STRINGY HIRZEBRUCH CLASSES OF WEIERSTRASS FIBRATIONS

JAMES FULLWOOD AND MARK VAN HOEIJ*

Abstract

A Weierstrass fibration is an elliptic fibration $Y \rightarrow B$ whose total space Y may be given by a global Weierstrass equation in a \mathbb{P}^{2}-bundle over B. In this note, we compute stringy Hirzebruch classes of singular Weierstrass fibrations associated with constructing non-Abelian gauge theories in F-theory. For each Weierstrass fibration $Y \rightarrow B$ we then derive a generating function $\chi_{y}^{\operatorname{str}}(Y ; t)$, whose degree- d coefficient encodes the stringy $\chi_{y^{-}}$ genus of $Y \rightarrow B$ over an unspecified base of dimension d, solely in terms of invariants of the base. To facilitate our computations, we prove a formula for general characteristic classes of blowups along (possibly singular) complete intersections.

Contents

1. Introduction 1
2. Stringy characteristic classes 4
3. Computing stringy characteristic classes 6
4. Weierstrass fibrations in F-theory 12
5. Stringy Hirzebruch class computation for $\mathrm{SO}(5)$ fibrations 14
6. Generating functions for $\chi_{y}^{\text {str }}$ 16
7. Stringy Hirzebruch-Riemann-Roch for $\mathrm{SU}(2)$ fibrations 20
8. Summary of results 21
References 23

1. Introduction

Let X be a smooth complex variety, $\mathscr{E} \rightarrow X$ a holomorphic vector bundle, and let $\widetilde{T}_{y}(\mathscr{E})$ be the cohomological characteristic class given by

$$
\widetilde{T}_{y}(\mathscr{E})=\sum_{q \geq 0} \operatorname{ch}\left(\Lambda^{q} \mathscr{E} \vee\right) \operatorname{td}(\mathscr{E}) y^{q} \in H^{*}(X) \otimes \mathbb{Q}[y]
$$

which we refer to as the Hirzebruch class of \mathscr{E}. The homology class

$$
\widetilde{T}_{y}(T X) \cap[X] \in H_{*}(X) \otimes \mathbb{Q}[y]
$$

will then be referred to as the Hirzebruch class of X, which we denote by $\widetilde{T}_{y}(X)$. The zero-dimensional component $\int \widetilde{T}_{y}(X)$ of $\widetilde{T}_{y}(X)$ is denoted by $\chi_{y}(X)$, which is referred to as

[^0]Hirzebruch's $\chi_{y^{-}}$genus. By the Hirzebruch-Riemann-Roch theorem,

$$
\begin{equation*}
\chi_{y}(X)=\sum_{q \geq 0}\left(\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(\Lambda^{q} T^{*} X\right)\right) y^{q} \in \mathbb{Z}[y], \tag{1.1}
\end{equation*}
$$

so that $\chi_{y}(X)$ encodes linear relations among the Hodge numbers

$$
h^{p, q}(X)=\operatorname{dim}_{\mathbb{C}} H^{p}\left(\Lambda^{q} T^{*} X\right),
$$

and moreover, evaluating $\chi_{y}(X)$ at $y=-1,0,1$ yields the topological Euler characteristic $\chi(X)$, the arithmetic genus $\chi_{a}(X)$, and the signature $\sigma(X)$ respectively.

While the Hirzebruch class \widetilde{T}_{y} encodes fundamental invariants of a smooth variety, its associated power series, namely

$$
\widetilde{Q}(z)=\frac{z\left(1+y e^{-z}\right)}{1-e^{-z}}
$$

admits the somewhat undesirable feature of being un-normalized, i.e.,

$$
\widetilde{Q}(0)=1+y \neq 1 .
$$

However, the power series

$$
\begin{equation*}
Q(z)=\widetilde{Q}(z(1+y)) \cdot(1+y)^{-1}=\frac{z(1+y)}{1-e^{-z(1+y)}}-y z \tag{1.2}
\end{equation*}
$$

is such that $Q(0)=1$, and equation (1.2) further implies that the characteristic class T_{y} associated with $Q(z)$ is a normalized class which agrees with \widetilde{T}_{y} in top degree. As such, the characteristic class T_{y} will be referred to as the normalized Hirzebruch class, and if X is a smooth variety then the homology class

$$
T_{y}(T X) \cap[X] \in H_{*}(X) \otimes \mathbb{Q}[y]
$$

will be referred to as the normalized Hirzebruch class of X, which will be denoted $T_{y}(X)$. Since T_{y} and \widetilde{T}_{y} agree in top degree we have

$$
\begin{equation*}
\int_{X} T_{y}(X)=\int_{X} \widetilde{T}_{y}(X)=\chi_{y}(X) \tag{1.3}
\end{equation*}
$$

and evaluating $T_{y}(X)$ at $y=-1,0,1$ yields

$$
T_{-1}(X)=c(X), \quad T_{0}(X)=\operatorname{td}(X), \quad \text { and } \quad T_{1}(X)=L(X),
$$

thus the normalized Hirzebruch class unifies the notions of Chern, Todd, and L-class while retaining $\chi_{y}(X)$ in dimension zero. This unifying aspect of the normalized Hirzebruch class makes it more fundamental in some sense than its un-normalized counterpart, and when the context is clear we will often refer to the normalized Hirzebruch class simply as the Hirzebruch class.

There are various extensions of Hirzebruch classes to singular X [7], and it is the 'stringy' notion with which we concern ourselves. Given an invariant for smooth varieties, an extension of the invariant to singular varieties is often referred to as stringy if it is invariant with respect to the notion of K-equivalence in birational geometry. In particular, stringy invariants are preserved under maps which are crepant, i.e., proper birational maps $f: Y \rightarrow X$ such that $K_{Y}=f^{*} K_{X}$. Stringy invariants require restrictions on the allowed singularities for their definition, and for X with at worst Gorenstein canonical singularities, there exists stringy

Hirzebruch classes $\widetilde{T}_{y}^{\text {str }}(X)$ and $T_{y}^{\operatorname{str}}(X)$ which agree in dimension-zero, and this dimensionzero component common to both, which we denote by $\chi_{y}^{\operatorname{str}}(X)$, will be referred to as the stringy $\chi_{y^{-}}$genus of X. We note that while Hirzebruch's χ_{y}-genus is a polynomial in y, $\chi_{y}^{\operatorname{str}}(X)$ is a priori a rational function in y. The stringy χ_{y}-genus is invariant with respect to crepant maps, and if X admits a crepant resolution $\rho: Z \rightarrow X$, then

$$
\begin{equation*}
\rho_{*} \widetilde{T}_{y}(Z)=\widetilde{T}_{y}^{\operatorname{str}}(X) \quad \text { and } \quad \rho_{*} T_{y}(Z)=T_{y}^{\operatorname{str}}(X) \tag{1.4}
\end{equation*}
$$

and in such a case $\chi_{y}^{\operatorname{str}}(X)$ is a polynomial whose coefficients yield linear relations for the stringy Hodge numbers of X as defined by Batyrev [5]. Evaluating $T_{y}^{\mathrm{str}}(X)$ at $y=-1$ yields the stringy Chern class of X, and as such, evaluating $\chi_{y}^{\operatorname{str}}(X)$ at $y=-1$ yields the stringy Euler characteristic of $X[5][1][8]$. Evaluating $\chi_{y}^{\operatorname{str}}(X)$ at $y=0,1$ then yields stringy versions of the arithmetic genus and signature. In $\S 2$ we review in further detail the general theory for stringy characteristic classes.

In this note, we compute stringy Hirzebruch classes of elliptic fibrations $Y \rightarrow B$ whose total space Y may be embedded as a hypersurface in a \mathbb{P}^{2}-bundle given by a global Weierstrass equation

$$
\begin{equation*}
Y:\left(y^{2} z=x^{3}+f x z^{2}+g z^{3}\right) \subset \mathbb{P}(\mathscr{E}), \tag{1.5}
\end{equation*}
$$

where f and g are sections of tensor powers of a line bundle $\mathscr{L} \rightarrow B$, referred to as the fundamental line bundle of $Y \rightarrow B$. We refer to such elliptic fibrations as Weierstrass fibrations. The rank- 3 vector bundle $\mathscr{E} \rightarrow B$ which is projectivized to construct the ambient space of Y is then given by $\mathscr{E}=\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}$, where \mathscr{L} is the fundamental line bundle.

The Weierstrass fibrations we consider consists of 14 different families which are relevant for constructing super-symmetric string vacua whose associated field theories admit nonAbelian gauge symmetries [11]. In F-theory, a gauge group \mathcal{G}_{Y} is associated with a singular Weierstrass fibration $Y \rightarrow B$ according to the type singular fibers which appear upon a resolution of singularities and its Mordell-Weil group of rational sections. In order to avoid complications associated with singular compactifications of string vacua, crepant resolutions have been constructed in the F-theory literature for a number of Weierstrass fibrations [12][20][11], and in such a case we exploit property (1.4) to compute their stringy Hirzebruch classes. There are often multiple crepant resolutions of Weierstrass fibrations, which are connected by a network of flop transitions. As the particular resolution one uses among a network of choices is often irrelevant from the physics perspective, the physically relevant invariants one computes via such a resolution should be seen as stringy invariants of the singular Weierstrass fibration one is resolving, rather than invariants of the resolved geometry. In any case, as such crepant resolutions are constructed by successively blowing up the ambient space $\mathbb{P}(\mathscr{E})$ of a Weierstrass fibration along complete intersections, in $\S 3$ we employ intersection-theoretic techniques along with a blowup formula of Aluffi ([2], Theorem 1.2) to derive a formula for general characteristic classes of blowups along (possibly singular) complete intersections, along with an associated pushforward formula for computing ρ_{*} as in (1.4).

As an elliptic fibration may be characterized by its configuration of singular fibers, it is often possible to compute invariants of an elliptic fibration $Y \rightarrow B$ relative to an unspecified base B. For example, since only the singular fibers of an elliptic fibration $Y \rightarrow B$ contribute its topological Euler characteristic $\chi(Y)$, one may stratify the discriminant of the fibration into strata over which the topological type of the fiber is constant, and then give a formula
for $\chi(Y)$ in terms of the combinatorics of the fiber structure and the geometry of the strata of the discriminant. Such methods were employed for example in [17], where formulas for the Euler characteristic of elliptic 3-folds were given in terms of a certain representation of a Lie group determined by the fiber structure of the fibration.

More recently, techniques from intersection theory have been used to compute the Euler characteristic of elliptic fibrations over an unspecified base of arbitrary dimension [3][4][10][13], generalizing formulas found in the physics literature for elliptic 3 - and 4 -folds [21][19]. In particular, if $Y \rightarrow B$ is a smooth Weierstrass fibration with fundamental line bundle $\mathscr{L} \rightarrow B$, its topological Euler characteristic was computed in [3] as

$$
\chi(Y)=12 c_{1}(\mathscr{L}) \sum_{i=0}^{\operatorname{dim}(B)-1} c_{i}(B)\left(-6 c_{1}(\mathscr{L})\right)^{\operatorname{dim}(B)-1-i}
$$

so that a formula for $\chi(Y)$ may be given in terms of invariants of an unspecified base of arbitrary dimension. Such formulas were referred to as 'Sethi-Vafa-Witten formulas' in [3], and similar formulas for stringy Euler characteristics of singular Weierstrass fibrations and elliptic fibrations not in Weierstrass form have appeared in [15][11][4][10]. In a similar vein, given a singular Weierstrass fibration $Y \rightarrow B$, in $\S 6$ we derive a generating function $\chi_{y}^{\operatorname{str}}(Y ; t)=\sum_{n} a_{n} t^{n}$, where a_{n} is a formula for $\chi_{y}^{\operatorname{str}}(Y)$ over an unspecified base B of dimension n, solely in terms of invariants of B. Such formulas can then be used to derive relations between the stringy Hodge numbers of Y, via 'stringy' Hirzebruch-Riemann Roch. For example, in $\S 6$ we show that if Y is a Weierstrass fibration with gauge group $\mathcal{G}_{Y}=\mathrm{SO}(6)$, then

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=\left(1-5 y+\frac{(y+1)\left(\left(e^{t(1+y) L}+4\right) y-e^{t(1+y) L}\right)}{e^{2 t(1+y) L}+y}\right) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}(t)}{C(t)}\right)\right)
$$

where L is the first Chern class of the fundamental line bundle $\mathscr{L} \rightarrow B$ of $Y, R(t)=\ln (Q(t))$ for $Q(t)$ the characteristic power series of the normalized Hirzebruch class as given in equation (1.2), $C(t)$ is the formal power series $C(t)=\sum_{i=0}^{\infty}(-1)^{i} c_{i} t^{i}$ (where the c_{i} s are interpreted as the Chern classes of $B)$, and \odot denotes the Hadamard product of power series.

Notation and conventions. A variety will always be assumed to be a reduced and separated scheme of finite type over the complex numbers \mathbb{C}. Given a holomorphic vector bundle $\mathscr{E} \rightarrow B$ over a variety $B, \mathbb{P}(\mathscr{E}) \rightarrow B$ will always be taken to denote the associated projective bundle of lines in \mathscr{E}, and given a line bundle $\mathscr{L} \rightarrow B$, its m-th tensor power will be denoted $\mathscr{L}^{m} \rightarrow B$.

2. Stringy characteristic classes

Let X be a variety, and let $A_{*} X$ denote the group of algebraic cycles in X modulo rational equivalence. Assume \mathfrak{C} is a characteristic class associated with holomorphic vector bundles $\mathscr{E} \rightarrow X$ such that for every $\alpha \in A_{*} X$

$$
\mathfrak{C}(\mathscr{E}) \cap \alpha \in A_{*} X \otimes R,
$$

where R is a commutative ring with unity. If X is smooth, the class $\mathfrak{C}(T X) \cap[X]$ will be denoted simply by $\mathfrak{C}(X)$. If X is singular, we may define a 'stringy' extension $\mathfrak{C}^{\text {str }}(X)$ of \mathfrak{C}
provided we suitably restrict the singularities of X. As such, we now define what it means for X to have at worst Gorenstein canonical singularities.

Definition 2.1. Let X be a normal irreducible variety over \mathbb{C}. We will say that X admits at worst Gorenstein canonical singularities if and only if the canonical divisor K_{X} is Cartier, and for any resolution of singularities $\rho: Z \rightarrow X$ such that the exceptional locus is a smooth normal crossing divisor with irreducible components $\left\{D_{i}\right\}_{i \in I}$, the discrepancy divisor

$$
K_{Z}-\rho^{*} K_{X}=\sum_{i \in I} a_{i} D_{i}
$$

is such that $a_{i} \geq 0$. Such a resolution $\rho: Z \rightarrow X$ will be referred to as a log resolution of X (log resolutions always exist).

Definition 2.2. Let $f: Y \rightarrow X$ be a proper birational map between varieties. We will refer to f as crepant if and only if $K_{Y}=f^{*} K_{X}$, and if f is also a log resolution, then f will be referred to as a crepant resolution.

Now let X be a normal variety with at worst Gorenstein canonical singularities, $\rho: Z \rightarrow X$ a \log resolution of X, and let $D_{\rho}=\sum_{i \in I} a_{i} D_{i}$ denote the discrepancy divisor $K_{Z}-\rho^{*} K_{X}$. For J a subset of the index set I of the irreducible components of D_{ρ}, we let $D_{J}=\bigcap_{j \in J} D_{j}$, with the convention that $D_{\varnothing}=Z$. Techniques of motivic integration may then be used to show the class ${ }^{1}$

$$
\begin{equation*}
\rho_{*}\left(\sum_{J \subset I} \mathfrak{C}\left(D_{J}\right) \cdot \prod_{j \in J} \frac{\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)-\left(\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)\right)^{a_{j}+1}}{\left(\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)\right)^{a_{j}+1}-1}\right) \tag{2.1}
\end{equation*}
$$

is independent of the resolution $\rho: Z \rightarrow X$ ([9], Proposition 6.3.2), and as such, it is an intrinsic invariant of X, which leads us to the following

Definition 2.3. The class (2.1) will be referred to as the stringy \mathfrak{C}-class of X, and will be denoted $\mathfrak{C}^{\operatorname{str}}(X)$.

It immediately follows from Definition 2.3 that if the map ρ appearing in (2.1) is crepant, then $\mathfrak{C}^{\operatorname{str}}(X)=\rho_{*} \mathfrak{C}(Z)$, and in particular, if X is smooth then $\mathfrak{C}^{\operatorname{str}}(X)=\mathfrak{C}(X)$.

Now suppose V and W are K-equivalent varieties with at worst Gorenstein canonical singularities, so that there exists a common log resolution

such that $v^{*} K_{V}=w^{*} K_{W}$. It then follows that the the discrepancy divisors $D_{v}=K_{Z}-v^{*} K_{V}$ and $D_{w}=K_{Z}-w^{*} K_{W}$ coincide, thus by Definition 2.3 there exists a class $C \in A_{*} Z \otimes \operatorname{Frac}(R)$ such that

$$
v_{*}(C)=\mathfrak{C}^{\operatorname{str}}(V), \quad \text { and } \quad w_{*}(C)=\mathfrak{C}^{\operatorname{str}}(W)
$$

[^1]This further implies

$$
\begin{equation*}
\int_{V} \mathfrak{C}^{\operatorname{str}}(V)=\int_{W} \mathfrak{C}^{\operatorname{str}}(W) \tag{2.2}
\end{equation*}
$$

and moreover, if $f: X \rightarrow Y$ is crepant then

$$
\begin{equation*}
\int_{X} \mathfrak{C}^{\operatorname{str}}(X)=\int_{Y} \mathfrak{C}^{\operatorname{str}}(Y) \tag{2.3}
\end{equation*}
$$

With regards towards the cases where \mathfrak{C} is either the Hirzebruch class \widetilde{T}_{y} or the normalized Hirzebruch class T_{y} as defined in $\S 1$, equation (1.3) along with the definition of $\mathfrak{C}^{\text {str }}$ implies

$$
\begin{equation*}
\int_{X} \widetilde{T}_{y}^{\operatorname{str}}(X)=\int_{X} T_{y}^{\operatorname{str}}(X) \tag{2.4}
\end{equation*}
$$

and as such, we take either side of equation (2.4) as the definition of the stringy $\chi_{y^{-}}$ characteristic of X, which we denote by $\chi_{y}^{\operatorname{str}}(X)$. The stringy χ_{y}-characteristic $\chi_{y}^{\operatorname{str}}(X)$ evaluated at $y=-1$ then yields the stringy Euler characteristic $\chi_{\text {str }}(X)$ as defined by Batyrev in [5]. We note that while Hirzebruch's χ_{y}-genus is a polynomial in $y, \chi_{y}^{\operatorname{str}}(X)$ is a priori a rational function in y. In the case that X admits a crepant resolution $\rho: Z \rightarrow X$, the coefficient of y^{p} in $\chi_{y}^{\operatorname{str}}(X)$ encodes linear relations between the stringy Hodge numbers $h_{\mathrm{str}}^{p, q}(X)$ for $q=0, \ldots, \operatorname{dim}(X)$ (which in such a case coincide with the usual Hodge numbers $h^{p, q}(Z)$), thus yielding a 'stringy' version of the Hirzebruch-Riemann-Roch theorem. For more on stringy Hodge numbers, see [5].

3. Computing stringy characteristic classes

Let \mathfrak{C} be a cohomological characteristic class for vector bundles which is multiplicative on short exact sequences, so that if

$$
0 \longrightarrow \mathscr{A} \longrightarrow \mathscr{B} \longrightarrow \mathscr{C} \longrightarrow 0
$$

is a short exact sequence of vector bundles, then

$$
\mathfrak{C}(\mathscr{B})=\mathfrak{C}(\mathscr{A}) \mathfrak{C}(\mathscr{C})
$$

If Y is a smooth variety, we recall $\mathfrak{C}^{\operatorname{str}}(Y)=\mathfrak{C}(Y)=\mathfrak{C}(T Y) \cap[Y]$. We note that we don't make the assumption that $\mathfrak{C}(\mathscr{O})=1$, as to incorporate the (non-normalized) Hirzebruch class \widetilde{T}_{y}. For Y with at worst Gorenstein canonical singularities, assume Y is a complete intersection in a smooth ambient variety Z. We then consider crepant resolutions of Y which are obtained by successively blowing up Z along (possibly singular) complete intersections and then taking a proper transform of Y along the blowups. We now outline a general method for computing $\mathfrak{C}^{\text {tstr }}(Y)$ via such a resolution.

A complete intersection is a special case of a regular embedding, whose definition we now recall. A closed embedding $Y \hookrightarrow Z$ is said to be regular of codimension d if the ideal sheaf \mathscr{I}_{Y} of Y in Z is such that $\mathscr{I}_{Y}(U)$ locally generated by a regular sequence in $\mathscr{O}_{Z}(U)$ of length d for every affine open set $U \subset Z$. In such a case, the normal cone to Y in Z is in fact a vector bundle $N_{Y} Z \rightarrow Y$ of rank d, which we refer to as the normal bundle to Y in Z. The sheaf of sections of $N_{Y} Z \rightarrow Y$ is then dual to $\mathscr{I}_{Y} / \mathscr{I}_{Y}^{2}$. A regular embedding $Y \hookrightarrow Z$ of codimension d is said to be a complete intersection if there exists a vector bundle $\mathcal{N} \rightarrow Z$ of rank d such that the image of the embedding $Y \hookrightarrow Z$ may be identified with the zero-scheme of a regular section of $\mathcal{N} \rightarrow Z$. In such a case, the vector bundle $\mathcal{N} \rightarrow Z$ restricts to Y
as $N_{Y} Z$. We now recall some facts about blowups of regular embeddings along a common regularly embedded subscheme.

Lemma 3.1. Let $X \longrightarrow Y \longrightarrow Z$ be a sequence of regular embeddings with Z smooth, and let $p: \widetilde{Z} \rightarrow Z$ and $q: \widetilde{Y} \rightarrow Y$ be the blowups of Z and Y along X respectively. Then
(i) the composition $X \longrightarrow Z$ is a regular embedding, and there exists a short exact sequence of vector bundles

$$
\left.0 \longrightarrow N_{X} Y \longrightarrow N_{X} Z \longrightarrow N_{Y} Z\right|_{X} \longrightarrow 0 .
$$

(ii) X may be realized as the zero-scheme of a regular section of a vector bundle $\mathscr{E} \rightarrow Z$. The normal bundle to X in Z, denoted $N_{X} Z$, then embeds as a subbundle of $\left.\mathscr{E}\right|_{X}$. If X is in fact a complete intersection in Z, then $\left.\mathscr{E}\right|_{X}=N_{X} Z$.
(iii) there exists a sequence of regular embeddings $\widetilde{Y} \xrightarrow{i} \widetilde{Z} \xrightarrow{j} \mathbb{P}(\mathscr{E})$ which forms the top row of the following commutative diagram

where $\pi: \mathbb{P}(\mathscr{E}) \rightarrow Z$ denotes the projective bundle of lines in \mathscr{E}. In particular, \widetilde{Y} and \widetilde{Z} are both regularly embedded in the smooth variety $\mathbb{P}(\mathscr{E})$.
(iv) $\left.\mathscr{O}(-1)\right|_{\tilde{Z}}=\mathscr{O}\left(E_{p}\right)$ and $\left.\mathscr{O}(-1)\right|_{\tilde{Y}}=\mathscr{O}\left(E_{q}\right)$, where E_{p} and E_{q} are the exceptional divisors of the blowups $p: \widetilde{Z} \rightarrow Z$ and $q: \widetilde{Y} \rightarrow Y$ respectively, and $\mathscr{O}(-1)$ is the tautological line bundle of $\pi: \mathbb{P}(\mathscr{E}) \rightarrow Z$.
(v) \widetilde{Y} is the proper transform of Y under the blowup $p: \widetilde{Z} \rightarrow Z$, and

$$
N_{\widetilde{Y}} \widetilde{Z}=q^{*} N_{Y} Z \otimes \mathscr{O}\left(-E_{q}\right)
$$

Proof. (i) follows from B.7.4 in [16]. (ii) and (iii) follow from B.8.2 in [16]. (iv) follows B.6.3 and B.6.9 in [16]. (v) follows from B.6.10 in [16].

We now arrive at the following
Proposition 3.2. Under the assumptions of Lemma 3.1, if \widetilde{Y} is smooth then

$$
\begin{equation*}
\mathfrak{C}(T \widetilde{Y})=\frac{\mathfrak{C}\left(\mathscr{O}\left(E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} \mathscr{E}\right|_{\tilde{Y}} \otimes \mathscr{O}\left(-E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} T Z\right|_{\tilde{Y}}\right)}{\mathfrak{C}\left(\mathscr{O}_{\tilde{Y}}\right) \mathfrak{C}\left(q^{*} N_{Y} Z \otimes \mathscr{O}\left(-E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} \mathcal{N}\right|_{\tilde{Y}}\right) \mathfrak{C}\left(\left.p^{*} \mathcal{Q}\right|_{\tilde{Y}} \otimes \mathscr{O}\left(-E_{q}\right)\right)} \tag{3.2}
\end{equation*}
$$

where \mathcal{N} and \mathcal{Q} are bundles on Z which restrict to X as $N_{X} Z$ and the quotient bundle $\left.\mathscr{E}\right|_{X} / N_{X} Z$, respectively ${ }^{2}$. In particular, if X is in fact a complete intersection in Z, so that

[^2]$N_{X} Z=\left.\mathscr{E}\right|_{X}=\left.\mathcal{N}\right|_{X}$ and $\mathcal{Q}=0$, and $\mathfrak{C}(\mathscr{O})=1$, then
\[

$$
\begin{equation*}
\mathfrak{C}(T \widetilde{Y})=\frac{\mathfrak{C}\left(\mathscr{O}\left(E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} \mathcal{N}\right|_{\tilde{Y}} \otimes \mathscr{O}\left(-E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} T Z\right|_{\tilde{Y}}\right)}{\mathfrak{C}\left(q^{*} N_{Y} Z \otimes \mathscr{O}\left(-E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} \mathcal{N}\right|_{\tilde{Y}}\right)} \tag{3.3}
\end{equation*}
$$

\]

Proof. Since \mathfrak{C} is multiplicative it satisfies the adjunction formula, thus

$$
\mathfrak{C}(T \widetilde{Y})=\frac{\mathfrak{C}\left(\left.T \mathbb{P}(\mathscr{E})\right|_{\tilde{Y}}\right)}{\mathfrak{C}\left(N_{\tilde{Y}} \mathbb{P}(\mathscr{E})\right)}
$$

By B.5.8 in [16] we have

$$
\left.\mathfrak{C}(T \mathbb{P}(\mathscr{E}))=\frac{\mathfrak{C}\left(\pi^{*} \mathscr{E} \otimes \mathscr{O}(1)\right) \pi^{*} \mathfrak{C}(T Z)}{\mathfrak{C}\left(\mathscr{O}_{\mathbb{P}}(\mathscr{E})\right.}\right)
$$

and since by Lemma $\left.3.1 \mathscr{O}(1)\right|_{\tilde{Y}}=\mathscr{O}\left(-E_{q}\right)$, restricting to \widetilde{Y} yields

$$
\mathfrak{C}\left(\left.T \mathbb{P}(\mathscr{E})\right|_{\tilde{Y}}\right)=\frac{\mathfrak{C}\left(\left.p^{*} \mathscr{E}\right|_{\tilde{Y}} \otimes \mathscr{O}\left(-E_{q}\right)\right) \mathfrak{C}\left(\left.p^{*} T Z\right|_{\tilde{Y}}\right)}{\mathfrak{C}\left(\mathscr{O}_{\widetilde{Y}}\right)}
$$

We now compute $\mathfrak{C}\left(N_{\tilde{Y}} \mathbb{P}(\mathscr{E})\right)$. For this, note by Lemma 3.1 there exists a short exact sequence of vector bundles

$$
\left.0 \longrightarrow N_{\widetilde{Y}} \widetilde{Z} \longrightarrow N_{\widetilde{Y}} \mathbb{P}(\mathscr{E}) \longrightarrow N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right|_{\widetilde{Y}} \longrightarrow 0
$$

so that

$$
\mathfrak{C}\left(N_{\widetilde{Y}} \mathbb{P}(\mathscr{E})\right)=\mathfrak{C}\left(N_{\widetilde{Y}} \widetilde{Z}\right) \mathfrak{C}\left(\left.N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right|_{\widetilde{Y}}\right)
$$

Now since $\mathfrak{C}\left(N_{\widetilde{Y}} \widetilde{Z}\right)=\mathfrak{C}\left(q^{*} N_{Y} Z \otimes \mathscr{O}\left(-E_{q}\right)\right)$ by Lemma 3.1, the proposition is proved once we show

$$
\begin{equation*}
\mathfrak{C}\left(\left.N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right|_{\tilde{Y}}\right)=\frac{\mathfrak{C}\left(\left.p^{*} \mathcal{N}\right|_{\tilde{Y}}\right) \mathfrak{C}\left(\left.p^{*} \mathcal{Q}\right|_{\tilde{Y}} \otimes \mathscr{O}\left(-E_{q}\right)\right)}{\mathfrak{C}\left(\mathscr{O}\left(E_{q}\right)\right)} \tag{3.4}
\end{equation*}
$$

where \mathcal{N} and \mathcal{Q} are bundles on Z which restrict to $N_{X} Z$ and the quotient bundle $\left.\mathscr{E}\right|_{X} / N_{X} Z$ respectively (if such a bundle \mathcal{N} does not exist, see the footnote referenced in the statement of Proposition 3.2). For \mathfrak{C} the Chern class, formula (3.4) follows from Theorem 1.2 in [2], which in the context at hand says

$$
\begin{equation*}
c\left(N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right)=\frac{c\left(p^{*} \mathcal{N}\right) c\left(p^{*} \mathcal{Q} \otimes \mathscr{O}\left(-E_{p}\right)\right)}{c\left(\mathscr{O}\left(E_{p}\right)\right)} \tag{3.5}
\end{equation*}
$$

But going through the proof of Theorem 1.2 in [2], one sees that formula (3.5) is essentially obtained by equating Chern classes of normal bundles via exact sequences obtained from the following fiber square of regular embeddings

where $\widetilde{\mathscr{E}} \rightarrow \mathscr{E}$ is the blowup of \mathscr{E} along the zero section of $f: \mathscr{E} \rightarrow Z$. In particular, diagram (3.6) along with Lemma 3.1 yields

$$
\begin{equation*}
c\left(N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right)=\frac{c\left(\left.N_{\widetilde{\mathscr{E}}} \mathbb{P}\left(f^{*} \mathscr{E}\right)\right|_{\widetilde{Z}}\right) c\left(N_{\widetilde{Z}} \widetilde{\mathscr{E}}\right)}{c\left(\left.N_{\mathbb{P}(\mathscr{E})} \mathbb{P}\left(f^{*} \mathscr{E}\right)\right|_{\widetilde{Z}}\right)} \tag{3.7}
\end{equation*}
$$

Then using the fact that

$$
\left.N_{\mathbb{P}(\mathscr{E})} \mathbb{P}\left(f^{*} \mathscr{E}\right)\right|_{\tilde{Z}} \cong p^{*} \mathscr{E} \quad \text { and }\left.\quad N_{\widetilde{\mathscr{E}}} \mathbb{P}\left(f^{*} \mathscr{E}\right)\right|_{\tilde{Z}} \cong p^{*} \mathscr{E} / \mathscr{O}\left(E_{p}\right),
$$

equation (3.7) then simplifies to

$$
c\left(N_{\widetilde{Z}} \mathbb{P}(\mathscr{E})\right)=\frac{c\left(N_{\tilde{Z}} \widetilde{\mathscr{E}}\right)}{c\left(\mathscr{O}\left(E_{p}\right)\right)}
$$

The proof then concludes by showing $c\left(N_{\widetilde{Z}} \widetilde{\mathscr{E}}\right)=c\left(p^{*} \mathcal{N}\right) c\left(p^{*} \mathcal{Q} \otimes \mathscr{O}\left(-E_{p}\right)\right)$, which again uses the technique of constructing sequences of regular embeddings and the taking Chern classes of the associated short exact sequence of normal bundles. As such, at each stage of the proof c may be replaced by \mathfrak{C}, and after restriction to \widetilde{Y} we then arrive at equation (3.4), as desired.

Now suppose $Y_{0} \hookrightarrow Z_{0}$ is a complete intersection with Z_{0} a smooth variety, and assume Y_{0} has at worst Gorenstein canonical singularities. We then assume there exists a sequence n blowups

$$
Z_{n} \rightarrow Z_{n-1} \rightarrow \cdots \rightarrow Z_{1} \rightarrow Z_{0}
$$

such that the proper transform of Y_{0} through the blowups yields a crepant resolution

$$
\rho: Y_{n} \longrightarrow Y_{0}
$$

We further assume that $Z_{i+1} \rightarrow Z_{i}$ is the blowup of Z_{i} along a (possibly singular) complete intersection $X_{i} \rightarrow Z_{i}$, and we assume that X_{i} is a complete intersection in the proper transform Y_{i} of Y_{i-1}, so that for $i=0, \ldots, n-1$ we have a sequence of regular embeddings $X_{i} \rightarrow Y_{i} \rightarrow Z_{i}$. By Lemma 3.1 we then have the following commutative diagram

where \mathscr{E}_{0} is a vector bundle on Z_{0} such that X_{0} may be realized as the zero-scheme of a regular section of $\mathscr{E}_{0} \rightarrow Z_{0}$, and p_{i} and q_{i} are the blowups of Z_{i-1} and Y_{i-1} along X_{i-1} respectively. The crepant resolution $\rho: Y_{n} \rightarrow Y_{0}$ is then given by $\rho=q_{1} \circ \cdots \circ q_{n}$. We now wish to compute $\mathfrak{C}\left(Y_{n}\right)$ via an adjunction formula, which exists if Y_{n} is embedded in a smooth variety. An explicit embedding of Y_{n} in a smooth variety then follows from the following

Claim 3.3. Let Z_{i} be as in diagram (3.8) for $i=1, \ldots, n$. Then there exists a regular embedding $Z_{i} \longrightarrow W_{i}$ with W_{i} smooth. In particular, W_{i} may be defined inductively as $W_{i}=\mathbb{P}\left(\mathscr{E}_{i-1}\right)$, where $\mathscr{E}_{i-1} \rightarrow W_{n-1}$ is a vector bundle which admits a regular section whose zero-scheme is X_{i-1}.
Proof. We use induction on i. For $i=1$ we take $j_{1}: Z_{1} \longrightarrow \mathbb{P}\left(\mathscr{E}_{0}\right)=W_{1}$, which is a regular embedding of Z_{1} into a smooth variety by Lemma 3.1. Now assume the result holds for $i=k$ with $1 \leq k<n$. Then again by Lemma 3.1 we have the following diagram

where the vertical arrows are all blowups along X_{k}, and $\mathscr{E}_{k} \rightarrow W_{k}$ is a vector bundle which admits a regular section whose zero-scheme is X_{k}. We then take the composition $Z_{k+1} \longrightarrow$ $\mathbb{P}\left(\mathscr{E}_{k}\right)=W_{k+1}$ in the above diagram, which completes the proof.

We note that if X_{i} is smooth for $i=1, \ldots, n-1, Z_{i}$ will be smooth for $i=1, \ldots, n$, thus in such a case the embedding $i_{n}: Y_{n} \rightarrow Z_{n}$ is sufficient for adjunction. Claim 3.3 then becomes relevant only if X_{i} is singular for some i. In any case, by Claim 3.3, we may supplement the top of diagram (3.8) as follows

By Proposition 3.2 we then arrive at the following
Proposition 3.4. Under the assumptions and notation of diagram (3.9), we have

$$
i_{n *} \mathfrak{C}\left(Y_{n}\right)=\frac{\mathfrak{C}\left(\mathscr{O}\left(E_{n}\right)\right) \mathfrak{C}\left(\mathcal{N} \otimes \mathscr{O}\left(-E_{n}\right)\right) p_{n}^{*} \mathfrak{C}(W)}{\mathfrak{C}\left(\mathscr{O}_{Z_{n}}\right) \mathfrak{C}\left(N_{Y_{n}}\right) \mathfrak{C}\left(p_{n}^{*} N_{Z_{n-1}} \otimes \mathscr{O}\left(-E_{n}\right)\right) \mathfrak{C}(\mathcal{N})} \cap\left[Y_{n}\right] .
$$

where $W=\left.T W_{n-1}\right|_{Z_{n-1}}, N_{Y_{n}}=N_{Y_{n}} Z_{n}, N_{Z_{n-1}}=N_{Z_{n-1}} W_{n-1}$, and $\mathcal{N} \rightarrow Z_{n}$ is a restriction to Z_{n} of a bundle on W_{n-1} which restricts to X_{n-1} as $N_{X_{n-1}} W_{n-1}$.

We now recall $\iota: Y_{0} \rightarrow Z_{0}$ denotes the inclusion of the singular variety Y_{0} in the smooth ambient space Z_{0}. Now since $\rho: Y_{n} \rightarrow Y_{0}$ is a crepant resolution, we then have

$$
\iota_{*} \mathfrak{C}^{\operatorname{str}}\left(Y_{0}\right)=\tau_{*}\left(i_{n *} \mathfrak{C}\left(Y_{n}\right)\right)
$$

where $\tau=p_{1} \circ \cdots \circ p_{n}$. As such, to complete the computation of $\iota_{*} \mathbb{C}^{\operatorname{str}}\left(Y_{0}\right)$, we now prove a lemma which suffices to effectively compute τ_{*} of any class in $A_{*} Z_{n}$, which essentially boils down to computing $p_{i *} E_{i}^{k}$ for $i=1, \ldots, n$, where E_{i}^{k} denotes the k-fold intersection product of the exceptional divisor E_{i} of $p_{i}: Z_{i} \rightarrow Z_{i-1}$ with itself.

The formula we now prove for pushing forward powers of the exceptional divisor of a blowup is a direct generalization of a formula appearing in [15]. Whereas the formula appearing in [15] is for blowups along smooth complete intersections cut out by smooth divisors, we generalize the situation to blowups along possibly singular complete intersections, and no smoothness assumption is made on the divisors which cut out the complete intersection.

Lemma 3.5. Let $\iota: X \rightarrow Z$ be a (possibly singular) complete intersection of codimension d with Z smooth, $p: \widetilde{Z} \rightarrow Z$ be the blowup of Z along X, and let E denote the exceptional divisor of p. Then if U_{1}, \ldots, U_{d} are classes of divisors which cut out X in Z, then

$$
\begin{equation*}
p_{*} E^{k}=\sum_{i=1}^{d}\left(\prod_{j \neq i} \frac{U_{j}}{U_{j}-U_{i}}\right) U_{i}^{k} \tag{3.10}
\end{equation*}
$$

In particular, if $g(E)=\sum_{k=0}^{\infty} a_{k} E^{k}$ is a formal power series in E with coefficients $a_{k} \in A_{*} \widetilde{Z}$ and $C_{i}=\prod_{j \neq i} U_{j} /\left(U_{j}-U_{i}\right)$, then

$$
\begin{equation*}
f_{*} g(E)=C_{1} g\left(U_{1}\right)+\cdots+C_{d} g\left(U_{d}\right) . \tag{3.11}
\end{equation*}
$$

Proof. The Segre class of E in \widetilde{Z}, denoted $s(E, \widetilde{Z})$, is by definition given by

$$
s(E, \widetilde{Z})=c\left(N_{E} \widetilde{Z}\right)^{-1} \cap[E] \in A_{*} E
$$

so its pushforward to \widetilde{Z} is then given by

$$
\tilde{\iota}_{*} s(E, \widetilde{Z})=c(\mathscr{O}(E))^{-1} \cap[E]=E-E^{2}+E^{3}-\cdots,
$$

where $\tilde{\iota}: E \rightarrow \widetilde{Z}$ denotes the inclusion. Now consider the following fiber square

By the birational invariance of Segre classes (namely, Proposition 4.2 (a) in [16]),

$$
q_{*} s(E, \widetilde{Z})=s(X, Z)
$$

thus

$$
p_{*} \tilde{\iota}_{*} s(E, \widetilde{Z})=\iota_{*} q_{*} s(E, \widetilde{Z})=\iota_{*} s(X, Z)=c(\mathcal{N})^{-1} \cap[X],
$$

where $\mathcal{N} \rightarrow Z$ is a vector bundle such that $\left.\mathcal{N}\right|_{X}=N_{X} Z$. Now if U_{1}, \ldots, U_{d} denote classes of divisors which cut out X in Z, so that $[X]=U_{1} \cdots U_{d} \in A_{*} Z$, then

$$
c(\mathcal{N})^{-1} \cap[X]=\frac{U_{1} \cdots U_{d}}{\left(1+U_{1}\right) \cdots\left(1+U_{d}\right)},
$$

where $1 /\left(1+U_{i}\right)$ is shorthand for the formal series expansion $1-U_{i}+U_{i}^{2}-\cdots$. Putting things together then yields

$$
p_{*}\left(E-E^{2}+E^{3}-\cdots\right)=\frac{U_{1} \cdots U_{d}}{\left(1+U_{1}\right) \cdots\left(1+U_{d}\right)}
$$

so that

$$
p_{*} E^{k}=(-1)^{k+1} \cdot\left[t^{k}\right] \frac{t^{d} U_{1} \cdots U_{d}}{\left(1+t U_{1}\right) \cdots\left(1+t U_{d}\right)}
$$

where if $h(t)=\sum_{i} b_{i} t^{i}$ is a formal power series in t then $\left[t^{m}\right] h(t)=b_{m}$. Equation (3.10) then follows by elementary manipulations of formal power series. Now if $g(E)=\sum_{k=0}^{\infty} a_{k} E^{k}$ is a
formal power series in E with coefficients $a_{k} \in A_{*} \widetilde{Z}$ and $C_{i}=\prod_{j \neq i} U_{j} /\left(U_{j}-U_{i}\right)$, then

$$
f_{*} g(E)=\sum_{k=0}^{\infty} a_{k} f_{*}\left(E^{k}\right)=\sum_{k=0}^{\infty} a_{k}\left(C_{1} U_{1}^{n}+\cdots+C_{d} U_{d}^{n}\right)=C_{1} g\left(U_{1}\right)+\cdots+C_{d} g\left(U_{d}\right),
$$

thus completing the proof.
We note that in the case $\iota: X \rightarrow Z$ is a smooth complete intersection cut out by smooth divisors, formula (3.11) is referred to as 'Theorem 1.8' in [11], but in any case, formula (3.11) follows immediately from the pushforward formula (3.10).

4. Weierstrass fibrations in F-theory

F-theory is a geometrization of the $\mathrm{SL}_{2}(\mathbb{Z})$ symmetry of non-perturbative type-IIB string theory [23]. In particular, a type-IIB compactification of $10-2 n$ spacetime dimensions on a compact n-fold B comes with a fundamental $\mathrm{SL}_{2}(\mathbb{Z})$-invariant complex scalar field τ referred to as the axio-dilaton, which is given by

$$
\tau=C_{(0)}+i e^{-\phi}
$$

where $C_{(0)}$ is the RR-scalar field and ϕ is coming from the NS-NS sector, which is related to the string coupling parameter g_{s} by the equation $e^{\phi}=g_{s}$. In perturbative type-IIB string theory, τ is taken to be constant and B is assumed to be Calabi-Yau in order to preserve super-symmetry. In its non-perturbative regime, the axio-dilaton τ of type-IIB is assumed to be a varying complex scalar field over B, and B is then no longer required to be Calabi-Yau as the non-constant behavior of τ preserves super-symmetry. In F-theory, the $\mathrm{SL}_{2}(\mathbb{Z})$-invariant, non-constant complex scalar field τ of non-perturbative type-IIB is then identified with the complex structure parameter of an actual family of elliptic curves, varying over the n-fold B according to the behavior of the axio-dilaton τ. This geometric viewpoint of non-perturbative type-IIB is then encapsulated in an elliptic fibration $Y \rightarrow B$, whose total space Y is a Calabi-Yau $(n+1)$-fold.

The F-theoretic geometrization of type-IIB via an elliptic fibration $Y \rightarrow B$ has been a useful tool for probing the non-perturbative aspects of type-IIB string compactifications. In particular, using Weierstrass fibrations along with Tate's algorithm, one may geometrically engineer non-Abelian gauge theories [6][18]. For this, one starts with a Weierstrass fibration $Y \rightarrow B$ in Tate form, so that the total space Y is a hypersurface in a \mathbb{P}^{2}-bundle $\pi: \mathbb{P}(\mathscr{E}) \rightarrow B$ given by

$$
\begin{equation*}
Y:\left(y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3}\right) \subset \mathbb{P}(\mathscr{E}), \tag{4.1}
\end{equation*}
$$

where $\mathscr{E}=\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}$ and $\mathscr{L} \rightarrow B$ is a line bundle referred to as the fundamental line bundle of $Y \rightarrow B$. Taking x to be a section of $\mathscr{O}(1) \otimes \pi^{*} \mathscr{L}^{2}, y$ to be a section of $\mathscr{O}(1) \otimes \pi^{*} \mathscr{L}^{3}$, z to be a section of the tautological bundle $\mathscr{O}(1)$ and a_{i} to be a section of $\pi^{*} \mathscr{L}^{i}$ then identifies Y with the zero-scheme of a section of $\mathscr{O}(3) \otimes \pi^{*} \mathscr{L}^{6}$. The canonical class K_{Y} is then trivial if and only if $\mathscr{L}=\mathscr{O}\left(-K_{B}\right)$, so in the context of string compactifications \mathscr{L} is always taken to be the anti-canonical bundle of B. The discriminant of Y is then a divisor in B which parametrizes the singular fibers of Y, which is given by

$$
\Delta_{Y}:\left(4 F^{3}+27 G^{2}=0\right) \subset B
$$

where

$$
\left\{\begin{array}{l}
F=\frac{-1}{48}\left(b_{2}^{2}-24 b_{4}\right) \\
G=\frac{-1}{864}\left(36 b_{2} b_{4}-b_{2}^{3}-216 b_{6}\right) \\
b_{2}=a_{1}^{2}+4 a_{2} \\
b_{4}=a_{1} a_{3}+2 a_{4} \\
b_{6}=a_{3}^{2}+4 a_{6} .
\end{array}\right.
$$

Moreover, the Weierstrass equation for Y is then given by

$$
Y:\left(y^{2} z=x^{3}+F x z^{2}+G z^{3}\right) \subset \mathbb{P}(\mathscr{E})
$$

A gauge group \mathcal{G}_{Y} is then associated with Y as follows (see [11] for further details). By Tate's algorithm [22], one may perturb the coefficient sections a_{i} in such a way that a particular reducible singular fiber \mathfrak{f}_{Y} appears generically over an irreducible component S of the discriminant Δ_{Y} after a resolution of singularities. In such as case, the equation of Δ_{Y} necessarily takes the form $s^{k} t=0$, where s is a regular section of $\mathscr{O}(S)$, and the singular locus of Y is given by $\{x=y=s=0\} \subset \mathbb{P}(\mathscr{E})$. The dual graph of \mathfrak{f}_{Y} is then an affine Dynkin diagram associated with a Lie algebra \mathfrak{g}. The gauge group \mathcal{G}_{Y} is then given by

$$
\mathcal{G}_{Y}=\frac{\exp \left(\mathfrak{g}^{\vee}\right)}{\operatorname{MW}_{\text {tor }}(\varphi)} \times U(1)^{\mathrm{rkMW}(\varphi)},
$$

where $\varphi: Y \rightarrow B$ denotes the projection associated with the elliptic structure of Y as given by (4.1), and $\operatorname{MW}(\varphi)$ denotes the Mordell-Weil group of rational sections of φ (whose torsion subgroup is denoted $\mathrm{MW}_{\text {tor }}(\varphi)$). We note that it is possible for two distinct Weierstrass fibrations $Y \rightarrow B$ and $Y^{\prime} \rightarrow B$ with distinct \mathfrak{f}_{Y} and $\mathfrak{f}_{Y^{\prime}}$ to give rise to the same gauge group, so that it is not necessarily the case that $\mathcal{G}_{Y} \neq \mathcal{G}_{Y^{\prime}}$.

In this note, we consider 14 different families of Weierstrass fibrations $Y \rightarrow B$ for which \mathcal{G}_{Y} simple. In [11], crepant resolutions of the Weierstrass fibrations we consider were constructed over an unspecified base B of arbitrary dimension, and moreover, the resolutions do not require that the fundamental line bundle \mathscr{L} is the anti-canonical line bundle of B (so that the Calabi-Yau case is recovered by setting $\left.\mathscr{L}=\mathscr{O}\left(-K_{B}\right)\right)$. We now give the equations for such Weierstrass fibrations, along with the details of the crepant resolutions constructed in [11].

For each Weierstrass fibration listed in Table 1, a crepant resolution was constructed in [11] by blowing up the projective bundle $\mathbb{P}(\mathscr{E})$ along smooth complete intersections and then taking the proper transform of Y along the blowups. For example in the $\mathrm{SU}(3), G_{2}$ and $\mathrm{USp}(4)$ cases, a crepant resolution is obtained by two blowups. The first blowup $Z_{1} \rightarrow Z_{0}=$ $\mathbb{P}(\mathscr{E})$ is along its singular locus $\{x=y=s=0\} \subset Z_{0}$ with exceptional divisor E_{1}, and the second blowup is along $\left\{y=e_{1}\right\} \subset Z_{1}$, where e_{1} is a section of $\mathscr{O}\left(E_{1}\right)$ and y denotes the pullback of the section y under $Z_{1} \rightarrow Z_{0}$. We then summarize the resolution procedure with the notation

$$
\left((x, y, s),\left(y, e_{1}\right)\right)
$$

where the first entry (x, y, s) denotes the ideal along which the first blowup takes place, and the the second entry $\left(y, e_{1}\right)$ denotes the ideal along which the second blowup takes place. Such notation will then be used to summarize each resolution we consider, so that if $Z_{i} \rightarrow Z_{i-1}$ denotes the i-th blowup with exceptional divisor E_{i}, then e_{i} denotes a section

Y	\mathcal{G}_{Y}
$y^{2} z=x^{3}+a_{4,1} s x z^{2}+a_{6,2} s^{2} z^{3}$	$\mathrm{SU}(2)$
$y^{2} z+a_{3,1} s y z^{2}=x^{3}+a_{4,2} s^{2} x z^{2}+a_{6,3} s^{3} z^{3}$	$\mathrm{SU}(3)$
$y^{2} z+a_{1} x y z=x^{3}+a_{2,1} s x^{2} z+a_{4,2} s^{2} x z^{2}+a_{6,4} s^{4} z^{3}$	$\mathrm{SU}(4)$
$y^{2} z+a_{1} x y z+a_{3,2} s^{2} y z^{2}=x^{3}+a_{2,1} s x^{2} z+a_{4,3} s^{3} x z^{2}+a_{6,5} s^{5} z^{3}$	$\mathrm{SU}(5)$
$y^{2} z=x^{3}+a_{2} x^{2} z+a_{4,3} s^{3} x z^{2}+a_{6,5} s^{5} z^{3}$	$\mathrm{USp}(4)$
$y^{2} z=x\left(x^{2}+a_{2} x z+s x z^{2}\right)$	$\mathrm{SO}(3)$
$y^{2} z=\left(x^{3}+a_{2} x^{2} z+s^{2} x z^{2}\right)$	$\mathrm{SO}(5)$
$y^{2} z+a_{1} x y z=x^{3}+s x^{2} z+s^{2} x z^{2}$	$\mathrm{SO}(6)$
$y^{2} z=x^{3}+a_{2,1} s x^{2} z+a_{4,2} s^{2} x z^{2}+a_{6,4} s^{4} z^{3}$	$\mathrm{Spin}(7)$
$y^{2} z=x^{3}+a_{4,2} s^{2} x z^{2}+a_{6,3}^{3} z^{3}$	G_{2}
$y^{2} z=x^{3}+a_{4,3} s^{3} x z^{2}+a_{6,4}^{4} s^{3}$	F_{4}
$y^{2} z+a_{3,2} s^{2} y z^{2}=x^{3}+a_{4,3} s^{3} x z^{2}+a_{6,5} s^{5} z^{3}$	E_{6}
$y^{2} z=x^{3}+a_{4,3} s^{3} x z^{2}+a_{6,5} s^{5} z^{3}$	E_{7}
$y^{2} z=x^{3}+a_{4,4} s^{4} x z^{2}+a_{6,5} s^{5} z^{3}$	E_{8}

Table 1. Equations for the Weierstrass fibrations we consider along with the associated gauge groups.
of $\mathscr{O}\left(E_{i}\right)$ (we also elide the difference in notation between a section of a line bundle and its pullback via $\left.Z_{i} \rightarrow Z_{i-1}\right)$.

Resolution	\mathcal{G}_{Y}
(x, y, s)	$\mathrm{SU}(2)$
$\left((x, y, s),\left(y, e_{1}\right)\right)$	$\mathrm{SU}(3)$
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right)\right)$	$\mathrm{SU}(4)$
$\left((x, y, s),\left(x, y, e_{1}\right),\left(y, e_{1}\right),\left(y, e_{2}\right)\right)$	$\mathrm{SU}(5)$
$\left((x, y, s),\left(y, e_{1}\right)\right)$	$\mathrm{USp}(4)$
(x, y)	$\mathrm{SO}(3)$
$\left((x, y, s),\left(x, y, e_{1}\right)\right)$	$\mathrm{SO}(5)$
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right)\right)$	$\mathrm{SO}(6)$
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right)\right)$	$\mathrm{Spin}(7)$
$\left((x, y, s),\left(y, e_{1}\right)\right)$	G_{2}
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right),\left(e_{2}, e_{3}\right)\right)$	F_{4}
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right),\left(e_{2}, e_{3}\right),\left(y, e_{3}\right),\left(y, e_{4}\right)\right)$	E_{6}
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right),\left(y, e_{3}\right),\left(e_{2}, e_{3}\right),\left(e_{2}, e_{4}\right),\left(e_{4}, e_{5}\right)\right)$	E_{7}
$\left((x, y, s),\left(y, e_{1}\right),\left(x, e_{2}\right),\left(y, e_{3}\right),\left(e_{2}, e_{3}\right),\left(e_{4}, e_{5}\right),\left(e_{2}, e_{4}, e_{6}\right),\left(e_{4}, e_{7}\right)\right)$	E_{8}

TABLE 2. Resolution procedure for each Weierstrass model.

5. Stringy Hirzebruch class computation for SO(5) fibrations

Let B be a smooth compact variety of arbitrary dimension, and let $\varphi: Y \rightarrow B$ be the Weierstrass fibration in Table 1 with $\mathcal{G}_{Y}=\mathrm{SO}(5)$. We now explicitly compute $T_{y}^{s t r}(Y)$, which will serve as a representative case for all Weierstrass fibrations in Table 1.

We now set $Y_{0}=Y$ and $Z_{0}=\mathbb{P}\left(\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}\right)$, where $\mathscr{L} \rightarrow B$ is the fundamental line bundle. In the notation of $\S 3$, we have the following diagram

so that $p_{i}: Z_{i} \rightarrow Z_{i-1}$ is the blowup of Z_{i-1} along X_{i-1} for $i=1,2$. By Table 2 we have X_{0} and X_{1} are smooth complete intersections given by

$$
X_{0}:(x=y=s=0) \subset Z_{0} \quad X_{1}:\left(x=y=e_{1}=0\right) \subset Z_{1} .
$$

Since X_{0} and X_{1} are both smooth, Z_{1} and Z_{2} are both smooth as well, so that the crepant resolution $Y_{2} \rightarrow Y_{0}$ is a smooth hypersurface in Z_{2}. In particular, in the notation of Claim 3.3 and Proposition 3.4, we have $W_{1}=Z_{1}$ and $W_{2}=Z_{2}$, so that both $N_{Z_{1}} W_{1}$ and $N_{Z_{2}} W_{2}$ are both rank zero vector bundles. Now let $Q(z)$ be the characteristic power series for T_{y} given by (1.2), and let E_{i} denote the class of the exceptional divisor of $p_{i}: Z_{i} \rightarrow Z_{i-1}$. Then the divisor class of Y_{2} in Z_{2} is given by $\left[Y_{2}\right]=3 H+6 L-2 E_{1}-2 E_{2}$, where H is the divisor associated with $\mathscr{O}(1)$ on Z_{0}, and $L=c_{1}(\mathscr{L})$. By Proposition 3.4 we then have

$$
i_{2 *} T_{y}\left(Y_{2}\right)=\mathfrak{q}_{2}\left(E_{2}\right) p_{2}^{*} T_{y}\left(Z_{1}\right)
$$

where

$$
\mathfrak{q}_{2}\left(E_{2}\right)=\frac{Q\left(E_{2}\right) Q\left(H+2 L-E_{2}\right) Q\left(H+3 L-E_{2}\right) Q\left(E_{1}-E_{2}\right) \cdot\left[Y_{2}\right]}{Q\left(3 H+6 L-2 E_{1}-2 E_{2}\right) Q(H+2 L) Q(H+3 L) Q\left(E_{1}\right)},
$$

where we recall the classes of $\{x=0\}$ and $\{y=0\}$ are given by $H+2 L$ and $H+3 L$ respectively, and S denotes the class of $\{s=0\}$. By the projection formula we then have

$$
\begin{equation*}
p_{2 *}\left(i_{2 *} T_{y}\left(Y_{2}\right)\right)=p_{2 *}\left(\mathfrak{q}_{2}\left(E_{2}\right)\right) T_{y}\left(Z_{1}\right) \tag{5.2}
\end{equation*}
$$

By Lemma 3.5 we have

$$
\begin{equation*}
p_{2 *}\left(\mathfrak{q}_{2}\left(E_{2}\right)\right)=\sum_{n=1}^{3} C_{n} \mathfrak{q}_{2}\left(U_{n}\right), \tag{5.3}
\end{equation*}
$$

where $U_{1}=H+2 L, U_{2}=H+3 L, U_{3}=E_{1}$, and $C_{n}=\prod_{m \neq n} U_{m} /\left(U_{m}-U_{n}\right)$. Proposition 3.2 then yields

$$
T_{y}\left(Z_{1}\right)=\frac{Q\left(E_{1}\right) Q\left(H+2 L-E_{1}\right) Q\left(H+3 L-E_{1}\right) Q\left(S-E_{1}\right)}{Q(H+2 L) Q(H+3 L) Q(S)} p_{1}^{*} T_{y}\left(Z_{0}\right),
$$

so that

$$
p_{2 *}\left(i_{2 *} T_{y}\left(Y_{2}\right)\right) \underset{15}{=\mathfrak{q}_{1}\left(E_{1}\right) p_{1}^{*} T_{y}\left(Z_{0}\right), ~}
$$

where $\mathfrak{q}_{1}\left(E_{1}\right)$ is given by

$$
\mathfrak{q}_{1}\left(E_{1}\right)=\left(\sum_{n=1}^{3} C_{n} \mathfrak{q}_{2}\left(U_{n}\right)\right) \frac{Q\left(E_{1}\right) Q\left(H+2 L-E_{1}\right) Q\left(H+3 L-E_{1}\right) Q\left(S-E_{1}\right)}{Q(H+2 L) Q(H+3 L) Q(S)} .
$$

Now let ρ denote the crepant resolution $p_{1} \circ p_{2}: Y_{2} \rightarrow Y_{0}$. Then

$$
i_{0 *} T_{y}^{\operatorname{str}}\left(Y_{0}\right)=\rho_{*}\left(i_{2 *} T_{y}\left(Y_{2}\right)\right)=p_{1 *} p_{2 *}\left(i_{2 *} T_{y}\left(Y_{2}\right)\right)=p_{1 *}\left(\mathfrak{q}_{1}\left(E_{1}\right) p_{1}^{*} T_{y}\left(Z_{0}\right)\right)
$$

so that by the projection formula and Lemma 3.5 we have

$$
i_{0 *} T_{y}^{\operatorname{str}}\left(Y_{0}\right)=\left(\sum_{n=1}^{3} D_{n} \mathfrak{q}_{1}\left(V_{n}\right)\right) T_{y}\left(Z_{0}\right)
$$

where $V_{1}=H+2 L, V_{2}=H+3 L, V_{3}=S$, and $D_{n}=\prod_{m \neq n} V_{m} /\left(V_{m}-V_{n}\right)$. Moreover, by B.5.8 in [16] we have

$$
T_{y}\left(Z_{0}\right)=Q(H) Q(H+2 L) Q(H+3 L) \pi^{*} T_{y}(B)
$$

where we recall π denotes the projection $Z_{0}=\mathbb{P}\left(\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}\right) \rightarrow B$. As such, for the $\mathrm{SO}(5)$ model $Y \rightarrow B$ we have

$$
\begin{equation*}
\iota_{*} T_{y}^{\mathrm{str}}(Y)=\left(\sum_{n=1}^{3} D_{n} \mathfrak{q}_{1}\left(V_{n}\right)\right) Q(H) Q(H+2 L) Q(H+3 L) \pi^{*} T_{y}(B) \tag{5.4}
\end{equation*}
$$

where $\iota: Y \hookrightarrow \mathbb{P}\left(\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}\right)$ denotes the inclusion.

6. GEnerating functions For $\chi_{y}^{\text {str }}$

Let $\varphi: Y \rightarrow B$ be a Weierstrass fibration over an arbitrary smooth compact variety B, so that we have the following diagram

where $\mathscr{E}=\mathscr{O}_{B} \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}$. The stringy χ_{y}-characteristic is then given by

$$
\begin{equation*}
\chi_{y}^{\mathrm{str}}(Y)=\int_{Y} T_{y}^{\mathrm{str}}(Y) \tag{6.2}
\end{equation*}
$$

where \int denotes taking the degree of the zero-dimensional component of the class $T_{y}^{\operatorname{str}}(Y)$. A consequence of the functoriality of the proper pushforward associated with proper maps is that the degree of a zero-dimensional class is invariant under proper pushforwards (see [16] Definition 1.4), so that

$$
\begin{equation*}
\int_{Y} T_{y}^{\mathrm{str}}(Y)=\int_{B} \varphi_{*} T_{y}^{\mathrm{str}}(Y) \tag{6.3}
\end{equation*}
$$

where we recall $\varphi: Y \rightarrow B$ is the proper surjective map which endows Y with the structure of an elliptic fibration. By equations (6.2) and (6.3) we then have

$$
\chi_{y}^{\operatorname{str}}(Y)=\int_{B} \varphi_{*} T_{y}^{\operatorname{str}}(Y)
$$

so that we can obtain a formula for $\chi_{y}^{\operatorname{str}}(Y)$ in terms of invariants of B by explicitly computing $\varphi_{*} T_{y}^{\text {str }}(Y)$. As in equation (5.4) which represents the case $\mathcal{G}_{Y}=\mathrm{SO}(5)$, for all Weierstrass fibrations we consider we have

$$
\begin{equation*}
\iota_{*} T_{y}^{\operatorname{str}}(Y)=\mathfrak{q}_{Y}(L, S, H) \pi^{*} T_{y}(B) \tag{6.4}
\end{equation*}
$$

where \mathfrak{q}_{Y} is a rational expression in $Q(L), Q(S)$ and $Q(H)$ (Q is the characteristic power series of T_{y}). By diagram (6.1) we then have

$$
\varphi_{*} T_{y}^{\operatorname{str}}(Y)=\pi_{*} \iota_{*} T_{y}^{\operatorname{str}}(Y)=\pi_{*}\left(\mathfrak{q}_{Y}(L, S, H) \pi^{*} T_{y}(B)\right)=\pi_{*}\left(\mathfrak{q}_{Y}(L, S, H)\right) T_{y}(B)
$$

so that computing $\varphi_{*} T_{y}^{\operatorname{str}}(Y)$ amounts to computing $\pi_{*} \mathfrak{q}(L, S, H)$. For this, we use Theorem 4.1 in [14], which is a general formula for $\pi_{*} .{ }^{3}$ In particular, for $\mathcal{G}_{Y}=\operatorname{SU}(2)$ we have

$$
\pi_{*} \mathfrak{q}_{Y}(L, S, H)=1-2 y+\frac{y+1}{y+s}\left(y+s l \frac{y^{2} s-\left(l^{4}+(s-1) l^{2}-s\right) y-l^{4}}{l^{6}+s^{2} y}\right)
$$

where $l=e^{(1+y) L}$ and $s=e^{(1+y) S}$.
As in the $\mathrm{SU}(2)$ case, for a general Weierstrass fibration $\varphi: Y \rightarrow B$ as in Table 1, the pushforward $\pi_{*} \mathfrak{q}_{Y}(L, S, H)$ (as in equation (6.4)) will be a rational expression in $l=e^{(1+y) L}$ and $s=e^{(1+y) S}$ which we denote by $\mathcal{Q}_{Y}(l, s)$, so that

$$
\varphi_{*} T_{y}^{\mathrm{str}}(Y)=\mathcal{Q}_{Y}(l, s) T_{y}(B)
$$

Now denote by $\mathcal{Q}_{Y}(t)$ the formal power series in t obtained by evaluating $\mathcal{Q}_{Y}(l, s)$ at $\left(l^{\prime}, s^{\prime}\right)$, where $l^{\prime}=e^{(1+y) t L}$ and $s^{\prime}=e^{(1+y) t S}$, and given a formal power series $f(t)=b_{0}+b_{1} t+\cdots$, let $\left[t^{k}\right] f(t)=b_{k}$. It then follows that if $\operatorname{dim}(B)=d$, then $\chi_{y}^{\operatorname{str}}(Y)$ is given by

$$
\chi_{y}^{\operatorname{str}}(Y)=\left[t^{d}\right]\left(\mathcal{Q}_{Y}(t) \prod_{i=1}^{d} Q\left(t \lambda_{i}\right)\right)
$$

where $\lambda_{1}, \ldots, \lambda_{d}$ are the Chern roots of the tangent bundle of B and $Q(z)$ is the characteristic power series of T_{y}, which is given by

$$
\begin{equation*}
Q(z)=\frac{z(1+y)}{1-e^{-z(1+y)}}-y z \tag{6.5}
\end{equation*}
$$

Now let $\chi_{y}^{\operatorname{str}}(Y ; t)=\sum_{k} a_{k} t^{k}$ be the associated generating function for $\chi_{y}^{\operatorname{str}}(Y)$ with respect to the dimension of B, so that

$$
\begin{equation*}
\left[t^{d}\right] \chi_{y}^{\operatorname{str}}(Y ; t)=\left[t^{d}\right]\left(\mathcal{Q}_{Y}(t) \prod_{i=1}^{d} Q\left(t \lambda_{i}\right)\right) \tag{6.6}
\end{equation*}
$$

Now before deriving a closed form expression for $\chi_{y}^{\text {str }}(Y ; t)$, we prove a preliminary lemma on power series. For this, we first need some definitions. Let R be a commutative ring with 1 , and consider the ring $R[[t]]$ of formal power series in the variable t with coefficients in R. We then define the Hadamard product in $R[[t]]$ as the map $\odot: R[t t] \times R[[t]] \rightarrow R[[t]]$ given by

$$
\odot\left(\sum_{i=0}^{\infty} a_{i} t^{i}, \sum_{j=0}^{\infty} b_{j} t^{j}\right)=\sum_{k=0}^{\infty} d_{k} t^{k}, \quad \text { where } \quad d_{k}=a_{k} b_{k} .
$$

[^3]For $f, g \in R[[t]]$ we will denote $\odot(f, g)$ by $f \odot g$. Given $\lambda_{1}, \ldots, \lambda_{d} \in R$, we use the notation $p_{i}:=\lambda_{1}^{i}+\cdots \lambda_{d}^{i}$ and we let

$$
C=\prod_{i=1}^{d}\left(1-\lambda_{i} t\right)=1-c_{1} t+c_{2} t^{2}+\cdots+(-1)^{d} c_{d}
$$

so that c_{i} is the i th symmetric polynomial, and p_{i} is the i th power polynomial of $\lambda_{1}, \ldots, \lambda_{d}$.
Lemma 6.1. Let $G(t)=a_{0}+a_{1} t+\cdots \in R[[t]]$. Then

$$
\sum_{i=1}^{d} G\left(\lambda_{i} t\right)=G \odot\left(d+p_{1} t+p_{2} t^{2}+\cdots\right)=d a_{0}+G \odot\left(-t C^{\prime} / C\right)
$$

Proof. The first equality follows from the definition of the p_{i}. For the second, note that $-t C^{\prime} / C$ is well defined because the polynomial C has a constant term of 1 . The equation $-t C^{\prime} / C=p_{1} t+p_{2} t^{2}+\cdots$ is obvious for $d=1$ (geometric series). For $d>1$, recall that logarithmic derivatives turn products into sums: $(C D)^{\prime} /(C D)=C^{\prime} / C+D^{\prime} / D$.

We now prove
Theorem 6.2. Let $\varphi: Y \rightarrow B$ be a Weierstrass fibration as in Table 1, and let $R(t)=$ $\ln (Q(t))$, where $Q(t)$ is the characteristic power series of the normalized Hirzebruch class given by (6.5). Then the generating function $\chi_{y}^{s t r}(Y ; t)$ is then given by

$$
\chi_{y}^{s t r}(Y ; t)=\mathcal{Q}_{Y}(t) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}(t)}{C(t)}\right)\right)
$$

where $\mathcal{Q}_{Y}(t)$ is as given in equation (6.6), and $C(t)=\sum_{i=0}^{\infty}(-1)^{i} c_{i} t^{i}$, where the c_{i} are formal variables representing the Chern classes of an arbitrary base B.

Proof. By definition, the generating series $\chi_{y}^{\operatorname{str}}(Y ; t)$ is given by

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=\sum_{d=1}^{\infty} \chi_{d} t^{d}
$$

where

$$
\chi_{d}=\left[t^{d}\right]\left(\mathcal{Q}_{Y}(t) \prod_{i=1}^{d} Q\left(\lambda_{i} t\right)\right)
$$

and the λ_{i} are elements in R representing the Chern roots of the tangent bundle of an unspecified base B of dimension d. Now let $R(t)=\ln (Q(t))$. Then

$$
\prod_{i=1}^{d} Q\left(\lambda_{i} t\right)=\exp \left(\sum_{i}^{d} R\left(\lambda_{i} t\right)\right)=\exp \left(R(t) \odot\left(\frac{-t C^{\prime}}{C}\right)\right),
$$

where the second equality follows from Lemma 6.1 along with the fact that the constant term a_{0} of $R(t)$ is given by $a_{0}=\ln (1)=0$. We then have

$$
\begin{equation*}
\chi_{d}=\left[t^{d}\right]\left(\mathcal{Q}_{Y}(t) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}}{C}\right)\right)\right) \tag{6.7}
\end{equation*}
$$

and the only way that the RHS of (6.7) depends on d is that the polynomial $C=\sum_{i}^{d}(-1)^{i} c_{i} t^{i}$ is of degree d. As such, replacing C in the RHS of (6.7) by the power series $C(t)=$
$\sum_{i=1}^{\infty}(-1)^{i} c_{i} t^{i}$ has no effect, since adding terms of higher degree greater than d will play no role in taking the d th coefficient. And moreover, replacing the polynomial C in the RHS of (6.7) by the power series $C(t)$ removes any dependence on the RHS of (6.7) on d, thus

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=\mathcal{Q}_{Y}(t) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}(t)}{C(t)}\right)\right)
$$

as desired.
An immediate corollary of Theorem 6.2 is then given by
Corollary 6.3. Let $\varphi: Y \rightarrow B$ be any of the Weierstrass fibrations as given un Table 1. Then under the notation and assumptions of Theorem 6.2, the power series $\chi_{-1}^{\text {str }}(Y ; t)$ is a generating series for the stringy Euler characteristic $\chi_{\text {str }}(Y)$ of Y, i.e., the coefficient of t^{d} in $\chi_{-1}^{s t r}(Y ; t)$ yields a formula for $\chi_{\operatorname{str}}(Y)$ over a base B of dimension d.

For an illustration of Theorem 6.2, consider the case when $\mathcal{G}_{Y}=\mathrm{SO}(6)$ as in Table 1. In such a case, we have $S=2 L$ so that $\mathcal{Q}_{Y}(l, s)=\mathcal{Q}_{Y}(l)\left(\right.$ recall $l=e^{(1+y) L}$ and $\left.s=e^{(1+y) S}\right)$, which is given by

$$
\mathcal{Q}_{Y}(l)=1-5 y+\frac{(y+1)((l+4) y-l)}{l^{2}+y}
$$

We then have

$$
\mathcal{Q}_{Y}(t)=1-5 y+\frac{(y+1)\left(\left(e^{t(1+y) L}+4\right) y-e^{t(1+y) L}\right)}{e^{2 t(1+y) L}+y}
$$

so that

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=\left(1-5 y+\frac{(y+1)\left(\left(e^{t(1+y) L}+4\right) y-e^{t(1+y) L}\right)}{e^{2 t(1+y) L}+y}\right) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}(t)}{C(t)}\right)\right)
$$

In particular, in the Calabi-Yau case (i.e., when $L=c_{1}$) we have

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots
$$

with

$$
\begin{gathered}
a_{1}=\left(y^{2}-10 y+1\right) c_{1}, \quad a_{2}=-6(y-1) c_{1}^{2} y \\
a_{3}=-1 / 12\left(48\left(y^{2}-4 y+1\right) c_{1}^{2} y-\left(y^{2}-10 y+1\right)^{2} c_{2}\right) c_{1}
\end{gathered}
$$

and

$$
a_{4}=-1 / 2(y-1)\left(y^{2}-10 y+1\right)\left(4 c_{1}^{3}+2 c_{1} c_{2}-c_{3}\right) c_{1} y
$$

where we recall c_{i} denotes the i th Chern class of the base $c_{i}(B)$. It then follows that the stringy Euler characteristic of Y is given by $12 c_{1},-12 c_{1}^{2}, 12 c_{1} c_{2}+24 c_{1}^{3}$, and $12\left(c_{1} c_{3}-2 c_{1}^{2} c_{2}-\right.$ $4 c_{1}^{4}$) over a base of dimension $1,2,3$ and 4 respectively.

For all other cases considered in Table 1, the coefficients of $\chi_{y}^{\operatorname{str}}(Y ; t)$ (for $L=c_{1}$) up to degree 6 are listed at www.math.fsu.edu/~hoeij/files/SHC/CalabiYau.

7. Stringy Hirzebruch-Riemann-Roch for $S U(2)$ fibrations

Let $\varphi: Y \rightarrow B$ be the $\mathrm{SU}(2)$ fibration as given in Table 1. We then have

$$
\mathcal{Q}_{Y}(l, s)=1-2 y+\frac{y+1}{y+s}\left(y+s l \frac{y^{2} s-\left(l^{4}+(s-1) l^{2}-s\right) y-l^{4}}{l^{6}+s^{2} y}\right),
$$

and the generating series $\chi_{y}^{\operatorname{str}}(Y ; t)$ in the Calabi-Yau case (i.e., when $L=c_{1}$) is given by

$$
\chi_{y}^{\operatorname{str}}(Y ; t)=a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots
$$

where

$$
a_{1}=\left(y^{2}-10 y+1\right) c_{1}, \quad a_{2}=3 y(1-y)\left(S^{2}-5 S c_{1}+10 c_{1}^{2}\right),
$$

and

$$
a_{3}=\left(y^{2}-4 y+1\right)\left(S^{3} y-14 S^{2} c_{1} y+49 S c_{1}^{2} y-60 c_{1}^{3} y\right)+1 / 12\left(y^{2}-10 y+1\right)^{2} c_{1} c_{2}
$$

We now derive relations for the stringy Hodge numbers $h_{\mathrm{str}}^{p, q}(Y)$ in the case that Y is a Calabi-Yau 4 -fold (so that the base is a 3 -fold). In such a case, it can be shown that $c_{1} c_{2}=24$ (for example, by Theorem A. 2 of [10]), so that a_{3} simplifies to

$$
a_{3}=\left(y^{2}-4 y+1\right)\left(S^{3} y-14 S^{2} c_{1} y+49 S c_{1}^{2} y-60 c_{1}^{3} y\right)+2\left(y^{2}-10 y+1\right)
$$

Writing a_{3} as a polynomial in Y we then have

$$
\begin{equation*}
a_{3}=\chi(y)=2+\chi_{1} y+\chi_{2} y^{2}+\chi_{3} y^{3}+2 y^{4}, \tag{7.1}
\end{equation*}
$$

where

$$
\chi_{1}=\chi_{3}=S^{3}+14 S^{2} c_{1}+49 S c_{1}^{2}-60 c_{1}^{3} \quad \text { and } \quad \chi_{2}=4 \chi_{1}+204
$$

The stringy Euler characteristic of Y is then given by

$$
\chi_{\mathrm{str}}(Y)=\chi(-1)=288+360 c_{1}^{3}+6\left(14 S^{2} c_{1}-S^{3}-49 S c_{1}^{2}\right) .
$$

Now let $\rho: \widetilde{Y} \rightarrow Y$ be the crepant resolution of Y given by the data in Table 2 (in fact, any crepant resolution will suffice for our purposes), and recall that the χ_{y}-genus of \widetilde{Y} is given by

$$
\chi_{y}(\widetilde{Y})=\int_{\tilde{Y}} T_{y}(\widetilde{Y})
$$

Now since

$$
\int_{\widetilde{Y}} T_{y}(\widetilde{Y})=\int_{Y} \varphi_{*}\left(T_{y}(\widetilde{Y})\right)=\chi_{y}^{\operatorname{str}}(Y),
$$

we have

$$
\begin{equation*}
\chi_{y}(\tilde{Y})=\chi(y) \tag{7.2}
\end{equation*}
$$

where $\chi(y)=\chi_{y}^{\operatorname{str}}(Y)$ is the stringy χ_{y}-genus of Y given by equation (7.1). From the definition of stringy Hodge numbers we then have $h_{\mathrm{str}}^{p, q}(Y)=h^{p, q}(\widetilde{Y})$, thus by equations (7.2) and (1.1) the coefficients χ_{i} of $\chi(y)$ yield linear relations among the stringy Hodge numbers of Y. In particular, we have $\chi_{0}=2$, reflecting the fact that $h_{\mathrm{str}}^{p, 0}(Y)=0$ for $0<p<4$ and $h_{\mathrm{str}}^{0,0}(Y)=h_{\mathrm{str}}^{4,0}(Y)=1$ (which follows from the fact that Y is Calabi-Yau). From the coefficients χ_{1} and χ_{2} we have the relations

$$
\chi_{1}=h_{\mathrm{str}}^{1,0}-h_{\mathrm{str}}^{1,1}+h_{\mathrm{str}}^{1,2}-h_{\mathrm{str}}^{1,3}
$$

and

$$
\chi_{2}=h_{\mathrm{str}}^{2,0}-h_{\mathrm{str}}^{2,1}+h_{20}^{2,2}-h_{\mathrm{str}}^{2,3}=h_{\mathrm{str}}^{2,2}-2 h_{\mathrm{str}}^{1,2}
$$

which yields

$$
h_{\mathrm{str}}^{1,3}=h_{\mathrm{str}}^{1,2}-\left(S^{3}+14 S^{2} c_{1}+49 S c_{1}^{2}-60 c_{1}^{3}\right)-h_{\mathrm{str}}^{1,1}
$$

and

$$
h_{\mathrm{str}}^{2,2}=2 h_{\mathrm{str}}^{1,2}+4\left(S^{3}+14 S^{2} c_{1}+49 S c_{1}^{2}-60 c_{1}^{3}\right)+204,
$$

where $h_{\mathrm{str}}^{p, q}$ denotes $h_{\mathrm{str}}^{p, q}(Y)$.
Remark 7.1. By the Shioda-Tate Wazir formula one can show that if $\psi: X \rightarrow B$ is a Calabi-Yau elliptic fibration then

$$
h^{1,1}(X)=h^{1,1}(B)+1+\operatorname{rk}(\operatorname{MW}(\psi))+\Gamma_{\psi},
$$

where $\operatorname{rk}(\operatorname{MW}(\psi))$ is the rank of the Mordell-Weil group of rational sections of $\psi: X \rightarrow B$ and Γ_{ψ} is the number of irreducible fibral divisors not meeting the distinguished section of $\psi: X \rightarrow B$. For $\psi: X \rightarrow B$ any of the crepant resolutions of Weierstrass fibrations considered in this paper we have $\operatorname{rk}(\operatorname{MW}(\psi))=0$ and $\Gamma_{\psi}=n$, where n is the number of blowups needed for the crepant resolution. For all Weierstrass fibrations $\varphi: Y \rightarrow B$ considered in this paper we then have

$$
h_{\mathrm{str}}^{1,1}(Y)=h^{1,1}(B)+1+n,
$$

where n is the number of blowups needed for the crepant resolution of Y. As such, in the case of 4-folds once one of $h_{\mathrm{str}}^{1,2}, h_{\mathrm{str}}^{1,3}$ or $h_{\mathrm{str}}^{2,2}$, is computed, the two remaining non-trivial stringy Hodge numbers may be determined by $\chi_{y}^{\mathrm{str}}(Y)$ via stringy Hirzebruch-Riemann-Roch.

8. Summary of results

Given a Weierstrass fibration $\varphi: Y \rightarrow B$ with gauge group \mathcal{G}_{Y} as in Table 1, we computed $\varphi_{*} T_{y}(Y)$, which in each case is given by

$$
\begin{equation*}
\varphi_{*} T_{y}^{\operatorname{str}}(Y)=\mathcal{Q}_{Y}(l, s) T_{y}(B) \tag{8.1}
\end{equation*}
$$

so that all the information coming from Y is contained in the term $\mathcal{Q}_{Y}(l, s)$, which is a rational expression in $l=e^{(1+y) L}$ and $s=e^{(1+y) S}$, where L is the first Chern class of the fundamental line bundle of Y and S is the divisor in B over which the singularities of Y are supported. ${ }^{4}$ From formula (8.1) one can then give a formula for the stringy χ_{y}-genus of Y in terms of invariants of the base B, namely

$$
\chi_{y}^{\operatorname{str}}(Y)=\int_{B} \mathcal{Q}_{Y}(l, s) T_{y}(B)
$$

In particular, if the base B is of dimension d, then

$$
T_{y}(B)=\prod_{i=1}^{d} Q\left(\lambda_{i}\right)
$$

where the λ_{i} are the Chern roots of the tangent bundle of B, and $Q(z)$ is the characteristic power series of the characteristic class T_{y} (see equation (6.5)). It then follows that the stringy χ_{y}-genus is given by

$$
\begin{equation*}
\chi_{y}^{\operatorname{str}}(Y)=\left[t^{d}\right]\left(\mathcal{Q}_{Y}\left(l^{\prime}, s^{\prime}\right) \prod_{i=1}^{d} Q\left(t \lambda_{i}\right)\right) \tag{8.2}
\end{equation*}
$$

[^4]where $l^{\prime}=e^{(1+y) t L}, s^{\prime}=e^{(1+y) t S}$, and we recall $\left[t^{d}\right]$ picks out the d th coefficient of a formal power series in t. From a relative perspective, that is, from a perspective independent of the dimension of the base, we then derived a generating series $\chi_{y}^{\operatorname{str}}(Y ; t)$, where the coefficient of t^{d} is precisely given by the RHS of (8.2). The generating series $\chi_{y}^{\operatorname{str}}(Y ; t)$ is then given by
$$
\chi_{y}^{\operatorname{str}}(Y ; t)=\mathcal{Q}_{Y}(t) \exp \left(R(t) \odot\left(\frac{-t C^{\prime}(t)}{C(t)}\right)\right)
$$
where $\mathcal{Q}_{Y}(t)=\mathcal{Q}_{Y}\left(l^{\prime}, s^{\prime}\right), R(t)=\ln (Q(t))$, and $C(t)=\sum_{i}(-1)^{i} c_{i} t^{i}$, so that the c_{i} s appearing in the coefficient of t^{d} in $\chi_{y}^{\text {str }}(Y ; t)$ represent the Chern classes of a base B of dimension d. Since all Y we consider admit crepant resolutions, the coefficient of t^{d} in $\chi_{y}^{\operatorname{str}}(Y ; t)$ is in fact a polynomial in y of the form
$$
\chi(y)=\chi_{0}+\chi_{1} y+\chi_{2} y^{2}+\cdots+\chi_{d+1} y^{d+1}
$$
which is in fact (near) palindromic, so that $(-y)^{d+1} \chi(1 / y)=\chi(y)$. The stringy Euler characteristic of Y over a base of dimension d is then given by $\chi_{\mathrm{str}}(Y)=\chi(-1)$, and moreover, the coefficient χ_{p} in $\chi(y)$ yields linear relations among the stringy Hodge numbers $h_{\mathrm{str}}^{p, q}(Y)$ for Y over a base of dimension d, namely
$$
\chi_{p}=\sum_{q}(-1)^{q} h_{\mathrm{str}}^{p, q}(Y) .
$$

We conclude by listing $\mathcal{Q}_{Y}(l, s)$ for each Y as listed in Table 1.
For $\mathcal{G}_{Y}=\mathrm{SU}(2)$,

$$
\mathcal{Q}_{Y}(l, s)=1-2 y+\frac{y+1}{y+s}\left(y+s l \frac{(y+1)\left(s y-l^{4}\right)-y(s-1) l^{2}}{l^{6}+s^{2} y}\right)
$$

For $\mathcal{G}_{Y}=\operatorname{SU}(3), \operatorname{USp}(4)$ and G_{2},

$$
\mathcal{Q}_{Y}(l, s)=1-3 y+\frac{y+1}{y+s}\left(2 y+s l \frac{(y+1)\left(s^{2} y-l^{4}\right)-y(s-1) l\left(l^{2}+s\right)}{l^{6}+s^{3} y}\right) .
$$

For $\mathcal{G}_{Y}=\operatorname{SU}(4), \operatorname{Spin}(7)$,

$$
\mathcal{Q}_{Y}(l, s)=1-4 y+\frac{y+1}{y+s}\left(3 y+s l \frac{(y+1)\left(s^{5} y^{2}-l^{8}\right)-y(s-1) l(s+l)\left(l^{5}+s^{3} y\right)}{\left(l^{6}+s^{4} y\right)\left(l^{4}+s^{2} y\right)}\right) .
$$

For $\mathcal{G}_{Y}=\operatorname{SU}(5), \mathcal{Q}_{Y}(l, s)=$
$1-6 y+\frac{y+1}{y+s}\left(5 y+\frac{y(s-1)\left(l^{7}+s^{5} y\right)+s l(y+1)\left(s^{4} y^{2}-l^{5}-s l y(l-1)\left(l^{2}+s l+s^{2}\right)\right)}{(l+y)\left(l^{6}+s^{5} y\right)}\right)$.

For the $\mathrm{SO}(3), \mathrm{SO}(5)$ and $\mathrm{SO}(6)$ cases we have $S=4 L, 2 L$ and $2 L$ respectively, so that $\mathcal{Q}_{Y}(l, s)=\mathcal{Q}_{Y}(l)$. As such, for $\mathcal{G}_{Y}=\mathrm{SO}(3)$,

$$
\mathcal{Q}_{Y}(l)=1-2 y+(y+1) \frac{(1+l) y-l^{3}}{l^{4}+y}
$$

for $\mathcal{G}_{Y}=\mathrm{SO}(5)$,

$$
\mathcal{Q}_{Y}(l)=1-3 y+(y+1) \frac{(2-l) y-l}{l^{2}+y}+\frac{2 y l(y+1)^{2}}{\left(l^{2}+y\right)^{2}},
$$

and for $\mathcal{G}_{Y}=\operatorname{SO}(6)$,

$$
\mathcal{Q}_{Y}(l)=1-5 y+(y+1) \frac{(4+l) y-l}{l^{2}+y} .
$$

For $\mathcal{G}_{Y}=F_{4}$,

$$
\mathcal{Q}_{Y}(l, s)=1-5 y+\frac{y+1}{y+s}\left(4 y+s l \frac{(y+1)\left(s^{3} y-l^{4}\right)-2 y(s-1) l^{2} s}{l^{6}+s^{4} y}\right)
$$

For $\mathcal{G}_{Y}=E_{6}$,

$$
\mathcal{Q}_{Y}(l, s)=1-8 y+\frac{y+1}{y+s}\left(7 y+\frac{y(s-1)\left(l^{9}+s^{7} y\right)+s l(y+1)\left(s^{3} y-l^{4}\right)\left(l^{3}+s^{3} y\right)}{\left(l^{3}+s^{2} y\right)\left(l^{6}+s^{5} y\right)}\right) .
$$

For $\mathcal{G}_{Y}=E_{7}$,

$$
\mathcal{Q}_{Y}(l, s)=1-9 y+\frac{y+1}{y+s}\left(8 y+\frac{y(s-1)\left(l^{10}+s^{8} y\right)+s l(y+1)\left(s^{7} y^{2}-l^{8}\right)}{\left(l^{4}+s^{3} y\right)\left(l^{6}+s^{5} y\right)}\right)
$$

And finally, for $\mathcal{G}_{Y}=E_{8}$,

$$
\mathcal{Q}_{Y}(l, s)=1-11 y+\frac{y+1}{y+s}\left(10 y+\frac{y(s-1)\left(l^{6}+s^{5}\right)+s l(y+1)\left(s^{4} y-l^{4}\right)}{l^{6}+s^{5} y}\right) .
$$

References

[1] Paolo Aluffi. Modification systems and integration in their Chow groups. Selecta Math. (N.S.), 11(2):155-202, 2005.
[2] Paolo Aluffi. Chern classes of blow-ups. Math. Proc. Cambridge Philos. Soc., 148(2):227-242, 2010.
[3] Paolo Aluffi and Mboyo Esole. Chern class identities from tadpole matching in type IIB and F-theory. J. High Energy Phys., (3):032, 29, 2009.
[4] Paolo Aluffi and Mboyo Esole. New orientifold weak coupling limits in F-theory. J. High Energy Phys., (2):020, i, 52, 2010.
[5] Victor V. Batyrev. Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pages 1-32. World Sci. Publ., River Edge, NJ, 1998.
[6] M. Bershadsky, K. Intriligator, S. Kachru, D. R. Morrison, V. Sadov, and C. Vafa. Geometric singularities and enhanced gauge symmetries. Nuclear Phys. B, 481(1-2):215-252, 1996.
[7] Jean-Paul Brasselet, Jörg Schürmann, and Shoji Yokura. Hirzebruch classes and motivic Chern classes for singular spaces. J. Topol. Anal., 2(1):1-55, 2010.
[8] Tommaso de Fernex, Ernesto Lupercio, Thomas Nevins, and Bernardo Uribe. Stringy Chern classes of singular varieties. Adv. Math., 208(2):597-621, 2007.
[9] Jan Denef and François Loeser. Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math., 135(1):201-232, 1999.
[10] Mboyo Esole, James Fullwood, and Shing-Tung Yau. D_{5} elliptic fibrations: non-Kodaira fibers and new orientifold limits of F-theory. Commun. Number Theory Phys., 9(3):583-642, 2015.
[11] Mboyo Esole, Patrick Jefferson, and Monica Jinwoo Kang. Euler Characteristics of Crepant Resolutions of Weierstrass Models. arXiv:1703.00905, 2017.
[12] Mboyo Esole and Shing-Tung Yau. Small resolutions of SU(5)-models in F-theory. Adv. Theor. Math. Phys., 17(6):1195-1253, 2013.
[13] James Fullwood. On generalized Sethi-Vafa-Witten formulas. J. Math. Phys., 52(8):082304, $10,2011$.
[14] James Fullwood and Martin Helmer. On the Euler characteristic of a relative hypersurface. arXiv:1603.03553, 2017.
[15] James Fullwood and Mark van Hoeij. On stringy invariants of GUT vacua. Commun. Number Theory Phys., 7(4):551-579, 2013.
[16] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, second edition, 1998.
[17] Antonella Grassi and David R. Morrison. Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds. J. Algebraic Geom., 12(2):321-356, 2003.
[18] Sheldon Katz, David R. Morrison, Sakura Schäfer-Nameki, and James Sully. Tate's algorithm and Ftheory. J. High Energy Phys., (8):094, 28, 2011.
[19] A. Klemm, B. Lian, S.-S. Roan, and S.-T. Yau. Calabi-Yau four-folds for M- and F-theory compactifications. Nuclear Phys. B, 518(3):515-574, 1998.
[20] Craig Lawrie and Sakura Schäfer-Nameki. The Tate form on steroids: resolution and higher codimension fibers. J. High Energy Phys., (4):061, front matter+65, 2013.
[21] S. Sethi, C. Vafa, and E. Witten. Constraints on low-dimensional string compactifications. Nuclear Phys. B, 480(1-2):213-224, 1996.
[22] J. Tate. Algorithm for determining the type of a singular fiber in an elliptic pencil. pages 33-52. Lecture Notes in Math., Vol. 476, 1975.
[23] Cumrun Vafa. Evidence for F-theory. Nuclear Phys. B, 469(3):403-415, 1996.
School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China

E-mail address: fullwood@maths.hku.hk
Mathematics Department, Florida State University, Tallahassee, FL 32306, U.S.A.
E-mail address: hoeij@math.fsu.edu

[^0]: * supported by NSF grant 1618657.

[^1]: ${ }^{1}$ The map $\rho_{*}: A_{*} Z \rightarrow A_{*} X$ is the proper pushforward associated with the map $\rho: Z \rightarrow X$. Moreover, by $\mathfrak{C}\left(D_{J}\right)$ in (2.1) we really mean $i_{J *} \mathfrak{C}\left(D_{J}\right)$, where i_{J} denotes the inclusion $i_{J}: D_{J} \hookrightarrow Y$. Also, if $\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)=1$, replace $\prod_{j \in J} \frac{\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)-\left(\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)\right)^{a_{j}+1}}{\left(\int_{\mathbb{A}^{1}} \mathfrak{C}\left(\mathbb{A}^{1}\right)\right)^{a_{j}+1}-1}$ by $\prod_{j \in J} \frac{-a_{j}}{a_{j}+1}=\lim _{t \rightarrow 1} \frac{t-t^{a_{j}+1}}{t^{a_{j}+1}-1}$ in (2.1).

[^2]: ${ }^{2}$ The RHS of formula (3.2) still makes sense when the bundle \mathcal{N} doesn't exist, since one can first cap classes with $\mathfrak{C}\left(\mathscr{O}\left(E_{q}\right)\right)$ which yields classes supported on subvarieties of E_{q}, and then instead of capping with $\mathfrak{C}\left(p^{*} \mathcal{N}\right) \mathfrak{C}\left(p^{*} \mathcal{Q} \otimes \mathscr{O}\left(-E_{q}\right)\right)$ one can then cap with with $\mathfrak{C}\left(r^{*} N_{X} Z\right) \mathfrak{C}\left(r^{*} Q \otimes \mathscr{O}\left(-\left.E_{q}\right|_{E_{q}}\right)\right)$, where $r=\left.q\right|_{E_{q}}$: $E_{q} \rightarrow X$ and $Q=\left.\mathscr{E}\right|_{X} / N_{X} Z$.

[^3]: ${ }^{3}$ A Maple implementation for computing π_{*} may be found under the program name 'PiStar' in www.math.fsu.edu/~hoeij/files/SHC/MapleCode

[^4]: ${ }^{4}$ All computer calculations in this paper were performed with Maple, and all files relevant to our computations can be found at www.math.fsu.edu/~hoeij/files/SHC

