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Recurrence operators with rational function coefficients

Let ai (n) ∈ Q(n) be rational functions in n.

Recurrence relation:

ak(n)u(n + k) + · · ·+ a1(n)u(n + 1) + a0(n)u(n) = 0.

Solutions u(n) are viewed as functions on subsets of C.

Recurrence operator: write the recurrence relation as L(u) = 0
where

L = akτ
k + · · ·+ a0τ

0 ∈ Q(n)[τ ]

Here τ is the shift operator. It sends u(n) to u(n + 1).

Recurrence relations come from many sources:

Zeilberger’s algorithm, walks, QFT computations, OEIS, etc.
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Goal: factoring recurrence operators

Factoring: if possible, write L as a composition L1 ◦ L2 of lower
order operators.

Computing first order right-factors:

Same as computing hypergeometric solutions, there are
algorithms (Petkovšek 1992, vH 1999) and implementations.

Goal: compute right-factors of order d > 1.

Method 1: Hypergeometric solutions of a system of order

(
k
d

)
.

Method 2: Construct factors from special solutions.
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Example: Entry A025184 in OEIS

L(u) = 33n(3n − 1)(3n − 2)u(n)
+11(2047n3 − 10725n2 + 17192n − 8520)u(n − 1)
−9(4397n3 + 10169n2 − 110500n + 145368)u(n − 2)
−54(2n − 5)(5353n2 − 33313n + 53904)u(n − 3)
−115668(n − 4)(2n − 5)(2n − 7)u(n − 4) = 0.

L ∈ Q(n)[τ−1] has order 4 and n-degree 3.

Our implementation finds a right-hand factor R where R(u) =

3n(3n − 1)(3n − 2)(221n2 − 723n + 574)u(n)
−2(2n−1)(7735n4−33040n3 + 48239n2−27998n+ 5280)u(n−1)

−36(n − 2)(2n − 1)(2n − 3)(221n2 − 281n + 72)u(n − 2)

R order 2 but n-degree 5 which is more than L !

(Explanation: R has 3 true and 2 apparent singularities).
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Gauss’ lemma does not hold for Q[n][τ ] ⊂ Q(n)[τ ]

Gauss’ lemma does not hold for difference operators:

1 Reducible operators in Q(n)[τ ] are often irreducible in Q[n][τ ].

2 L can have a right-factor R with higher n-degree than L
(after clearing denominators).

This means:

1 It is not enough to factor in the τ -Weyl algebra Q[n][τ ].

2 Bounding n-degrees of right-factors is non-trivial.
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Method 1: Reduce order-d factors to order-1 factors

Beke (1894) gave a method to reduce:

order-d factors of a differential operator of order k

to

order-1 factors of several operators of order

(
k
d

)
.

Bronstein (ISSAC’1994) gave significant improvements:

1 Use only one system of order

(
k
d

)
(instead of several operators of that order, whose factors had
to be combined with a potentially costly computation)

2 This system has much smaller coefficients, which improves
performance as well.

Beke 1894 / Bronstein 1994 works for recurrence operators as well.
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Method 1: Reduce to order 1

Let D := Q(n)[τ ].
Let L ∈ D have order k .
Suppose L has a right-factor R of order d .

Consider the D-modules

ML := D/DL and MR := D/DR

and homomorphism:

φ :
d∧
ML →

d∧
MR

Over Q(n) :

dim

(
d∧
ML

)
=

(
k
d

)
and dim

(
d∧
MR

)
=

(
d
d

)
= 1

Hence:

φ  a hypergeometric solution of the system for
∧d ML
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System for
∧d ML : Example with k = 4 and d = 2.

Let L = τ4 + a3τ
3 + a2τ

2 + a1τ + a0 and ML := D/DL.

Action of τ on basis of
∧2ML is:

b1 := τ0 ∧ τ1 7→ τ1 ∧ τ2 = b4
b2 := τ0 ∧ τ2 7→ τ1 ∧ τ3 = b5
b3 := τ0 ∧ τ3 7→ τ1 ∧ τ4 = a0b1 − a2b4 − a3b5
b4 := τ1 ∧ τ2 7→ τ2 ∧ τ3 = b6
b5 := τ1 ∧ τ3 7→ τ2 ∧ τ4 = a0b2 + a1b4 − a3b6
b6 := τ2 ∧ τ3 7→ τ3 ∧ τ4 = a0b3 + a1b5 + a2b6

(τ4 = −a0τ0 − a1τ
1 − a2τ

2 − a3τ
3 in ML)

System: AY = τ(Y ) where A =



0 0 a0 0 0 0
0 0 0 0 a0 0
0 0 0 0 0 a0
1 0 −a2 0 a1 0
0 1 −a3 0 0 a1
0 0 0 1 −a3 a2
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Hypergeometric solutions of systems

Suppose L has order k and a right-factor R of order d .

Let N =

(
k
d

)
and A the N × N matrix as in the previous slide.

Then
AY = τ(Y )

must have a hypergeometric solution:

Y = λ

 P1
...

PN

 with Pi ∈ Q[n] and r :=
τ(λ)

λ
∈ Q(n)

Bronstein found (similar to Petkovšek’s algorithm) that one can
write r = c a

b with c ∈ Q∗ and a, b ∈ Q[n] monic with:

b |denom(A) and a |denom(A−1)

 almost an algorithm (still need c)
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Algorithms

Computing c , improvements, implementation: Barkatou + vH.

More work in progress: Barkatou + vH + Middeke + Schneider.

If L has high order then AY = τ(Y ) has high dimension N =

(
k
d

)
.

There is a faster method that works remarkably often even though
it is not proved to work.
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Another way to factor

LLL algorithm to factor L ∈ Q[x ] in polynomial time:

1 Compute a p-adic solution α of L.

2 Find M ∈ Z[x ] of lower degree with M(α) = 0 if it exists.

3 If no such M exists, then L is irreducible, otherwise gcd(L,M)
is a non-trivial factor.

In order for this to work for L ∈ Q(n)[τ ], the solution in Step 1
must meet this requirement:

Definition

A solution u of L is order-special if it satisfies an operator M of
lower order.

Unlike the polynomial case, most solutions of most reducible
operators are not order-special.
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Factoring with a special solution

If L is reducible and u is order-special then write:

R :=
k−1∑
i=0

Degree bound∑
j=0

cij n
j

 τ i

Then
R(u) = 0  equations for cij  R

We need:

1 Special solutions

2 Degree bound

(How to bound the number of apparent singularities?).
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Example: Special solutions

L(u) = 33n(3n − 1)(3n − 2)u(n)
+ · · ·
−115668(n − 4)(2n − 5)(2n − 7)u(n − 4) = 0.

L(u) = 0 determines u(n) in terms of u(n − 1), . . . , u(n − 4)
except if n is a root of the leading coefficient.

Take q ∈ {0, 13 ,
2
3}. Define u : q + Z→ C with:

L(u) = 0, u(n) = 0 for all n < q, u(q) = 1.

Then u is called a leading-special solution. Likewise:

Roots of the trailing coefficient  trailing-special solutions.

(Leading/trailing)-special solutions are frequently order-special !
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Leading/trailing vs order special solutions

(Leading/trailing)-special solutions are frequently order-special.

We can only explain that for certain cases:

Suppose L is a Least-Common-Left-Multiple of L1 and L2.

Suppose L1 and L2 do not have the same valuation growths at
some q + Z for some q ∈ C.

Then a (leading/trailing)-special solution2 is order-special.

Valuation-growth: the valuation (root/pole order) at q + large n
minus the valuation at q − large n.

2of L or its desingularization
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Degree bound (with Yi Zhou)

Due to apparent singularities, a right-factor R of L can have higher
n-degree than L.

A bound can be computed from generalized exponents.

Generalized exponents ≈ asymptotic behavior of solutions.

Example: L = τ − r with r = 7n3(1 + 8n−1 + · · · n−2 + · · · ).
The dominant part of r is e = 7n3(1 + 8n−1).
This e encodes the dominant part of the solution

u(n) = 7n Γ(n)3 n8 (1 + · · · n−1 + · · · n−2 + · · · )

Definition

Let e = c · nv · (1 + c1n
−1/r + c2n

−2/r + · · ·+ crn
−1).

Then e is called a generalized exponent of L if:

The operator obtained by dividing solutions of L by Sol(τ − e)
has an indicial equation with 0 as a root.
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Degree bound (with Yi Zhou)

Let R = rdτ
d + · · ·+ r0τ

0 be a right-factor of L in Q(n)[τ ].

det(R) := (−1)d
r0
rd
∈ Q(n)

= c nv (1 + c1n
−1 + c2n

−2 + · · · ) ∈ Q((n−1))

Dominant part:

dom(det(R)) = c nv (1 + c1n
−1)

c1 = number of apparent singularities of R (with multiplicity)
+ a term that comes from {true singularities of R}

⊆ {true singularities of L}

{gen. exp. of L} ⊇ {gen. exp. of R}  dom(det(R))  c1

 bound(number apparent singularities)  degree bound
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Irreducibility proof

Except for special cases, method 2 does not prove that the factors
it finds are irreducible.

Suppose L is not factored by method 2.

Idea:

Gen. exponents  finite set of potential dom(det(R))

p-curvature  conditions mod p for dom(det(R))

Incompatible?  L is irreducible.

Overview:

1 Factor with method 2.

2 Apply the above idea to the factors.

3 Any factor not proved irreducible: fall back on method 1.
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