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Recurrence operators with rational function coefficients

Let a;(n) € Q(n) be rational functions in n.
Recurrence relation:

ax(mu(n+ k) +---+ai(n)u(n+ 1) + ag(n)u(n) = 0.
Solutions u(n) are viewed as functions on subsets of C.
Recurrence operator: write the recurrence relation as L(u) =0

where
L=axm™+ -+ apm® € Q(n)[7]

Here 7 is the shift operator. It sends u(n) to u(n+ 1).

Recurrence relations come from many sources:

Zeilberger's algorithm, walks, QFT computations, OEIS, etc.
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Goal: factoring recurrence operators

Factoring: if possible, write L as a composition L o Ly of lower
order operators.

Computing first order right-factors:

Same as computing hypergeometric solutions, there are
algorithms (Petkovdek 1992, vH 1999) and implementations.

Goal: compute right-factors of order d > 1.
. . k
Method 1: Hypergeometric solutions of a system of order d)

Method 2: Construct factors from special solutions.



Example: Entry A025184 in OEIS

L(u) =33n(3n—1)(3n — 2)u(n)
+11(2047n3 — 1072502 4- 171920 — 8520)u(n — 1)
—9(4397n% + 1016902 — 110500n + 145368)u(n — 2)
—54(2n — 5)(5353n% — 33313n + 53904)u(n — 3)
—115668(n — 4)(2n — 5)(2n — 7)u(n — 4) = 0.

L € Q(n)[r~1] has order 4 and n-degree 3.
Our implementation finds a right-hand factor R where R(u) =

3n(3n —1)(3n — 2)(221n? — 723n + 574)u(n)
—2(2n—1)(7735n* —33040n3 +48239n2 — 27998n +5280) u(n —1)
—36(n —2)(2n — 1)(2n — 3)(221n? — 281n + 72)u(n — 2)
R order 2 but n-degree 5 which is more than L!

(Explanation: R has 3 true and 2 apparent singularities).



Gauss' lemma does not hold for Q[n][r] € Q(n)[7]

Gauss’' lemma does not hold for difference operators:

© Reducible operators in Q(n)[7] are often irreducible in Q[n][7].

@ L can have a right-factor R with higher n-degree than L
(after clearing denominators).

This means:

@ It is not enough to factor in the 7-Weyl algebra Q[n][7].
@ Bounding n-degrees of right-factors is non-trivial.



Method 1: Reduce order-d factors to order-1 factors

Beke (1894) gave a method to reduce:

@ order-d factors of a differential operator of order k
to P
@ order-1 factors of several operators of order <d>

Bronstein (ISSAC'1994) gave significant improvements:

@ Use only one system of order <Z>

(instead of several operators of that order, whose factors had
to be combined with a potentially costly computation)

@ This system has much smaller coefficients, which improves
performance as well.

Beke 1894 / Bronstein 1994 works for recurrence operators as well.
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Method 1: Reduce to order 1

Let D := Q(n)[7].
Let L € D have order k.
Suppose L has a right-factor R of order d.

Consider the D-modules
M, :=D/DL and Mg :=D/DR

and homomorphism:

¢: ANM. - A\ Mg

Over Q(n):

o )= =5 ) ) -

Hence:

¢ ~- a hypergeometric solution of the system for /\d M,



System for /\d M, : Example with k =4 and d = 2.

Let L = 7% + a373 4 272 + a17 + ag and M, := D/DL.

Action of 7 on basis of A2 M is:

by =70 ATt TLAT? = by
by =79 N 72 AT = bs
by =719 AT3 IATh =

USSR

by =7t A T2 2 AT3 = bg
bs =711 A T3 AT =
bg := 7> N T3 AT =
(7-4 = —aoTO — alTl — 227'2 — 337'3 in ML)

System: AY = 7(Y) where A =

OO+~ O OO

O OO OO

ao
0
0

—a

s
0

= O OO OO

aob1 — 32b4 — 33b5

agby + a1bs — asbg
agbs + a1 bs + axbg

0 0
ao 0
0 a0
dl 0
0 al

—az az



Hypergeometric solutions of systems

Suppose L has order k and a right-factor R of order d.
Let N = (5) and A the N x N matrix as in the previous slide.

Then
AY =7(Y)

must have a hypergeometric solution:

P1
Y=X]| : with P; € Q[n] and r:= Y € Q(n)
Pn

Bronstein found (similar to Petkoviek's algorithm) that one can
write r = ¢ with ¢ € Q" and a, b € Q[n] monic with:

b|denom(A) and a|denom(A™!)

~~ almost an algorithm (still need c)



Algorithms

Computing ¢, improvements, implementation: Barkatou + vH.

More work in progress: Barkatou + vH + Middeke + Schneider.

If L has high order then AY = 7(Y) has high dimension N = <Z)

There is a faster method that works remarkably often even though
it is not proved to work.
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Another way to factor

LLL algorithm to factor L € Q[x] in polynomial time:
@ Compute a p-adic solution « of L.
@ Find M € Z[x] of lower degree with M(«a) = 0 if it exists.

@ If no such M exists, then L is irreducible, otherwise ged(L, M)
is a non-trivial factor.

In order for this to work for L € Q(n)[r], the solution in Step 1
must meet this requirement:

Definition

A solution u of L is order-special if it satisfies an operator M of
lower order.

Unlike the polynomial case, most solutions of most reducible
operators are not order-special.
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Factoring with a special solution

If Lis reducible and u is order-special then write:

k—1 [ Degreebound

R::Z Z C,Jn’ !

i=0 j=0

Then
R(u)=0 ~» equations for ¢;j ~ R

We need:

© Special solutions
@ Degree bound
(How to bound the number of apparent singularities?).
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Example: Special solutions

L(u) =33n(3n —1)(3n —2)u(n)
—115668(n — 4)(2n — 5)(2n — 7)u(n — 4) = 0.

L(u) = 0 determines u(n) in terms of u(n—1),...,u(n—4)
except if nis a root of the leading coefficient.

Take g € {0, %, %} Define u: g + Z — C with:
L(u) =0, u(n) =0 for all n < gq, u(gq) =1.

Then u is called a leading-special solution. Likewise:

Roots of the trailing coefficient ~» trailing-special solutions.

(Leading/trailing)-special solutions are frequently order-special !
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Leading/trailing vs order special solutions

(Leading/trailing)-special solutions are frequently order-special.
We can only explain that for certain cases:
Suppose L is a Least-Common-Left-Multiple of L; and L.

Suppose L and Ly do not have the same valuation growths at
some q + Z for some q € C.

Then a (leading/trailing)-special solution? is order-special.

Valuation-growth: the valuation (root/pole order) at g + large n
minus the valuation at g — large n.

2of L or its desingularization
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Degree bound (with Yi Zhou)

Due to apparent singularities, a right-factor R of L can have higher
n-degree than L.

A bound can be computed from generalized exponents.
Generalized exponents = asymptotic behavior of solutions.

Example: L =7 —rwith r=7n%(1+8n"14+---n724...),
The dominant part of ris e = 7n3(1 + 8n~1).
This e encodes the dominant part of the solution

u(n)=7"T(n)*nf (14 n 1+ .n24...)

Definition

lete=c-n"-(14+an " +on 2" +...4cn).
Then e is called a generalized exponent of L if:

The operator obtained by dividing solutions of L by Sol(T — e)
has an indicial equation with 0 as a root.
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Degree bound (with Yi Zhou)

Let R = rg7¥ +--- + ro7° be a right-factor of L in Q(n)[r].

det(R) = (—1)6’% € Q(n)

= cn'(l+ant+an?+---)eQ((n))
Dominant part:

dom(det(R)) = cn*(1+ cinh)

c1 = number of apparent singularities of R (with multiplicity)
+ a term that comes from {true singularities of R}
C {true singularities of L}

{gen. exp. of L} DO {gen. exp. of R} ~» dom(det(R)) ~ c

~> bound(number apparent singularities) ~» degree bound
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Irreducibility proof

Except for special cases, method 2 does not prove that the factors
it finds are irreducible.

Suppose L is not factored by method 2.

Idea:
@ Gen. exponents ~- finite set of potential dom(det(R))
@ p-curvature ~» conditions mod p for dom(det(R))

@ Incompatible? ~» L is irreducible.

Overview:
@ Factor with method 2.
@ Apply the above idea to the factors.
© Any factor not proved irreducible: fall back on method 1.
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