of f(t) ∈ K(t), it sufficed to find all

subfields of K(t)/K(f(t)). The element t ∈ K(t) is a primitive element and its

minimal polynomial over K(f(t)) is given by1 Φf := fn(x)−f(t)fd(x) ∈ K(f(t))[x],

where fn(x), fd(x) ∈ K[x] are coprime and f(t) = fn(t)/fd(t). Let F1, . . . , Fr be the

irreducible factors of Φf over K(t) and define

Li := {g(t) ∈ K(t) : Fi | Φg}, i = 1, . . . , r. (5.17)

Theorems 5.11 e 5.12. Let f(t) ∈ K(t) and let F1, . . . , Fr be the irreducible

factors of Φf over K(t). Then the set {L1, . . . , Lr}, with Li as in (5.17), is the set

of principal subfields of K(t)/K(f(t)).

We then used partitions to compute all intersections of the principal

subfields, which significantly simplifies the computation of these intersections. A

generator for each subfield L of K(t)/K(f(t)) is found using the following result.

Theorem 5.26. Let f(t) ∈ K(t) and let F1, . . . , Fr be the irreducible factors of Φf

over K(t), with F1 = x− t. Let PL = {P (1), . . . , P (s)} be the partition corresponding

to the subfield L. Let g :=
∏

i∈P (1) Fi, with 1 ∈ P (1) and let c(t) ∈ K(t) be a

non-constant coefficient of g. Then L = K(c(t)).

These results allowed us to compute all decompositions of f(t) ∈ K(t)

in a more efficient way, both in theory and practice (see Corollary 5.25 and Tables

5.1 e 5.2). Moreover, when f(t) ∈ K[t], our algorithm has better complexity than

that present by Blankertz [10]. The implementation of this algorithm was included

in the Computer Algebra System Magma. For more details, see Chapter 5.

1Here we can always assume that deg(fn(x)) > deg(fd(x)), which guarantees that Φf is monic.
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FUTURE WORK

In what follows we mention a few ideas that might be worth investi-

gating. The first idea is to improve the Subfields algorithm for the number field

case. As we have seen in Table 4.2, for most cases, the bottleneck of the algorithm is

the LLL computations (this was true even before our improvements). Even in cases

where the number of subfields is large and the number of LLL calls is small (see ex. 1,

10 and 21 in Table 4.2), LLL dominates the CPU timings. Hence, it is important to

“skip” as many factors as possible. Recently, Elsenhans and Klüners [18] presented

an algorithm, based on Klüners [26] and van Hoeij et al. [51], that significantly

reduces the number of LLL calls (and hence, might outrun our algorithm).

However, the algorithm presented in [18] does not generate an inter-

section-generating set of subfields, but rather a Galois-generating set of subfields (a

much smaller set of subfields). If one wishes all subfields then more work has to

be done (such as computing the intersection of wreath products). We believe that

our algorithm, more specifically, the join of partitions, could be used together with

this new algorithm to quickly find all subfields. This is motivated by the fact that

the time for finding all subfields of ex.10 of Table 4.2 using the algorithm from [18]

is about 339.92s, while our algorithm took 43.62s. However, this is one of the few

examples where the number of LLL calls in both algorithms is the same.

One might also ask for a minimal subfield factorization. We have seen

that we do not necessarily need the irreducible factorization of f , but a subfield

factorization f1, . . . , fr of f , where the fi are not necessarily irreducible. Hence, we

might ask for a subfield factorization where the number of factors is minimal. By

knowing some information about a minimal subfield factorization, one could also

minimize the number of LLL calls.
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For the rational function decomposition algorithm, one could ask for

a generalization of this decomposition algorithm, presented in Chapter 5, for the

multivariate case. Such generalization is not trivial, as in the multivariate case one

loses the algebraic property of the extension. That is, if K ⊆ L ⊆ K(x1, . . . , xm),

then [K(x1, . . . , xn) : L] might not be finite. This means that we could not directly

apply the theory developed in Chapter 5, where we were working with extensions

K(t)/K(f(t)), which always have finite degree. Moreover, the very own definition

of decomposition has to be restated, as there are different ways into which we can

decompose a multivariate polynomial (see [23]). However, we do believe that some

generalization of the theory presented in Chapter 5 exists, because Theorem 5.8 can

be generalized to the multivariate case (at least for some types of decomposition).

The rational function decomposition algorithm depends on the factor-

ization of the bivariate polynomial ∇f = fn(x)fd(y) − fn(y)fd(x) ∈ K[x, y]. So

far, we have used general algorithms for bivariate factorization. However, since ∇f

is a rather special bivariate polynomial, one might ask if there is a more efficient

algorithm for factoring ∇f . This would hopefully improve the algorithm complexity,

specially in the polynomial decomposition algorithm, as factoring ∇f dominates the

complexity in this case. This could also improve timings, especially in characteristic

zero, where most of the time is spent factoring ∇f .
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