
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ALGORITHMS FOR FACTORING LINEAR RECURRENCE OPERATORS

By

YI ZHOU

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

2022

Copyright c© 2022 Yi Zhou. All Rights Reserved.

Yi Zhou defended this dissertation on April 8, 2022.

The members of the supervisory committee were:

Mark van Hoeij

Professor Directing Dissertation

Philip Sura

University Representative

Ettore Aldrovandi

Committee Member

Paolo Aluffi

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies

that the dissertation has been approved in accordance with university requirements.

ii

ACKNOWLEDGMENTS

Foremost, I am extremely grateful to Prof. van Hoeij for his truly tireless effort and guidance

throughout this project. I greatly benefited from his knowledge and insights.

I deeply appreciate all professors who taught me at FSU, especially Dr. Aluffi and Dr. Al-

drovandi for their helpful feedback on the dissertation. Special thanks to Dr. Kirby for her profes-

sional advice on teaching and Dr. Sura for serving in my committee.

Thanks to the friends I made at FSU during my PhD for a lot of fun times and beneficial

discussions.

Finally, I wish to thank my grandparents, my parents, my cousin and my wife for their support

and encouragement.

iii

TABLE OF CONTENTS

Abstract . vii

1 Introduction 1

1.1 Linear Recurrence Operators . 1

1.2 The Factorization Problem . 2

2 Preliminaries 3

2.1 Difference Rings . 3

2.2 Difference Operators . 4

2.3 Difference Modules . 6

2.4 Solutions of Difference Operators . 6

3 Desingularization and p-Curvature 8

3.1 Introduction . 8

3.2 Preliminaries . 8

3.2.1 Desingularization . 8

3.2.2 LCLM method for desingularization . 10

3.2.3 The p-characteristic polynomial . 11

3.2.4 BCS algorithm and Pagès’ algorithm . 13

3.3 Main Theorem and Corollaries . 13

3.4 Proof of the Main Theorem . 14

3.4.1 Special case, Gaussian operators . 14

3.4.2 Proof for the general case . 16

3.5 Application to Computations . 18

3.5.1 Algorithm . 18

3.5.2 Implementation and timings . 19

3.6 Fast Algorithms for Desingularization at Order 1 . 19

3.6.1 First algorithm . 19

3.6.2 Proof . 20

3.6.3 Desingularizing both leading and trailing coefficients 22

3.6.4 Examples and comparisons . 22

3.7 Future Work . 23

iv

3.7.1 Application to Pagès’ algorithm . 23

3.7.2 Differential case . 23

4 Hypergeometric Solutions of Difference Systems 24

4.1 Introduction . 24

4.2 Hypergeometric Solutions . 26

4.3 Algorithm Version I . 26

4.3.1 Step BP1 . 27

4.3.2 Step BP2: generalized exponents . 29

4.3.3 Step BP3 . 33

4.4 Algorithm Version II . 34

4.4.1 Type and local types . 34

4.4.2 The algorithm . 35

4.4.3 Discussion . 36

4.5 Algorithm Version III . 37

4.6 Application: Beke-Bronstein Algorithm . 39

4.6.1 Polynomial case . 39

4.6.2 Difference case . 41

5 Heuristic Factorizer 44

5.1 Heuristic Factorizer . 44

5.1.1 Sequences and extension . 45

5.1.2 Constructing solutions . 46

5.2 Valuation Growths . 47

5.2.1 Germs of sequences . 47

5.2.2 Shift singularities and valuation growths . 48

6 Degree Bound of Factors 53

6.1 Generalized Exponents . 53

6.1.1 Indicial equations . 53

6.1.2 A class of automorphisms . 55

6.1.3 Multisets . 56

6.1.4 Generalized exponents . 57

6.1.5 Generalized exponents and solutions . 57

6.2 Generalized Exponents and Determinant . 60

v

6.3 Determinant and Degree Bound for Leading Coefficient 62

6.4 The Algorithm and an Example . 65

6.5 Bounding Other Coefficients . 67

Bibliography . 69

Biographical Sketch . 71

vi

ABSTRACT

In this thesis we develop a few algorithms that are useful for factoring linear recurrence operators.

We approach the factorization problem from three directions.

First, considering reduction modulo a prime leads to the study of recurrence operators in positive

characteristic in Chapter 3, where we prove an unexpected relation between the singularities and

the p-curvature. The result suggests desingularization accelerates the algorithm for computing the

characteristic polynomial of the p-curvature. Useful information about factorization of a recurrence

operator can be obtained by factoring the characteristic polynomial of its p-curvature. In particular,

the irreducibility of the characteristic polynomial implies that of the operator.

The second strategy is to imitate the Beke-Bronstein algorithm for factoring differential opera-

tors. This requires solving recurrence systems for hypergeometric solutions, which can be done by

a generalization of Petkovšek’s algorithm. We work out the details in Chapter 4 and add several

improvements, such as minimizing the number of candidates that the algorithm needs to consider.

Third, we consider solutions of recurrence operators. Some solutions of an operator are also

solutions of a proper factor but most are not, even when the operator is reducible. We present an

heuristic algorithm for constructing certain sequence solutions that likely lead to non-trivial factors

in Chapter 5. This method raises the question of how to find the operator with the minimal order

that a solution satisfies, which is solved in Chapter 6 by bounding degrees of factors.

vii

CHAPTER 1

INTRODUCTION

1.1 Linear Recurrence Operators

A homogeneous linear recurrence equation, or recurrence equation for short, is an equation about

a function f(x) in the form

an(x)f(x+ n) + an−1(x)f(x+ n− 1) + · · ·+ a0(x)f(x) = 0. (1.1)

Many common functions that naturally arise in combinatorics and physics are solutions of linear

recurrence equations. Among those functions, sequences are a strong motivation to study recurrence

equations.

Example 1 (Fibonacci sequence). The well-known Fibonacci sequence is defined by the recurrence

equation

f(x+ 2)− f(x+ 1)− f(x) = 0

and the initial values

f(0) = 0, f(1) = 1.

N

A number of sequences that satisfy a linear recurrence equation can be found at the On-Line

Encyclopedia of Integer Sequences (abbr. OEIS, [14]).

Example 2 (OEIS A002777, [11]). The entry A002777 on OEIS satisfies the following relation when

x > 7:

(3x2 − 17x+ 23)a(x)− (3x2 − 17x+ 21)a(x− 1) + (3x4 − 23x3 + 63x2 − 74x+ 34)a(x− 2)

− 4(x− 3)(x− 2)a(x− 3) + 2(x− 4)(x− 3)(3x2 − 11x+ 9)a(x− 4) = 0.

N

Introduce the shift operator τ , which acts on a function by

τ(f(x)) = f(x+ 1).

1

Then (1.1) can be written as

L(f) = 0,

where L =
∑n

i=0 aiτ
i. Call L a linear recurrence operator, or recurrence operator for short. The

collection of recurrence operators with coefficients from a field K is denoted by K[τ]. Equipped

with the addition and multiplication (composition) of operators, K[τ] is a ring. In particular, the

multiplication (composition) is ruled by

τ · a(x) = a(x+ 1)τ,

and hence is non-commutative. For an operator L =
∑n

i=m aiτ
i ∈ K[τ] where aman 6= 0, denote

ord(L) = n −m and call it the order of L. It is easy to verify that ord(L1L2) = ord(L1) ord(L2).

An operator L2 ∈ K[τ] is called a right-hand factor of L if L = L1L2 for some L1 ∈ K[τ]. We say

the factor L2 is non-trivial if 0 < ord(L2) < ord(L).

1.2 The Factorization Problem

The objective of this thesis is to develop algorithms that are useful for factoring recurrence

operators, or in other words, computing non-trivial right-hand factors of given operators if they

exist or proving the irreducibility otherwise. Factoring recurrence operators is helpful for solving

recurrence equations and finding the minimal recurrence operator that a sequence satisfies, if we

know it is a solution of some recurrence operator a priori.

The approach for factoring linear differential operators given by Beke ([10]) and Bronstein ([5])

applies to linear recurrence operators as well, with which the problem of computing order-m right-

hand factors of an order-n recurrence operator converts to finding hypergeometric solutions of a

recurrence system of rank
(
n
m

)
. Together with Petkovšek’s algorithm ([17]) for computing hyperge-

ometric solutions, we then have a complete algorithm for factoring recurrence operators. However,

solving a system of rank
(
n
m

)
for hypergeometric solutions is sometimes beyond the capacity of a

normal computer even when n and m are small, since
(
n
m

)
can be quite large. Plus Petkovšek’s

algorithm was originally designed for operators; to apply it on systems, some extra work has to

be done to convert a system into an operator. These motivate us to find efficient algorithms for

factoring recurrence operators and solving recurrence systems for hypergeometric solutions.

2

CHAPTER 2

PRELIMINARIES

2.1 Difference Rings

Definition 3. A (commutative and unital) ring R equipped with an automorphism τ : R → R is

called a difference ring. In this case we also say (R, τ) is a difference ring. If R is a field then call

it a difference field.

Definition 4. Suppose (R, τ) is a difference ring. A τ -constant is an element c ∈ R such that

τ(c) = c. The subset of constants is denoted by Rτ .

Lemma 5. If (K, τ) is a difference field, then Kτ is a subfield of K.

Proof. It is clear that τ -constants are closed under addition, multiplication and inverse.

Definition 6. Suppose (R1, τ1), (R2, τ2) are difference rings. Say R2 is a difference extension of

R1 if there is an embedding φ : R1 → R2 such that τ2 ◦ φ = φ ◦ τ1. In other words, R1 is a subring

of R2 and the restriction of τ2 on R1 is the same automorphism as τ1.

Remark 7. If (R, τ) is a difference ring and R is an integral domain, then τ can be extended to

an automorphism of Frac(R), the fraction field of R, in a natural and unique way, which makes

Frac(R) a difference extension of R.

In this thesis we deal with the recurrence case exclusively, where the difference ring is a field of

functions in x equipped with the shift operator τ : f(x) 7→ f(x+ 1). Particularly, polynomials and

rational functions are of our major interest.

Let F be a field. It is easy to see the shift operator τ is indeed an automorphism of F [x].

Thus (F [x], τ) is a difference ring and, according to Remark 7, (F (x), τ) is a difference field. When

char(F) = 0, the field of τ -constants for F (x) is F ; when char(F) = p for some prime p, the field of

τ -constants is F (xp − x).

In order to study (F (x), τ), sometimes it is helpful to embed F (x) into F ((x−1)). The action of

τ is defined by

τ(x−1) = (1 + x)−1 = x−1
x

1 + x
= x−1

1

1 + x−1
= x−1

∞∑
i=0

(−x−1)i. (2.1)

3

By the definition F ((x−1)) is a difference extension of F (x). If char(F) = 0, the field of τ -constants

of F ((x−1)) is F .

2.2 Difference Operators

Definition 8. For a difference ring (R, τ), a (linear) difference operator over R is an expression

n∑
i=0

aiτ
i, n ∈ N, ai ∈ R.

The addition of difference operators is the same as that of polynomials, namely

n∑
i=0

aiτ
i +

n∑
i=0

biτ
i =

n∑
i=0

(ai + bi)τ
i.

The multiplication is ruled by

τ · a = τ(a)τ, a ∈ R. (2.2)

In the shift case, also call a difference operator a recurrence operator.

Example 9. In this example we demonstrate how difference operators multiply. Suppose L1, L2 ∈

Q(x)[τ] where L1 = τ − 1, L2 = xτ − 1. Then

L1L2 = (τ−1)(xτ−1) = τ ·(xτ)−τ ·(−1)−xτ+1 = (x+1)τ2+τ−xτ+1 = (x+1)τ2+(1−x)τ+1.

N

The ring of difference operators over (R, τ) is denoted by R[τ]. It naturally acts on R by

(

n∑
i=0

aiτ
i)(r) =

n∑
i=0

aiτ
i(r).

The action is compatible with addition and multiplication of difference operators. In fact any

difference extension of R is a natural left R[τ]-module.

It also makes sense to allow negative powers of τ , since automorphisms have inverses. The ring

of such difference operators is denoted by R[τ, τ−1]. Usually it suffices to study operators in R[τ]

only. In fact, any non-zero difference operator in R[τ, τ−1] can be reduced into the so-called normal

form (defined below) by left multiplying by a unique power of τ .

Definition 10 (Normal). The operator
∑n

i=0 aiτ
i ∈ R[τ] is called normal if a0 6= 0. Also assume

the 0 operator is normal.

4

Definition 11 (Order). Suppose L =
∑n

i=m aiτ
i ∈ K[τ] where aman 6= 0. Call n−m the order of L

and n the τ -degree. Denote them by ord(L) and degτ (L), respectively. Assume ord(0) = degτ (0) =

−∞. In the shift case K = F (x), if L ∈ F [x][τ], denote degx(L) = max{ai : i = 0, 1, . . . , n} and

call it the x-degree of L.

An operator is normal if and only if its order and τ -degree are equal.

Definition 12 (Coefficients). For L =
∑∞

i=0 aiτ
i ∈ K[τ] where ai 6= 0 for finitely many i, call ai

a τ -coefficient or simply coefficient of L. If L =
∑n

i=m aiτ
i ∈ K[τ] where anam 6= 0, call an the

leading coefficient and am the trailing coefficient of L, denoted by lc(L), tc(L), respectively.

Definition 13 (Content and primitive part). Suppose (A, τ) is a difference ring where A is a UFD.

Let K be the fraction field of A. Suppose L ∈ K[τ]. If the coefficients of L are in A and their gcd

is 1, L is called primitive over A or simply primitive when it is clear from the context what A is.

Assume the zero operator is primitive. If k−1L is primitive for some k ∈ K, k is called a content

of L and kL a primitive part.

Remark 14. Content and primitive part of an operator are unique up to a unit in A. In the case

A = F [x],K = F (x), the contents of L ∈ A[τ] are polynomials. Denote by Cont(L) the monic

content and Prim(L) = Cont(L)−1L.

Theorem 15 (Right-division with remainder). Suppose L,R ∈ K[τ]− {0}. There exists a unique

pair q, r ∈ K[τ] such that

L = qR+ r

and degτ (r) < degτ (R).

Definition 16 (GCRD and LCLM). Suppose L1, L2 ∈ K[τ]. Their least common left multiple

(abbr. LCLM) is an operator L such that

• L is a left multiple of both L1 and L2;

• L has the minimal order among all operators satisfying the previous condition.

The greatest common right divisor (abbr. GCRD) is an operator L such that

• L is a right divisor of both L1 and L2;

• L has the maximal order among all operators satisfying the previous condition.

LCLM and GCRD are not unique, since multiplying them by an element in K yields another LCLM

or GCRD. To make them unique, we introduce the notations LCLM(L1, L2),GCRD(L1, L2) for

monic and normal LCLM and GCRD, respectively.

5

2.3 Difference Modules

Definition 17 (Difference modules). A difference module over a difference field F is a left F [τ, τ−1]

module of finite type. Equivalently, M is a finitely dimensional F -vector space equipped with the

action of τ that satisfies

• τ(m1 +m2) = τ(m1) + τ(m2) for m1,m2 ∈M ;

• τ(fm) = τ(f)τ(m) for f ∈ F and m ∈M ;

• for m ∈M there exists n ∈M such that τ(n) = m.

Given an F -basis B of a difference module M in the form of a column vector, then there exists

an invertible matrix A such that

τ(B) = AB.

The matrix A is called the representation matrix of M with respect to the basis B.

Conversely, given an invertible matrix with a suitable order, a finitely dimensional F -vector

space with basis B can be made a difference module by assigning

τ(B) = AB.

Two matrices are called gauge equivalent if modules defined by them are isomorphic.

A normal difference operator L ∈ F [τ] defines a difference module F [τ]/F [τ]L. Suppose

ord(L) = n. Then a basis of this module is

(1, τ, · · · , τn−1)ᵀ.

The representation matrix under such a basis is the companion matrix of L.

2.4 Solutions of Difference Operators

Definition 18 (Universal extension). Suppose (K, τ) is a difference field with the field of τ -constants

C. A universal extension of (K, τ) is a difference extension (Ω, τ) such that

1. for L ∈ K[τ], ord(L) = dimC ker(L), where L is viewed as a C-linear map over Ω;

2. any element in Ω is a solution of some difference operator.

If a difference extension (Ω, τ) satisfies 1 but potentially not 2, then it is called a pre-universal

extension.

6

Remark 19. If Ω′ is a pre-universal extension, then the subspace

Ω = {w ∈ Ω : w is a solution of some operator in K[τ]}

is a universal extension. The solution space of L in Ω is the same as that in Ω′.

The universal extension is unique up to isomorphism if it exists. Any difference field of charac-

teristic 0 has a universal extension ([19, pp. 20–21]).

For an operator L, denote Sol(L) its solution space in the universal extension, if the universal

extension exists.

7

CHAPTER 3

DESINGULARIZATION AND P-CURVATURE

3.1 Introduction

Singularities of linear difference operators can be divided into two groups, true (i.e. non-

removable) singularities, and apparent (i.e. removable) singularities. Desingularization (detecting

or removing apparent singularities) can expedite various algorithms for difference or differential

equations. An early application [22] appeared in DEtools[Homomorphisms] in Maple 10. Other al-

gorithms that benefit from reducing the number of singularities include finding closed form solutions

and factoring, e.g. LREtools[RightFactors] in Maple 2021.

In characteristic p, difference operators can be classified by the so-called p-curvature. Our main

result gives a relation between χ(L), the characteristic polynomial of the p-curvature of L, and the

true singularities of L. We prove that the denominator of χ(L) determines the true singularities,

including their multiplicities, up to shift equivalence.

The algorithm from [3] computes χ(L), multiplied by a denominator bound, by computing its

Z-adic expansion. One application of our theorem is that we can replace the denominator bound

by the exact denominator. This lowers the required Z-adic precision, which can speed up the

computation, see subsection 3.5.2.

We want desingularization to take less time than the time it saves in applications. Then it is

useful to compute a partial desingularization (where the goal is to remove most apparant singular-

ities, at a fraction of the cost of a full desingularization). We give various algorithms for this in

section 3.6.

3.2 Preliminaries

3.2.1 Desingularization

Let F be a field. Let P = F [x][y] and D = F (x)[y]. If f ∈ P , then f is called primitive if the gcd

of its coefficients in F [x] is 1. If f ∈ D−{0}, then there is c ∈ F (x)−{0}, unique up to a factor in

F , for which c−1f ∈ P is primitive. The content of f , denoted Cont(f), is this c, while the primitive

part of f is Prim(f) = c−1f ∈ P . A version of Gauss’s lemma says Cont(f1f2) = Cont(f1)Cont(f2).

8

Let τ be the shift-operator. If r(x) is a rational function then the product τ · r(x) equals

r(x + 1) · τ . This product turns P := F [x][τ] and D := F (x)[τ] into non-commutative rings. The

product corresponds to compositions of operators, where L =
∑n

i=0 ai(x)τ i ∈ D operates on y(x)

as L(y(x)) =
∑n

i=0 ai(x)y(x+ i).

If L ∈ D − {0} we can define Cont(L) ∈ F (x) and Prim(L) ∈ P in the same way as before.

Definition 20. An operator L ∈ P is called Gaussian if

∀A∈D AL ∈ P =⇒ A ∈ P.

If L is Gaussian then L is primitive. In the commutative case, the two properties are equivalent

by Gauss’s lemma. It is known that Gauss’s lemma does not hold in the non-commutative case,

which is illustrated in Example 22 below (see also [15, p. 27]).

An element L =
∑n

i=0 ai(x)τ i ∈ P corresponds to a recurrence relation L(y(x)) = 0, i.e.

an(x)y(x+ n) + an−1(x)y(x+ n− 1) + · · ·+ a0(x)y(x) = 0. (3.1)

So we can express y(r) in terms of y(r − 1), . . . , y(r − n) where r = x + n. The expression is not

defined when r is a root of the denominator, which is an(r − n). Hence we define:

Definition 21. Let L =
∑n

i=0 ai(x)τ i ∈ P be primitive. If an 6= 0 then define ord(L) := n and let

lc(L) be an(x−n) divided by its leading coefficient (to make it monic). The singularities of L are the

monic irreducible factors of lc(L) in F [x] (or equivalently, their roots in F) with their multiplicities.

Example 22. Let

L = x2(x2 + 1)τ − (x+ 1)(x2 + 2x+ 2) ∈ Q[x][τ].

Substituting x 7→ x−ord(L) in the leading coefficient we obtain lc(L) = (x−1)2((x−1)2+1). With

repetition indicating multiplicity, the singularities are x− 1, x− 1, (x− 1)2 + 1, or equivalently 1,

1, 1±
√
−1. Let

A =
1

(x+ 1) (x2 + 2x+ 2)
(10 τ + 11x2 + 15x+ 14).

Then

AL = 10 (x+ 1) τ2 +
(
11x3 − 18x2 + 35x− 50

)
τ − 11x2 − 15x− 14.

Now lc(AL) = x+ 1− ord(AL) = x− 1 (we divided by 10 to make it monic). Compared to L, the

singularity (x− 1)2 + 1 disappeared, as well as one of the two copies of x− 1. N

9

Lemma 23 ([15, Theorem 4.1.7, Corollary 4.1.9]). Let L ∈ P. For k = 0, 1, 2, . . . let

Ik = {0} ∪ {lc(AL) : A ∈ D, AL ∈ P, ord(A) = k} (3.2)

and let I∞ be their union. Then I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ I∞ are ideals in F [x].

Proof. To show Ik ⊆ Ik+1, take a non-zero a ∈ Ik. So a = lc(AL) for some A of order k. Replacing

A by τA shows that a ∈ Ik+1. Clearly Ik is closed under F [x]-multiplication, and it is not difficult

to show that it is closed under addition as well.

Definition 24 (Essential parts, removable parts, [15, Definitions 4.1.8 and 4.1.10]). With notations

as in Lemma 23, let lck(L) be the monic generator of Ik for k = 0, 1, 2, . . . ,∞. Call lck(L) the

essential part of the leading coefficient at order k. Note that lc0(L) = lc(Prim(L)) and lcl(L) divides

lck(L) if l > k. Let rpk(L) = lc(L)
lck(L)

∈ F [x] and call it the removable part of the leading coefficient

at order k.

Factors (or roots) of lc(L) are divided into two (possibly overlapping) sublists: Factors of lc∞(L)

are the true singularities of L. Factors of rp∞(L) are the apparent singularities. In Example 22 the

true singularity is x− 1 and the apparant singularities are x− 1, (x− 1)2 − 1.

Definition 25. Let L ∈ P be primitive. We call A ∈ D a desingularizer if AL ∈ P. Such A is

trivial if A ∈ P (that implies lc(L) | lc(AL), so no singularities were removed). A desingularizer A

is optimal at order k if lc(AL) = lck(L) and ord(A) 6 k; when k = ∞ say A is optimal since it

removes all apparant singularities while introducing no new singularities.

An optimal desingularizer at order k exists because Ik is a principal ideal; F [x] is a PID.

3.2.2 LCLM method for desingularization

Desingularization of recurrence operators has been studied in [2], [1], [7], [15], [8] and [24].

Papers [2], [1], [7], [15] aim for full desingularization; [24] focuses on desingularization over R[x]

where R is not a field. Here we describe the so-called LCLM method, published in [8]. LCLM and

GCRD are defined in section 2.2. The main result of [8] is restated below, where we focus on the

recurrence case while the original version also applies to other types of Ore operators.

Theorem 26 (Reformulation of Theorem 6 in [8]). Suppose L ∈ P. Introduce new constants

c0, c1, . . . , ck that are algebraically independent over F . Denote A = c0 + c1τ + · · ·+ ckτ
k and L′ =

Prim(LCLM(L,A)) ∈ F (c0, c1, . . . , ck)[x][τ]. Then lc(L′) = lck(L)f where f ∈ F (c0, c1, . . . , ck)[x]

has no non-trivial factor in F [x].

10

The original form of Theorem 6 in [8]:

Let q be an irreducible polynomial which appears with multiplicity e in lc(L) and letm 6 e be maximal

such that qm | lc(L)
lck(L)

for k ∈ N. Let A = c0 + c1τ + · · ·+ ckτ
k in F (c0, . . . , ck)[x][τ], where c0, . . . , ck

are new constants that are algebraically independent over F . Denote L′ = Prim(LCLM(L,A)).

Then the multiplicity of q in lc(L′) is e−m.

The proof in [8] also holds when e = m = 0, which results in Theorem 26. It was stated for the

case char(F) = 0, but the proof is valid for positive characteristic as well.

Remark 27. Theorem 26 implies lck(L) stays the same if L is viewed as an operator in E(x)[τ]

where E is a field extension of F , as the field extension does not affect L′ = Prim(LCLM(L,A)).

Theorem 26 implies the following desingularization algorithm.

Algorithm 1: LCLM_Method
Input : a primitive operator L =

∑n
i=0 aiτ

i ∈ F [x][τ] and positive integer k

Output: lck(L)

1 A←
∑k

i=0 ciτ
i, where c0, c1, . . . , ck are new constants that are algebraically independent over

F ;

2 L′ ← Prim(LCLM(A,L));

3 return gcd(lc(L), lc(L′));

The discussion following the main theorem in [8] states that in characteristic 0, instead of new

constants, we can let c0, c1, . . . , ck be random elements in F . In this case the algorithm is Monte-

Carlo, meaning it returns the desired result with a high probability. The Monte-Carlo version is

much faster since it avoids computations in a transcendental extension of F . It was implemented

in [22] with k = 1 by the second author in 2004.

We refer to the algorithm where k = 1 as order-1 LCLM method. The Monte-Carlo version of

order-1 LCLMmethod strikes a good balance between benefit and cost, since the LCLM computation

is much faster for k = 1 than for larger k, and lc1(L) is often very close to lc∞(L), and hence is

often used in practice. We will further speed up the algorithm in Section 3.6.

3.2.3 The p-characteristic polynomial

From here until Section 3.6, F will be a field of characteristic p, where p is a prime number.

A general theory of linear difference equations in positive characteristic is developed in [19,

Chapter 5]. In [3], p-characteristic polynomials of recurrence operators (and differential operators)

11

over Fp[x] are studied and an algorithm for computing them is given. An algorithm for computing

p-characteristic polynomials of operators in Z[x][τ] for a number of p is presented in [16], based on

the algorithm from [3]. We will give more information about these algorithms in subsection 3.2.4

Let Z = xp − x = x(x+ 1) · · · (x+ p− 1). Clearly Z is fixed by τ and hence elements of F (Z)

are τ -constant. In fact, F (Z) is the field of τ -constants; to see this, notice that F (x) is a degree p

field extension of F (Z) and hence there is no proper intermediate field.

Let N : F (x) → F (Z) denote the norm map of the field extension F (x)/F (Z). It is given by

the formula

N : f(x) 7→ f(x)f(x+ 1) · · · f(x+ p− 1).

Denote T = τp. The center of D is F (Z)[T]. Since F (x)[T] ⊆ D, any D-module is naturally an

F (x)[T]-module, that is, an F (x)-vector space equipped with an F (x)-linear map.

Definition 28. For a D-module M , call the F (x)-linear map induced by T the p-curvature of M .

For an operator L ∈ D, define its p-curvature to be that of D/DL. Denote χ(L) ∈ F (x)[T] its

characteristic polynomial with T as its variable and call it the p-characteristic polynomial of L.

A characteristic polynomial is monic by definition so the leading coefficient of L is lost in χ(L).

To reinsert it, denote χ̃(L) = N (lc(L))χ(L). It is called the reduced norm of L in [3].

Lemma 29. Properties of p-characteristic polynomials.

(i) For L ∈ D, χ(L) ∈ F (Z)[T].

(ii) For L ∈ D, χ(L) ∈ DL.

(iii) For L1, L2 ∈ D, χ(L1L2) = χ(L1)χ(L2) and χ̃(L1L2) = χ̃(L1)χ̃(L2).

(iv) For L1, L2 ∈ D, if GCRD(L1, L2) = 1, then

χ(LCLM(L1, L2)) = χ(L1)χ(L2).

(v) For L ∈ P, χ̃(L) ∈ F [Z][T] and degZ(χ̃(L)) 6 degx(L).

(vi) If L ∈ F (Z)[T] then χ̃(L) = Lp.

Proof. All except item (iv) are proved in [3, Section 3] for the case F = Fp and the proofs are valid

for a general field F with positive characteristic. We now prove (iv). Denote L = LCLM(L1, L2). If

GCRD(L1, L2) = 1 then D/DL ∼= D/DL1⊕D/DL2 as D-modules (and hence as F (x)[T]-modules).

Now (iv) follows from the fact that characteristic polynomials are multiplicative on direct sums.

12

Lemma 29(iii) implies that an operator factors only when its p-characteristic polynomial factors

(as a polynomial in F (Z)[T]). In fact, the p-characteristic polynomial tells us even more. See [9]

and [20] for discussions on this topic in the differential case. The p-characteristic polynomial is also

useful for testing or proving irreducibility of operators in Q(x)[τ] by reduction modulo p.

3.2.4 BCS algorithm and Pagès’ algorithm

Bostan, Caruso and Schost (2015) present an algorithm for computing the p-characteristic poly-

nomial of an operator in Fp[x][τ], called Xi_theta_d in [3]. We refer to it as the BCS algorithm.

Their implementation in Magma is available at https://github.com/schost.

The BCS algorithm takes a prime p and a difference operator L ∈ Fp[x][τ] as its input and

computes χ̃(L) ∈ Fp[Z][T] (making χ̃(L) monic gives χ(L)). The algorithm computes χ̃(L) in

Fp[[Z]][T] to precision O(Zdegx(L)+1) which suffices by Lemma 29(v).

For L ∈ P, the first part of Lemma 29(v) implies that N (lc(L)) is a denominator bound for χ(L).

The BCS algorithm uses this bound to ensure that what it computes in Fp[[Z]][T] is in Fp[Z][T],

not just in Fp(Z)[T]. We will show that (partial) desingularization leads to sharper denominator

bounds. That reduces the required Z-adic precision, speeding up the computation. In fact, our

main result Theorem 30 says that full desingularization gives the exact denominator.

For an operator L ∈ Q(x)[τ], denote by χp(L) the p-characteristic polynomial of its reduction

modulo p. Pagès (2021) gives an algorithm for computing χp(L) for a number of primes at the same

time, if L ∈ Z[x][τ] has a leading coefficient in Z ([16, Algorithm 3]). The algorithm is based on the

BCS algorithm.

3.3 Main Theorem and Corollaries

Let denom(·) be the monic denominator of a rational function, or of a polynomial with rational

function coefficients. We will use this notation in the cases F [x] ⊂ F (x) and F [Z][T] ⊂ F (Z)[T].

Theorem 30. For L ∈ F [x][τ], denom(χ(L)) = N (lc∞(L)).

The theorem quickly implies two corollaries, expressed in terms of the following definition.

Definition 31. Let r1, r2 ∈ F (x)−{0}. We say that r1 and r2 are shift equivalent, denoted r1 ∼ r2,

if τ − r1
r2

has a non-zero solution in F (x), in other words, if there exists f ∈ F (x)− {0} for which
r1
r2

= τ(f)
f .

13

https://github.com/schost

If r(x) has a factor q(x) in the numerator or denominator, and one replaces q(x) by its shift

q(x+ 1), then the result is shift-equivalent to r(x). Note that r1 ∼ r2 if and only if N (r1) = N (r2).

Corollary 32. If D/DL1
∼= D/DL2 for L1, L2 ∈ D, then lc∞(L1) and lc∞(L2) are shift equivalent,

so L1 and L2 have the same true singularities up to shifts.

Corollary 33. For L1, L2 ∈ D, if

• L = L1L2, or

• L = LCLM(L1, L2) and GCRD(L1, L2) = 1

then lc∞(L) and lc∞(L1)lc∞(L2) are shift equivalent.

These corollaries are not true in characteristic 0, so we did not expect Theorem 30.

3.4 Proof of the Main Theorem

This section is devoted to the proof of Theorem 30. We start with an easy lemma.

Lemma 34. For any A,L ∈ D

denom(χ(AL)) = denom(χ(A)) denom(χ(L)).

Proof. Lemma 29(iii) and Gauss’s lemma for F (Z)[T] gives

Cont(χ(AL)) = Cont(χ(A))Cont(χ(L)).

But χ(·) is monic by definition, and the denominator of a monic polynomial is the reciprocal of the

content.

3.4.1 Special case, Gaussian operators

Lemma 35. Let L ∈ P. The following are equivalent.

1. L is Gaussian, i.e. ∀A∈D AL ∈ P =⇒ A ∈ P.

2. Every desingularizer is trivial.

3. Cl(L) = PL, where Cl(L) := DL
⋂
P. (This is called the Weyl closure in [18].)

4. lc(L) = lc∞(L), i.e. there are no apparant singularities.

14

Proof. Items 2 and 3 are reformulations of item 1, and immediately imply item 4. It remains to

show that item 4 implies item 1. Suppose that lc(L) = lc∞(L) and AL ∈ P. To prove: A ∈ P.

By partial fraction decomposition, A = A1 + A2 where A1 ∈ P and A2 =
∑
qiτ

i with the

numerator of qi having lower degree than its denominator. Since AL and A1L are in P, their

difference A2L is in P as well. If A2 6= 0, then the leading coefficient of A2L will have lower degree

than lc(L), contradicting item 4. Thus A2 = 0 and hence A ∈ P.

Lemma 29(v) says that χ̃(L) = N (lc(L))χ(L) ∈ F [Z][T] when L ∈ P, in other words

denom(χ(L)) | N (lc(L)). (3.3)

Here we give a sharper denominator bound.

Lemma 36. For L ∈ F [x][τ], denom(χ(L)) | N (lc∞(L)).

Proof. Let A ∈ D be an optimal desingularizer of L, then lc(AL) = lc∞(L). From Lemma 34 and

Equation (3.3) applied to AL, denom(χ(L)) | denom(χ(AL)) | N (lc(AL)) = N (lc∞(L)).

Next we show that our denominator bound is exact for Gaussian operators. The next section

will prove the general case by exploiting the fact that any operator has a Gaussian multiple.

Lemma 37. If L ∈ F [x][τ] is Gaussian, then

denom(χ(L)) = N (lc∞(L)).

Proof. Denote f = Prim(χ(L)) ∈ F [Z][T]. By Lemma 29(ii), f ∈ DL so there exists Q ∈ D such

that

QL = f. (3.4)

In fact Q ∈ P since L is Gaussian. Lemma 29(v) says χ̃(Q), χ̃(L) ∈ F [Z][T]. Applying χ̃ to

Equation (3.4), and Lemma 29(vi), gives

χ̃(Q)χ̃(L) = χ̃(f) = fp. (3.5)

Now fp ∈ F [Z][T] is primitive since f is primitive. Then Gauss’s lemma implies χ̃(L) ∈ F [Z][T] is

primitive. It follows that

denom(χ(L)) = lc(χ̃(L)) = N (lc(L)) = N (lc∞(L))

where the last equality comes from Lemma 35, part 4.

15

3.4.2 Proof for the general case

Lemma 38. Suppose L ∈ P and A =
∑k

i=0
ni
di
∈ D is a desingularizer of L, where ni

di
∈ F (x) is in

lowest terms for each i. Then N (dk) | N (rp∞(L)).

Proof. Let n be the order of L. The definition of lc∞ and the product of the leading terms of A

and L gives

lc∞(L) | τ−k−n(
nk
dk

)lc(L)

and hence τ−k−n(nkdk)rp∞(L) ∈ F [x]. Since nk
dk

is a reduced fraction, we have τ−k−n(dk) | rp∞(L),

which leads to

N (dk) = N (τ−k−n(dk)) | N (rp∞(L)).

Lemma 39. Suppose L ∈ P and A ∈ D is an optimal desingularizer of L. Then there exists a

positive integer N such that

denom(χ(A)) | (rp∞(L))N .

Proof. Write A =
∑k

i=0
ni
di
τ i, where ni

di
∈ F (x) is a reduced fraction for each i. We deduce nk =

1, dk = τn+k(rp∞(L)) from the fact that lc(AL) = lc∞(L). Clearly d0d1 · · · dkA ∈ P. Then by

Equation (3.3)

denom(χ(A)) | N (lc(d0d1 · · · dkA)) = N (d0d1 · · · dk−1).

Now we bound N (di) in terms of rp∞(L). Let

Aj = dkdk−1 · · · dj+1(

j∑
i=0

ni
di
τ i)

for j = 0, 1, . . . , k − 1. Notice that

Aj − dkdk−1 · · · dj+1A = −dkdk−1 · · · dj+1(

k∑
i=j+1

ni
di
τ i) ∈ P.

This implies AjL ∈ P, or equivalently, Aj is a desingularizer of L. Apply Lemma 38 to Aj :

N (denom(dkdk−1 · · · dj+1
nj
dj

)) | N (rp∞(L)).

Notice that

dj | dkdk−1 · · · dj+1 · denom(dkdk−1 · · · dj+1
nj
dj

).

16

Therefore

N (dj) | N (dkdk−1 · · · dj+1) · N (rp∞(L)).

Recall that N (dk) | N (rp∞(L)). By downward induction on j, we conclude that

N (dj) | (N (rp∞(L)))k−j+1.

We are now ready to finish the proof of Theorem 30.

Proof of Theorem 30. It remains to show that N (lc∞(L)) | denom(χ(L)) for any L ∈ D. There

exists a sufficiently large k such that lck(L) = lc∞(L). Introduce new constants c0, . . . , ck that are

algebraically independent over F and denote E = F (c0, c1, . . . , ck). Let

L′ = Prim(LCLM(ckτ
k + · · ·+ c0, L)) ∈ E[x][τ].

Theorem 26 says lc(L′) = lc∞(L)f, where f ∈ E[x] has no non-trivial factor in F [x]. It follows

from Definition 24 (see also Equation 3.2) that lc∞(L) | lc∞(L′) and hence rp∞(L′) | f . Remark 27

guarantees lc∞(L) does not change as we shift from F to E. Let A be an optimal desingularizer of

L′. By Lemma 29 ((iii) and (iv)), we have

χ(AL′) = χ(A)χ(ckτ
n + · · ·+ c0)χ(L). (3.6)

Lemma 29(vi) implies

denom(χ(ckτ
n + · · ·+ c0)) = 1.

Applying Lemma 34 to Equation (3.6) gives

denom(χ(AL′)) = denom(χ(A)) denom(χ(L)).

Since AL′ is Gaussian, we know from Lemma 37

denom(χ(AL′)) = N (lc∞(AL′)),

which equals N (lc∞(L′)) since A is an optimal desingularizer of L′. As a consequence,

N (lc∞(L)) | N (lc∞(L′)) = denom(χ(A)) denom(χ(L)). (3.7)

Lemma 39 says denom(χ(A)) is a factor of fN for some sufficiently large N , so denom(χ(A)) has

no non-trivial factor in F [x]. By taking only factors in F [x] in Equation 3.7, we obtain the desired

result N (lc∞(L)) | denom(χ(L)).

17

3.5 Application to Computations

In this section F = Fp.

3.5.1 Algorithm

Let L ∈ P and α = rpk(L). Theorem 30 implies that N (α), which is in Fp[Z], is a factor of

χ̃(L). Dividing this factor away reduces the degree bound from Lemma 29(v) to

degZ(N (α)−1χ̃(L)) 6 degx(L)− degx(α) (3.8)

which becomes an equality when k is sufficiently large. However, we use k = 1 to minimize the time

spent computing α. The reduced degree bound allows us to recover χ(L) from a lower precision

Z-adic expansion. That leads to the following algorithm.

Algorithm 2: Xi_p_desing
Input : prime p and L ∈ Fp[x][τ]

Output: Prim(χ(L)) ∈ Fp[Z][T]

1 Pick k > 1 and compute lck(L) and α := rpk(L) ∈ Fp[x]. We use k = 1 to minimize the time

spent in this step.

2 Compute N (α) ∈ Fp[Z]. Let v be its Z-adic valuation in Fp[[Z]] and let

β = Z−vN (α) ∈ Fp[Z].

For computing N (·) see Step 3 of Xi_theta_d in [3].

3 Let d1 = degZ(β) and d := degx(L). Apply the BCS algorithm with d replaced by d− d1 to

L to obtain χ̃(L) up to the precision O(Zd−d1+1). Denote the result by χ1.

4 Compute β−1 in Fp[[Z]] up to O(Zd−d1−v+1).

This can be done by applying the extended Euclidean algorithm to β and Zd−d1−v+1.

5 Compute β−1 · (Z−vχ1) in Fp[[Z]][T] up to the precision O(Zd−d1−v+1). This gives

N (α)−1χ1 ∈ Fp[Z][T].

Return its primitive part (with respect to T).

Note: N (α)−1χ1 and N (α)−1χ̃(L) agree to precision O(Zd−d1−v+1) which suffices by (3.8).

Step 3 is where we save CPU time over the original algorithm from [3] if d1 > 0. If d1 = 0 then

there is no improvement in efficiency. However, as we will see in the following section, the extra

steps cost very little time.

18

3.5.2 Implementation and timings

Our Magma implementation of algorithm Xi_p_desing is available at https://www.math.fsu.

edu/~yzhou/magma/, together with experiments on a variety of operators. One should load the

implementation of [3] at https://github.com/schost/pCurvature (file pCurvature.mgm) prior to

ours.

In the following table the data for two operators from OEIS ([11], [13]) is presented. Here d1 is

defined in the Step 3 of Xi_p_desing; each running time is the average of ten runs.

Table 3.1: Timings for operators from OEIS.

OEIS index p order x-degree d1 BCS Xi_p_desing
A151329 27457 9 18 10 17.2s 9.6s
A002777 4 3 0 6.97s 7.01s

For the recurrence for OEIS A002777, we expect Xi_p_desing to be slower than BCS since

d1 = 0. However, the running time difference between two algorithms is nearly unnoticeable.

We also tested our algorithm on operators that are LCLMs of two operators [25]. Such operators

tend to have many apparent singularities and hence benefit more from our approach.

3.6 Fast Algorithms for Desingularization at Order 1

3.6.1 First algorithm

In this section we present our first speedup of the order-1 LCLM method. We used it for Step

1 of algorithm 2.

The order-1 LCLM method computes L′ = LCLM(L, τ − c) where c is a new constant (or a

random number in the Monte-Carlo version). To speed this up, our idea is to obtain lc1(L) while

only computing a portion of L′.

First we express of L′ in terms of c and coefficients of L. Suppose L =
∑n

i=0 aiτ
i ∈ F (x)[τ].

Then L′ =
∑n

i=0 c
iLi, where

Li = aiτL− τ(ai−1)L = (aiτ − τ(ai−1))L, (3.9)

where ai = 0 for i < 0 and i > n. Clearly this L′ is a left multiple of L. To verify it is also a

left-multiple of τ − c, use the fact that the remainder of τ i right-divided by τ − c is ci. We skip the

tedious computation. As a result L′ is an LCLM of L and τ − c.

19

https://www.math.fsu.edu/~yzhou/magma/
https://www.math.fsu.edu/~yzhou/magma/
https://github.com/schost/pCurvature

The order-1 LCLM method computes L′ which amounts to compute all Li’s. The following

proposition shows that one can provably obtain lc1(L) from just a subset of the Li’s.

Proposition 40. Let L =
∑n

i=0 aiτ
i ∈ F [x][τ]. Let Li be defined by Equation 3.9, where ai = 0 for

i < 0 and i > n. If

gcd(ai1 , ai2 , . . . , aik) = 1, (3.10)

then

gcd(lc0(Li1), lc0(Li2), . . . , lc0(Lik)) = lc1(L).

The proof will be given in the next section. Note that there exist i1, i2, . . . , ik satisfying the

gcd condition (Equation 3.10) if and only if L is primitive. The proposition immediately implies

algorithm 3.

Algorithm 3: lc1
Input : a primitive operator L =

∑n
i=0 aiτ

i ∈ F [x][τ]

Output: lc1(L)

1 Find I ⊂ {0, 1, . . . , n} such that ai 6= 0 for any i ∈ I and gcd(ai | i ∈ I) = 1. Note: the

algorithm is still correct if we allow ai = 0, but that i is redundant since it does not affect

the gcd at all.

2 Compute Li for i ∈ I by Equation 3.9.

3 Return gcd(lc0(Li) : i ∈ I).

Remark 41. Computing lc0(Li) = lc(Prim(Li)) is the most time-consuming part in the algorithm,

because Li has twice the x-degree as L.

3.6.2 Proof

Always assume L =
∑n

i=0 aiτ
i ∈ F [x][τ] is primitive and Li is defined by Equation 3.9.

Lemma 42. There exists b ∈ F [x] such that

Cont((τ − b)L) = τn+1(rp1(L)).

Proof. Let A ∈ D be an optimal desingularizer of L at order 1. Then A = 1
d1
τ − n2

d2
, where

d1 = τn+1(rp1(L)) and n2
d2
∈ F (x) is a reduced fraction. Let b = d1

n2
d2
. Observe that

bL = τ · L− d1AL ∈ P. (3.11)

20

Due to L being primitive, b has to be a polynomial. Since A is an optimal desingularizer of L

at order 1, AL ∈ P is primitive; otherwise dividing out the content of AL yields a more optimal

desingularizer. By rearranging Equation 3.11 we see that 1
d1

(τ − b)L = AL is primitive, which

completes the proof.

Theorem 43. Let C = (c0, c1, . . . , cn+1) ∈ Fn+2. Denote

C1 =

n+1∑
i=0

ciai, C0 =

n+1∑
i=0

ciτ(ai−1), L′ = (C1τ − C0)L.

Then

lc1(L) | lc0(L′) | τ−n−1(C1)lc1(L).

Proof. Assume C1 6= 0 since otherwise it is trivial.

The relation lc1(L) | lc0(L′) immediately follows from the definition of lc1. By Lemma 42, there

exists b ∈ F [x] such that Cont((τ − b)L) = τn+1(rp1(L)). Since

(τ − b)L =

n+1∑
i=0

(τ(aj−1)− baj)τ j ,

we have

gcd(τ(aj−1)− baj | j = 0, 1, . . . , n+ 1) = τn+1(rp1(L)). (3.12)

Notice that

L′ = C1(τ − b)L+ (bC1 − C0)L,

and in particular

bC1 − C0 =
n+1∑
i=0

bciai −
n+1∑
i=0

ciτ(ai−1) =
n+1∑
i=0

ci(bai − τ(ai−1))

is a multiple of τn+1(rp1) due to Equation 3.12. Hence 1
τn+1(rp1)

L′ ∈ F [x][τ]. When C1 6= 0,

lc(
1

τn+1(rp1(L))
L′) =

1

rp1(L)
τ−n−1(C1)lc(L) = τ−n−1(C1)lc1(L).

Then we have

lc0(L
′) = lc(Prim(L′)) | lc(1

τn+1(rp1(L))
L′) = τ−n−1(C1)lc1(L).

Proof of Proposition 40. In Theorem 43, setting ci = 1 for some i and cj = 0 for any j 6= i yields

lc1(L) | lc0(Li) | τ−n−1(ai)lc0(L).

The desired result follows immediately.

21

3.6.3 Desingularizing both leading and trailing coefficients

The variation in this section handles both leading and trailing singularities. It uses only one Li

(defined in Equation 3.9) without checking the gcd condition (Equation 3.10), since most apparant

singularities are already detected with one Li.

In the algorithm, tc1 denotes the essential part of trailing coefficient at order 1, which is the

counterpart of lc1 for trailing coefficients.

Algorithm 4: lc1_tc1
Input : a primitive operator L =

∑n
i=0 aiτ

i ∈ F [x][τ] with a0an 6= 0

Output: l, t ∈ F [x] such that lc1(L) | l | lc(L) and tc1(L) | l | tc(L)

1 i← bn2 c

2 Li ← (aiτ − τ(ai−1))L

3 l, t← lc0(Li),TC0(Li)

4 l, t← gcd(τ−n(an), l), gcd(a0, t)

5 return l, t

3.6.4 Examples and comparisons

We have implemented algorithm 3 and algorithm 4 in Maple and SageMath, and done some

experiments to compare the running time of our algorithm with the order-1 LCLM method. All can

be found at [25]. Below we give an experiment we did in Maple.

Example 44. In this example the base field is Q. We took random operators

L1 = (26x4 + 20)τ11 − 96x3τ9 + 64x5τ8 + 45x11τ4 − x2τ3,

L2 = −55x3τ7 + 85x3τ4 + 64x4τ3 + (−14x8 − 20x4)τ + 79x,

and then computed

L = Prim(LCLM(L1, L2)).

The x-degree of L is 109. We desingularize L using three different algorithms. For the LCLM

method we used the Monte-Carlo version and randomly choose c = 7. The results are shown in the

Table 3.2, where each time is the average of ten runs.

One might expect lc1_tc1 to be slower than LC1 because it treats both the leading and trailing

coefficient, however, we expected it to be faster because it corresponds to taking just one Li in LC1.

N

22

Table 3.2: Comparison of different desingularization algorithms

algorithms running time x-degree in output
Order-1 LCLM 1.191s 6

LC1 0.055s 6
lc1_tc1 0.092s 6

3.7 Future Work

3.7.1 Application to Pagès’ algorithm

Pagès’ Algorithm computes χp(L) for L ∈ Z[x][τ] with lc(L) ∈ Z, but with minor adjustments

it applies to all recurrence operators in Z[x][τ]. We expect desingularization to be beneficial here

as well.

3.7.2 Differential case

The desingularization improvement should also work for the differential case or Ore operators.

For a differential operator L =
∑n

i=0 ai∂
i ∈ F [x][∂], we can write LCLM(L, τ − c) =

∑n
i=0 c

iLi,

where

Li = (ai∂ − (ai−1 + a′i))L.

We expect that there should also be a differential analog of our main result, Theorem 30.

23

CHAPTER 4

HYPERGEOMETRIC SOLUTIONS OF DIFFERENCE
SYSTEMS

4.1 Introduction

Suppose C is a subfield of C. A nonzero element y in the universal extension (Definition 18)

of C(x) is called hypergeometric if τ(y)/y ∈ C(x), in other words, y is a solution of a first order

operator. If r ∈ C(x) − {0} then r is hypergeometric of trivial type. If y1, y2 are hypergeometric

then y1y2 is hypergeometric as well. Denote by hyp(λ) a nonzero solution of τ − λ in the universal

extension for λ ∈ C(x). The notation is defined up to a nonzero τ -constant.

The first algorithm to compute hypergeometric solutions of an operator was given by Petkovšek.

One writes hypergeometric solutions of L ∈ C[x][τ] over C(x) in this format:

y = hyp(λ)P

where λ = cAB with A,B, P ∈ C[x], A and B monic, and c ∈ C −{0}. Note that y can be rewritten

as hyp(λ′) where λ′ = λ τ(P)
P . Allowing a polynomial factor P in candidate solutions y = hyp(λ)P

makes it easier to restrict λ to a computable set. Petkovšek’s algorithm works as follows:

Step P1 Petkovšek proves that it suffices to consider A, B where A|a0 and τn−1(B)|an.
This leaves a finite set of candidates for A/B.

Step P2 Compute candidates for c.

Step P3 For each candidate λ = cA/B:
Construct an operator Lλ whose solutions are the solutions of L divided by hyp(λ).
For all polynomial solutions P of Lλ: join hyp(λ)P to the output.

If M is an n× n invertible matrix over C(x), consider the following n-dimensional system:

τ(Y) = MY.

A hypergeometric solution of the system is one in the form hyp(λ)P where P is an n-dimensional

column vector over C(x). If P̃ = cP then hyp(λ)P̃ = hyp(λ τ(c)c)P so we may assume without loss

of generality that P is in C[x]n and is primitive (the content, the gcd of entries, is 1), see section 4.2.

24

Before his tragic passing, Bronstein observed that Petkovšek’s strategy works for such systems

as well ([4]). Thus, the Bronstein-Petkovšek strategy for hypergeometric solutions is as follows:

Step BP1 Construct the set of candidates for A/B:

S := {A
B

: A,B ∈ C[x] are monic, A | denom(M−1), B | denom(M)}.

Step BP2 For each candidate A/B compute candidates for c.

Step BP3 For each λ = cA/B: compute all polynomial solutions P ∈ C[x]n of τ(P) = λ−1MP

and join hyp(λ)P to the output.

Remarkably, Bronstein’s proof for the sufficiency of Step 1 (Theorem 46) is actually easier than

Petkovšek’s proof, despite the fact that it is more general. To obtain an algorithm, Bronstein still

needed a way to find candidates for c, which we will give in subsection 4.3.2.

The BP-strategy applies to many cases (difference systems, q-difference systems, the multi-basic

case) provided that one can compute (1) candidates for c, and (2) polynomial solutions.

For operators L ∈ C(x)[τ], the paper [21] addressed the following issues in Petkovšek’s algorithm:

(a) The number of candidates A/B can be much larger than it needs to be.

(b) As a side effect, the algorithm can produce duplicate solutions.

For systems, the same issues arise in the BP-strategy. The goal in this chapter is to address these

issues. Of course one might discard duplicate solutions, or take steps to prevent them, but that still

leaves issue (a). Reducing the number of candidates as much as possible leads to a more efficient

algorithm and eliminates issue (b) as a side effect.

A key idea is that rather than bounding A/B using the denominators ofM−1 andM , we bound

the type of A/B by bounding local types. Our bounds for the local types are sharper than the

global bounds in Step 1 above, leading to fewer candidates. In fact, our bounds are almost as

sharp as those for operators in [21], but take less time to compute, so an operator version of our

approach may well be faster than [21]. Experiments show that our implementation can handle

systems of high dimension, which will be useful for the application in factoring operators discussed

in subsection 4.6.2.

25

4.2 Hypergeometric Solutions

Definition 45 (Hypergeometric). Let F be a difference field that has a universal extension. In this

Chapter we are interested in the cases where F = C(x) or C((x−1)). A non-zero element γ in the

universal extension of F is called hypergeometric if τ(γ) = fγ for some f ∈ F∗. In this case let

hyp(f) denote γ. The notation is unique up to a τ -constant. When γ is hypergeometric, call the

column vector γR (R ∈ Fn) a hypergeometric vector.

It is not hard to verify the following properties of hypergeometric elements:

(i) hyp(f1) hyp(f2) = hyp(f1f2) up to a constant where f1, f2 ∈ F∗;

(ii) hyp(τ(f)f) = f up to a constant where f ∈ F∗.

Consider the system

τ(Y) = MY, where M ∈ GLn(C(x)). ((sys))

The goal of this chapter is to design efficient algorithms for finding its hypergeometric solutions

(solutions that are hypergeometric vectors).

A consequence of properties of hypergeometric elements is

hyp(f) = g hyp(f
g

τ(g)
),

which implies a hypergeometric vector has seemingly different representations. Using the properties,

over C(x), a hypergeometric vector can always be written into γP where γ is hypergeometric and

P ∈ C[x]n is primitive. This is called the standard representation of the hypergeometric vector.

4.3 Algorithm Version I

In this section a basic version of the algorithm is presented, which follows the procedure in

section 4.1. We first give the algorithm and then explain why it works in the follow-up sections.

Algorithm: Version I

Input: τY = MY , where M ∈ GL(n,C(x))

Output: hypergeometric solutions of the system

Step BP1 – Compute denom(M) and denom(M−1) and factor them in C[x].

26

– Compute

S := {A
B

: A,B ∈ C[x] are monic, A | denom(M−1), B | denom(M)}. (4.1)

In subsection 4.3.1 we justify that S contains all AB that are needed.

Step BP2 – Compute

G := {unramified generalized exponents of the system}.

Generalized exponents will be defined in section subsection 4.3.2. An unramified
generalized exponents is in the form cxs(1 + dx−1), where (c, s, d) ∈ C∗ × Z× C.

– Let

H := {cA
B

: cxs(1 + dx−1) ∈ G, A
B
∈ S, deg(A)− deg(B) = s, d− slc(

A

B
) ∈ N},

where the notation slc will be defined in subsection 4.3.2.

Step BP3 – Let Sols = ∅.

– For each cAB ∈ H, solve the system τP = c−1BAMP for (a basis of) polynomial
solutions using the algorithm introduced in [2]. Add hyp(cAB)P to Sols for any
polynomial solution P .

– Return Sols as the output.

4.3.1 Step BP1

Theorem 46. Suppose Y = hyp(f)P is a hypergeometric solution of Equation (sys) that is in the

standard form, where f ∈ C(x). Then

numer(f) | denom(M−1), denom(f) | denom(M).

The theorem says that any hypergeometric solution Y can be written as Y = hyp(cAB)P for

some primitive polynomial vector P , some τ -constant c, and some A
B ∈ S, where S is defined in

Step BP1 by Equation 4.1.

We remark that the result holds not only for C[x] ⊆ C(x), but a general difference ring that is

a UFD and its field of fractions as well.

Proof. Write now M = d−1W where d = denom(M) and gcd(W) = 1. Then, substitution of this

and Y = γP in standard form into Equation (sys) allows us to rewrite the equation as

τ(γ)

γ
τ(P) =

1

d
WP, or, dAτ(P) = BWP

27

using τ(γ)/γ = A/B and clearing denominators. Let now f ∈ C[x] be any prime factor of B. Then

f divides the right-hand side of the equation. On the left-hand side, if we assume A and B are

coprime, f cannot divide A. Moreover, there is at least one component of τ(P) which is not divisible

by f since the entries of P are coprime. Consequently, f must be a factor of d. Dividing d and B

in the equation by f and continuing the argument for the other factors of B implies that B | d.

Write the inverse ofM asM−1 = d′−1W ′ where d′ ∈ C[x] and whereW ′ ∈ C[x]n×n has coprime

entries. Then, multiplying the original Equation (sys) by M−1 and substituting again Y = γP in

standard form, we obtain

1

d′
W ′τ(P) =

B

A
P or AW ′τ(P) = d′BP.

Similarly as before, we can thus derive that A | d′.

Example 47. Let

M =

0 0 x+1
x 0 0 0

0 0 0 0 x+1
x 0

0 0 0 0 0 x+1
x

(x+1)2

x(x+2)(x+3) 0 − (x+1)(x4+2x3+x2+x+4)
x(x+2)2(x+3)

0 − x+1
x(x+2)2(x+3)

0

0 (x+1)2

x(x+2)(x+3)
(x+1)2

x(x+2)2(x+3)
0 0 − x+1

x(x+2)2(x+3)

0 0 0 (x+1)2

x(x+2)(x+3)
(x+1)2

x(x+2)2(x+3)
(x+1)(x4+2x3+x2+x+4)

x(x+2)2(x+3)


be a 6× 6 matrix over Q. Then denom(M) = x(x+ 2)2(x+ 3) and denom(M−1) = (x+ 1)2(x+ 2).

Therefore,

S(M) = {xi1(x+ 1)i2(x+ 2)i3(x+ 3)i4 : −1 6 i1 6 0, 0 6 i2 6 2,−2 6 i3 6 1,−1 6 i4 6 0},

whose cardinality is

2 · 3 · 4 · 2 = 48.

This number is more than necessary; a provably complete search can be done with just 8 cases, see

Example 62 which addresses issues (a) and (b) stated in section 4.1. N

Remark 48. Finding hypergeometric solutions of the system in 47 is related to the factorization of

the operator

(x+ 2)2(x+ 3)τ4 + τ3 + (x4 + 2x3 + x2 + x+ 4)τ2 + (x+ 1)τ + (x+ 1)(x+ 2).

It is explained in subsection 4.6.2 how to convert a factorization problem into solving a system for

hypergeometric solutions.

28

4.3.2 Step BP2: generalized exponents

The key of Step BP2 is the notion of generalized exponents. Generalized exponents of difference

operators have been defined in [6, Section 3.2] and will also be discussed later in this thesis (sec-

tion 6.1). We can define generalized exponents of a system in a similar way. First some necessary

knowledge on the difference field C((x−1)) is introduced.

The difference field K. Denote t = 1/x. LetK = C((t)) andKr = C((t
1
r)) for r = 1, 2, 3,

According to [23] the algebraic closure of K is

K∞ :=
∞⋃
r=1

Kr.

The notations K and K∞ will be used interchangeably. When we write Kr, r can be a positive

integer or∞ unless otherwise stated. The canonical t-adic valuation on K extends to Kr naturally;

we denote it by v : K 7→ Q ∪ {∞}. We remind the readers that for v to be a valuation, it has to

satisfy the following properties:

• v(a) =∞ if and only if a = 0,

• v(ab) = v(a) + v(b),

• v(a+ b) > min{v(a), v(b)}, with equality if v(a) 6= v(b).

For a vector with entries in K, define its valuation to be the smallest valuation of the entries. The

big O and little-o notations are used for elements in K with respect to the valuation v. In particular,

when we write f = g + o(tu) for f, g ∈ K, it means v(f − g) > u.

A general non-zero element in Kr factors into cts(1 +
∑∞

i=1 ait
i
r). Call c its leading coefficient

and cts the leading term.

The action of τ on K is ruled by

τ(t) = τ(
1

x
) =

1

x+ 1
=

t

1 + t
= t− t2 + t3 − · · · ,

which extends to Kr as well as K following

τ(t
1
r) = t

1
r (1 + t)−

1
r = t

1
r (1− 1

r
t+

(−1
r)(−1

r − 1)

2
t2 − · · ·).

We briefly describe the universal extension of K. For more details see [19, Chapter 6]. Denote

by K{hyp} the algebra over K generated by hypergeometric solutions. Let τ act naturally on

29

K{hyp}. Then the polynomial ring K{hyp}[l] is a universal extension of K, equipped with a

τ -action following the rule

τ(l) = l + t.

The valuation v extends to K[l] by setting v(
∑n

i=0 ail
i) = min{v(ai) : i = 0, 1, . . . , n}.

Generalized exponents. This section will show how generalized exponents classify solutions

of operators up to a factor of valuation 0. First consider the group

{hyp(f) : f ∈ K∗r }/{f ∈ K∗r : v(f) = 0}, (4.2)

which classifies hypergeometric elements over Kr up to a factor of valuation 0. Applying the map

g 7→ τ(g)
g , namely hyp(f) 7→ f , the group (4.2) becomes

Gr := K∗r /K1,r,

where K1,r = { τ(f)f : f ∈ Kr, v(f) = 0}.

Lemma 49. Claim that

K1,r = {g ∈ K∗r : v(g − 1) > 1}.

Proof. A straight-forward calculation shows that

τ(f)

f
= 1− v(f)t+ o(t). (4.3)

Obviously when v(f) = 0 the right-hand side is 1 + o(t).

The other direction follows from the proof given in [6, Lemma 3.2.4]

Thus, f, g ∈ K∗r represent the same class in Gr when v(fg −1) > 1, which, by applying properties

of valuations, happens if and only if v(f − g) > v(f) + 1. For

f = cts(1 +
∞∑
i=1

ait
i
r) ∈ K∗r , where r <∞,

denote

Trunc(f) = cts(1 +

r∑
i=1

ait
i
r) ∈ K∗r .

30

Clearly Trunc : K∗∞ → K∗∞ is well-defined. Then v(f − Trunc(f)) > v(f) + 1, which means the

image of f in Gr is represented by Trunc(f). Hence Gr can be identified with Er := Trunc(K∗r), a

set of representatives. For r 6∞,

Gr = {cts(1 +
r∑
i=1

ait
i
r) : c ∈ C, s ∈ 1

r
Z, ai ∈ C}

and G∞ =
⋃∞
r=1 Gr. The following short exact sequence of abelian groups is natural,

1→ K1,r → K∗r
Trunc−−−→ Gr → 1,

where the group structure on Er is given by

g1 ◦ g2 = Trunc(g1g2), g1, g2 ∈ Gr.

Denote

K[l]h = {hyp(f)p : f ∈ K, p ∈ K[l] \ {0}} ⊆ K{hyp}[l]. (4.4)

It is a multiplicative monoid. Using the properties of hypergeometric functions, h ∈ K[l]h can be

written uniquely in the form h = hyp(g)p, where g ∈ E∞ and p ∈ K[l] has valuation 0. Define

gen(h) = e. Call gen(h) the generalized exponent of h, because gen : K[l]h → E∞ is an extension of

v : K[l]→ Q, where (Q,+) is embedded into (K[l]h, ·) by q 7→ 1 + qt, and hence a generalization of

exponents. It is not hard to verify that gen preserves multiplication using the fact that hyp(f
Trunc(f))

lies in K and has valuation 0.

Generalized exponents of operators are defined in [6]. An order n operator has exactly n gener-

alized exponents in E, counting with multiplicity. The relevant property for us is:

Proposition 50. For a non-zero operator L ∈ K[τ], e ∈ E∞ is a generalized exponent of L if and

only if there exists a solution h ∈ K[l]h with e = gen(h).

Definition 51. Based on Proposition 50, say e ∈ E is a generalized exponent of the system

τY = MY if this system has a solution of the form hyp(e)S where S ∈ K[l]n and v(S) = 0.

Remark 52 (Algorithms). For operators over C(x) we can quickly compute all generalized exponents

with the program GeneralizedExponents in the LREtools package in Maple 2021. There is also an

implementation for computing the unramified generalized exponents (i.e. those in G1) for systems

over C(x) ⊆ K. For this chapter, these suffice.

31

Remark 53. Denote g = Trunc(f) for f ∈ K
∗. Due to Lemma 49, hyp(fg) lies in K and has

valuation 0. Hence if hyp(f)S is a hypergeometric solution of a system where v(S) = 0, then e is a

generalized exponent.

Now we discuss the relation between hypergeometric solutions of systems over C(x) and their

generalized exponents. Since C(x) ⊆ K, Trunc(f) ∈ G1 for f ∈ C(x)∗. For a monic Laurent series

f = tn + dtn+1 + · · · ∈ K∗,

denote slc(f) = d, where slc stands for second leading coefficient.

For a monic polynomial

A = xn + dxn−1 + · · · ,

we have

Trunc(A) = xn + dxn−1 = t− deg(A)(1 + slc(A)t),

and for a non-zero rational function cAB where A,B are monic polynomials, straight-forward com-

putations show that

Trunc(c
A

B
) = ctdeg(B)−deg(A)(1 + (slc(A)− slc(B))t).

The following lemma justifies the definition of H in Step BP2 (section 4.3).

Lemma 54. Consider Equation (sys). Suppose A,B ∈ C[x] are monic. If there is a solution in

the form hyp(cA/B)P where P ∈ C(x)n then the system has a generalized exponent cts(1+dt) ∈ E1

that satisfies

deg(B)− deg(A) = s, slc(A)− slc(B)− d = v(P) ∈ Z. (4.5)

If we further require P ∈ C[x]n then the relations have a stronger form

deg(B)− deg(A) = s, − slc(A) + slc(B) + d = −v(P) = deg(P) ∈ N. (4.6)

We will refer to (4.5) as the weak compatibility relations and (4.6) the strong compatibility rela-

tions.

Proof. The proof is routine. Notice that

hyp(c
A

B
)P = hyp(c

A

B
)tv(P)t−v(P)P = hyp(c

A

B
(1 + t)−v(p))t−v(P)P,

32

where v(t−v(P)P) = 0. By Remark 53 the existence of such a solution implies

Trunc(c
A

B
) ◦ Trunc((1 + t)−v(P)) = ctdeg(B)−deg(A)(1 + (slc(A)− slc(B)− v(P))t)

is a generalized exponent in E1. When P ∈ C[x]n, −v(P) = deg(P) ∈ N.

Example 55. Consider the same system as in Example 47. There are two unramified generalized

exponents:

t2(1 + 2t), t−1(1− 4t).

Therefore c = 1. Eight A/B’s in S(M) from Step 1 (Example 47) match t2(1 + 2t); none matches

the other generalized exponent. N

4.3.3 Step BP3

In this step, for each potential λ = cA/B, compute polynomial solutions of λτ(P) = MP using

the algorithm given in [2].

Example 56 (Continued from Example 55). Our next step is to find all polynomial solutions of the

system

τ(P) = (c
A

B
)−1MP (4.7)

for each cAB . The algorithm finds the space of hypergeometric solutions is one dimensional over Q,

generated by the hypergeometric vector

hyp(
x+ 1

x(x+ 2)(x+ 3)
)



(x+ 1)3(x+ 2)x2

(x+ 2)(x+ 1)(−x− 1)
(x+ 2)2(x+ 1)2

−x4 − 4x3 − 3x2 + 1
−x− 2

(x+ 2)(x+ 3)

 .

In fact, this solution is computed four times because four different cAB ’s all lead to it with seemingly

different representations. If hyp(λ)P is a solution where P ∈ C[x]n and hyp(λ′) = f hyp(λ) for

some f ∈ C[x], then the algorithm will rediscover hyp(λ)P by computing hyp(λ′)fP . N

The issues (a),(b) in section 4.1, computing too many candidates and duplicate solutions, will

be addressed in the next section.

33

4.4 Algorithm Version II

4.4.1 Type and local types

Definition 57 (Type). For f1, f2 ∈ C(x)∗, say f1 and f2 have the same type if hyp(f1)C(x) =

hyp(f2)C(x).

In the Step BP1 of Algorithm Version I, the set S may contain different A
B with the same type. If

we can select one single A
B for each type, then repeated solutions are avoided. This can be achieved

by bounding the local types of A
B .

Notation: For a prime polynomial p ∈ C[x], denote [p] := {τ i(p) : i ∈ Z}. Since p is irreducible,

[p] consists of all polynomials that are shift equivalent (Definition 31) to p.

We note that it is easy to detect if two irreducible polynomials are shift equivalent. It suffices

to do so for two monic polynomials. When f, g are monic and g(x+ i) = f(x), we have i deg(g) +

slc(g) = slc(f). Consequently, f, g are shift equivalent if and only if slc(f)−slc(g)
deg(g) is an integer and

g(x+ slc(f)−slc(g)
deg(g)) = f(x).

For a prime polynomial p ∈ C[x], let vp : C(x)→ Z ∪ {∞} be the p-valuation.

Definition 58 (Local Type). For a non-zero element a ∈ C(x) \ {0} and a prime polynomial

p ∈ C[x], let

gp(a) =
∑
k∈Z

vτk(p)(a).

In other words, gp is the sum of valuations with respect to all prime polynomials that are shift

equivalent to p. We call gp(a) the local type of a at [p].

The following theorem shows the relation between types and local types.

Theorem 59 ([21, Theorem 1]). Suppose c1A1
B1
, c2

A2
B2
∈ C(x)∗ where A1, B1, A2, B2 ∈ C[x] are

monic and c1, c2 ∈ C. Then c1A1
B1

and c2A2
B2

have the same type if and only if

• c1 = c2, and

• gp(c1A1
B1

) = gp(c2
A2
B2

) for any prime p ∈ C[x].

Let now Y = hyp(cA/B)P be once more a hypergeometric solution to Equation (sys) where

c ∈ C∗ and A,B ∈ C[x] are monic. Then Theorem 46 yields A | denom(M−1) and B | denom(M).

The first statement implies

0 6 gp(A) 6 gp(denom(M)−1)

34

for every prime polynomial p ∈ C[x] while the second statement

0 6 gp(B) 6 gp(denom(M)).

Now we restate Theorem 46 in terms of local types.

Lemma 60. For a hypergeometric solution Y = hyp(cAB)P of Equation (sys) where c ∈ C∗ and

A,B ∈ C[x] are monic, we have

−gp(denom(M)) 6 gp(A/B) 6 gp(denom(M−1))

for every prime p ∈ C[x] where τ(γ)/γ = A/B.

4.4.2 The algorithm

Theorem 59 and Lemma 60 lead to a second algorithm for computing hypergeometric solutions.

Algorithm: Version II

Input: τY = MY , where M ∈ GL(n,C(x))

Output: hypergeometric solutions of the system

Step BP1 – Compute denom(M) and denom(M−1).

– Factor denom(M) and denom(M−1). Say

denom(M) = a1

m∏
i=1

peii , denom(M−1) = a2

m∏
i=1

peii ,

where a1, a2 ∈ C − {0} and pi are monic irreducible polynomials.

– Sort p1, . . . , pm according to their shift equivalence classes. Suppose [p1], [p2], . . . , [pl]

are all the shift equivalence classes.

– For i = 1, 2, . . . , l, calculate gpi(denom(M)) and pqi(denom(M−1)).

– Return S2 := {
∏l
i=1 p

fi
i : −gpi(denom(M)) 6 fi 6 gpi(denom(M−1))}.

Step BP2 – Compute

G := {unramified generalized exponents of the system}.

– Let

H2 := {cA
B

: cxs(1 + dx−1) ∈ G, A
B
∈ S2, deg(A)− deg(B) = s, d− slc(

A

B
) ∈ Z}.

Step BP3 – Let Sols = ∅.

35

– For each cAB ∈ H2, solve the system τP = c−1BAMP for (a basis of) rational
solutions using the algorithm introduced in [2]. Add hyp(cAB)P to Sols for any
rational solution P .

– Return Sols as the output.

Remark 61. Notice that the Step BP2 and Step BP3 are slightly different from the same steps

in Version I. The reason is, if hyp(cA/B)P is a hypergeometric solution in the standard form, in

Step BP1 Version II A/B is computed up to its type, since local types do not distinguish different

functions of the same type. To be more precise, there exists a unique A′/B′ ∈ S2 such that A′/B′

has the same type as A/B, and the solution will be discovered is in the form hyp(cA
′

B′)P
′, where

P ′ = hyp(A/B) hyp(A′/B′)−1P is not guaranteed to have polynomial entries. Hence in Step BP2

the weak compatibility relations (4.5) are applied instead of the strong and in Step BP3 we compute

rational solutions.

Example 62. LetM be the same matrix as in Example 47. Recall that denom(M) = x(x+2)2(x+3)

and denom(M−1) = (x+1)2(x+2). All factors of denom(M) and denom(M−1) are shift equivalent

to x, and

gx(denom(M)) = 4, gx(denom(M−1)) = 3.

Therefore,

S2(M) = {xi : −4 6 i 6 3}.

The cardinality of S2(M) is 8, much less than that of S1(M)(Example 47).

In Example 55 we calculated the unramified generalized exponents of the system:

t2(1 + 2t), t−1(1− 4t).

The elements in S2(M) that match one of them are x−2, x and hence H2(M) = {x−2, x}. We cannot

discard the generalized exponent t−1(1− 4t) because it is not ruled out by the weak compatibility

relations (4.5). Despite that, in this version we have a significantly shorter list of cA/B. N

4.4.3 Discussion

Due to the fact that each candidate for A
B has a distinct type, this version has the following

advantages over Version I:

• there are less candidates for A
B in step BP1;

• no duplicate solutions will be produced.

36

However, as pointed out in Remark 61, if cA/B ∈ H2, where H2 is defined in Step BP2, leads to

a solution hyp(cA/B)P , P may not have polynomial entries. We will see in the next version A,B

can be chosen in a way to guarantee P ∈ C[x]n.

4.5 Algorithm Version III

In Algorithm Version II we are able to greatly reduce the size of the list of cAB by avoiding

repeated types. This section is devoted to the technical result that we can further improve the

algorithm by choosing A/B in a way such that in Step BP3 we only need to search for polynomial

solutions instead of rational ones. The idea is to make sure A/B satisfies the conditions in Theo-

rem 46 and at the same time minimize slc(A)− slc(B). A few notations are needed before stating

the main result of this section.

Suppose r1, r2 ∈ C(x) are of the same type. Say r1 is smaller than r2, denoted by r1 4 r2, if
hyp(r2)
hyp(r1)

∈ C[x]. It is easy to see that 4 is a partial order (on the set of all non-zero rational functions

or those that are of the same type). Theorem 46 states that every hypergeometric solution can

be written as hyp(cAB)P where P ∈ C[x]n. If hyp(c′ A
′

B′)P
′ = hyp(cAB)P and c′ A

′

B′ 4 cAB , then a

consequence is P ′ ∈ C[x]n. Thus, to achieve the goal, we want A
B to be as small as possible. In

general, there is no smallest rational function for a type, but with the restriction that A | denom(M)

and B | denom(M−1), the smallest element does exist.

Recall that

S(M) = {A
B

: A,B ∈ C[x] monic, A | denom(M−1), B | denom(M)}

contains all potential A
B in Algorithm Version I (section 4.3). Consider the partition S(M) =⋃

i Ti(M) of S(M), where each Ti(M) consists of all elements of a particular type.

Theorem 63. Suppose si ∈ Ti(M) has the smallest slc in Ti(M). Namely slc(si) = min{slc(r) :

r ∈ Ti(M)}. Claim that si is the smallest element in Ti(M).

Proof. All elements in Ti(M) have the same local types. Hence the local types of Ti(M) are well-

defined. Suppose Ti at [pj] has non-zero local types e1, e2, . . . , eN at [p1], [p2], . . . , [pN], respectively,

where p1, p2, . . . , pN are mutually shift non-equivalent. We first consider the case where Ti(M) has

only one single non-zero local type. Suppose p is a prime polynomial, at which the local type of Ti

does not vanish.

37

Suppose p is a prime polynomial which divides either denom(M) or denom(M−1). Denote

pj(x) = p(x+ j) for any j ∈ Z. There exists

Assume si is not the smallest element in Ti. Then there exists r ∈ Ti such that hyp(rsi) /∈ C[x].

Therefore there exists an irreducible polynomial p ∈ C[x] such that

hyp(
r

si
) =

f

pg
,

where f, g ∈ C[x] and gcd(f, pg) = 1. Then si p
τ(p) ∈ Tiand

slc(si
p

τ(p)
) = slc(si) + slc(p)− slc(τ(p)) = slc(si)− deg(p),

which contradicts to the assumption that si has the smallest slc among elements in Ti.

Due to the anti-symmetry of 4, the smallest element is unique.

We remark that if cts(1 + dt) is the unramified generalized exponent with the largest d that is

compatible with hyp(cAB)P where P ∈ C[x]n, then d− slc(A/B) is a degree bound for P due to the

relation d = slc(A/B) + deg(P). With a degree bound the problem of finding polynomial solutions

reduces to solving a system of linear equations.

Example 64. Let M be the same as in Example 47. The unramified generalized exponents are:

t2(1 + 2t), t−1(1− 4t).

There are eight types of elements in S(M), two of them matching the generalized exponents, as was

stated in Example 62. The smallest elements (in S(M)) of these two types are

s1 =
x+ 1

(x+ 2)2(x+ 3)
s2 =

(x+ 1)2

x+ 3
.

The set of candidates for cAB is { x+1
(x+2)2(x+3)

, (x+1)2

x+3 }. The algorithm in [2] finds the following poly-

nomial solution for P in τ(P) = hyp(s1)MP (and no polynomial solution for τ(P) = hyp(s2)MP):

x3(x+ 2)(x+ 1)4

−x(x+ 2)(x+ 1)3

x(x+ 2)2(x+ 1)3

−x(x+ 1)(x4 + 4x3 + 3x2 − 1)
−x(x+ 2)(x+ 1)

x(x+ 3)(x+ 2)(x+ 1))


N

38

4.6 Application: Beke-Bronstein Algorithm

The Beke-Bronstein algorithm ([10] and [5]) for factoring differential operators partially applies

to polynomials and difference operators as well. In the recurrence case, the factorization problem

converts into solving a recurrence system for hypergeometric solutions. With the algorithms in-

troduced in this chapter, we have a complete algorithm for factoring recurrence operators. In the

following we reformulate the Beke-Bronstein approach in the language of exterior algebra first for

the polynomial case and then the difference case. We skip some details on the latter since it works

almost the same for both cases.

4.6.1 Polynomial case

Let f ∈ Q[y] be the polynomial that is to be factored. Assume y - f throughout this section. If

g is a factor of f then so is ag where a ∈ Q∗. It is unnecessary to distinguish g and ag as factors of

f . Thus we consider factors of f as elements in P(Q[x]). Introduce the notation [g] for the element

in P(Q[x]) with g ∈ Q[x] − {0} being its representative. Call [g] the projective class of g and a

projective factor of f if g | f . Let Factm(f) = {[g] : g | f, deg(g) = m} for m ∈ Z+. Namely

Factm(f) is the set of degree-m projective factors. It is worth noting that Factm(f) does not store

the information of multiplicities of factors.

Let M = Q[y]/(f). Then M is a Q[y]-module. For g | f with deg(g) = m, let µ(g) =

g ∧ yg ∧ · · · ∧ yn−m−1g ∈
∧n−mM . Suppose g =

∑m
i=0 biy

i.

Lemma 65. The coordinate of µ(g) with respect to yi ∧ ym+1 ∧ ym+2 ∧ · · · ∧ yn−1 is bi(bm)n−m−1.

Proof. It is a straight-forward calculation.

A direct consequence is, under the assumption that y - f , µ(g) 6= 0. For a ∈ Q∗, we have

µ(ag) = an−mµ(g) 6= 0. Thus

µ([g]) := Qµ(g) ⊂
n−m∧

M,

is well-defined since µ([g]) does not depend on the choice of representatives. Identify µ([g]) with

a point in P(
∧n−mM), since it is a one-dimensional subspace. Lemma 65 also implies once the

expression of µ([g]) under the standard basis is given then we are able to rebuild [g] easily. In other

words, there exists a map η : P(
∧n−mM)→ P(Q[y]) induced by the projection map from

∧n−mM

to the subspace spanQ(yi ∧ ym+1 ∧ · · · ∧ yn−1 : i = 0, . . . ,m) such that η ◦ µ is the identity map on

Factm(f).

39

Next we show that we are able to compute µ(Factm(f)).

Theorem 66. Let

Em(f) := {1-dimensional subspaces of
n−m∧

M that are Q[y]-modules}.

Claim that

µ(Factm(f)) = Em(f).

Proof. Show that

µ1 : Factm(f)→ {m-dimensional subspace of M that are Q[y]-module}

and

µ2 : {(n−m)-dimensional subspace of M that are Q[y]-module} → Em(f)

are bijections and µ is the composition.

By the proposition µ(Factm(f)) is in fact the collection of 1-dimensional eigensapces of y as a

linear map over
∧n−mM . The algorithm of finding linear factors allows us to compute eigenvalues

and consequently eigenspaces.

Example 67. Suppose f = y4 + 2y3 + 3y2 + 2y + 2. Now the goal is to find factors of f of degree 2,

since using the algorithm for computing linear factors we confirm that there is no first degree factor

of f . In the module M = Q[y]/(f) the relation

y4 = −2y3 − 3y2 − 2y − 2

holds. The action of y on
∧2M is given by

1 ∧ y3 7→ y ∧ y4 = y ∧ (−2y3 − 3y2 − 2y − 2)

y ∧ y3 7→ y2 ∧ y4 = y2 ∧ (−2y3 − 3y2 − 2y − 2)

y2 ∧ y3 7→ y3 ∧ y4 = y3 ∧ (−2y3 − 3y2 − 2y − 2)

1 ∧ y 7→ y ∧ y2

1 ∧ y2 7→ y ∧ y3

y ∧ y2 7→ y2 ∧ y3

40

which can be represented by the matrix

0 −2 0 2 0 −3
0 0 −2 0 2 2
2 2 3 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

The eigenvalues and eigenvectors are

(2,



−1
0
−1
−1
0
1

), (1,



1
1

0.5
2
2
1

).

Next we verify whether the eigenvectors satisfy the Plücker relations. In this case the Plücker

relations are one single polynomial

X0,1X2,3 −X0,2X1,3 +X0,3X1,2,

where Xi,j is the coordinate corresponding to the basis vector yi∧yj . A straight-forward calculation

shows that both eigenvectors are solutions of the Plücker relations. To obtain factors of f , we take

the components of the eigenvectors corresponding to 1 ∧ y3, y ∧ y3, y2 ∧ y3:

−1 · 1 ∧ y3 − 1 · y2 ∧ y3, 1 · 1 ∧ y3 + 1 · y ∧ y3 +
1

2
y2 ∧ y3,

which lead to factors

−1− y2, 1 + y +
1

2
y2.

N

4.6.2 Difference case

Notice that D = Q(x)[τ] is a vector space over Q(x). Let [R] ∈ P(D) be the equivalence class

of R. Similar to the polynomial case, call [R] the projective class of R and a projective factor of L

if R is a right-hand factor of L. Let Factm(L) := {[R] : R is an order-m right-hand factor of L}.

Denote M = D/DL. Define

µ : Factm(f)→
n−m∧

M,

[R] 7→ Q(x)R ∧ τR ∧ · · · ∧ τn−m−1R.

41

Theorem 68. Let

Em(L) := {1-dimensional Q(x)-subspaces of
n−m∧

M that are D-modules}.

Claim that µ(Factm(L)) = Em(L).

Proof. Similar to Theorem 66.

Similar to the polynomial case, the problem of factorization converts to that of finding D-

submodules of
∧n−mM that are 1-dimensional over Q(x), This is in fact equivalent to solving a

difference system for hypergeometric solutions.

Example 69. Let

L = τ4 +
x4 + 2x3 + 6x2 − 3x− 18

x3 + 5x− 6
τ3 − x4 + 5x3 + 14x2 + 28x− 12

x3 + 5x− 6
τ2

− x5 + 3x4 + 8x3 + 3x2 − 21x− 18

x3 + 5x− 6
τ +

3x2(x2 + 3x+ 8)

x3 + 5x− 6
.

To find order-2 factors of L, consider the D-module
∧2D/DL. The action of τ on

∧2D/DL with

respect to the basis

e0 = 1 ∧ τ3, e1 = τ ∧ τ3, e2 = τ2 ∧ τ3, e3 = 1 ∧ τ, e4 = 1 ∧ τ2, e5 = τ ∧ τ2,

is given by 

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
r1 0 r2 0 r3 0
0 r4 r5 0 0 r6
0 0 0 r7 r8 r9


where

r1 =
3x2(x2 + 3x+ 8)

x3 + 5x− 6
, r2 =

x4 + 5x3 + 14x2 + 28x− 12

x3 + 5x− 6
, r3 = −x

4 + 2x3 + 6x2 − 3x− 18

x3 + 5x− 6
,

r4 =
3x2(x2 + 3x+ 8)

x3 + 5x− 6
, r5 = −x

5 + 3x4 + 8x3 + 3x2 − 21x− 18

x3 + 5x− 6
,

r6 = −x
4 + 2x3 + 6x2 − 3x− 18

x3 + 5x− 6
, r7 =

3x2(x2 + 3x+ 8)

x3 + 5x− 6
,

r8 = −x
5 + 3x4 + 8x3 + 3x2 − 21x− 18

x3 + 5x− 6
, r9 = −x

4 + 5x3 + 14x2 + 28x− 12

x3 + 5x− 6
.

The hypergeometric vectors are

C1(1, 0,−x, x+ 1, 0, x(x+ 1))ᵀ, C2(1,−x,−3, x2 + x+ 3, 3x+ 3, 9)ᵀ,

42

where C1, C2 are non-zero constants. They both satisfy Plücker relations so there are two essentially

different factors of L:

τ2 − x, τ2 − xτ − 3.

N

A difference system of order
(
n
m

)
has to be solved in the course of computing order-m factors of

an order-n operator. The size of the system can be large when m,n are small. Thus we want to

have an algorithm that factors difference operators without solving a system of a big size.

43

CHAPTER 5

HEURISTIC FACTORIZER

In the Beke-Bronstein approach, when looking for order-m factors of an order-n operator, a differ-

ential/difference system of order
(
n
m

)
needs to be solved. When m,n are not small,

(
n
m

)
can be so

large that solving a difference system of such an order is beyond the capacity for a normal PC. This

motivates us to look for factorization algorithms without solving a system of a big size.

For a polynomial, the minimal polynomial of a root is either a non-trivial factor or the polynomial

itself, which proves its irreducibility. In the difference case, however, the minimal operators (the

difference analog of minimal polynomials) of most solutions of a recurrence operator are the given

operator itself even when there are non-trivial factors. Hence just picking a random solution does

not help. In this chapter the heuristic factorizer is presented, where certain solutions, which are

likely to yield non-trivial factors, are constructed. The algorithm is fast since it avoids solving a

system of a high rank.

In this entire chapter we mainly work with the difference field C(x). Let V be its universal

extension (Definition 18) and D = C(x)[τ] the ring of recurrence operators.

5.1 Heuristic Factorizer

Suppose f is a polynomial and a a root of f . Then the minimal polynomial of a is an irreducible

factor of f . This fact is used in some algorithms for factoring polynomials. Similarly, in the difference

case we can also define minimal operator of a solution: for s ∈ V − {0}, call R a minimal operator

of s if R(s) = 0 and R has the smallest order among all non-zero annihilators of s. Equivalently,

DR is the left ideal of annihilators of s. Solutions and minimal operators may yield algorithms for

factoring difference operators without solving sizable systems. However, a major difficulty is that

not all solutions lead to interesting results. Call s a special solution of L if L is an annihilator but

not a minimal operator of s. Most solutions of a difference operator are not special. In this section

we introduce the heuristic factorizer, in which certain solutions are constructed and it turns out the

constructed solutions often contain special solutions.

44

5.1.1 Sequences and extension

Traditionally, a (infinite) sequence is a function whose domain is N. Here we call a C-valued

function a sequence if its domain is p+N, p−N or p+Z for some p ∈ C. Furthermore, if the domain

is p + N then call it a right sequence,if p − N then a left sequence and if q + Z then a two-sided

sequence.

The sets Cp+N,Cp−N,Cp+Z of sequences are C-algebras, where addition and multiplication are

defined pointwise.

Suppose L =
∑n

i=0 ai(x)τ i ∈ C[x][τ] where an 6= 0. Then L induces the following C-linear maps

for any p ∈ C:

L : Cp+N → Cp+N,

f(x) 7→
n∑
i=0

ai(x)f(x+ i);

L : Cp−N → Cp−n−N,

f(x) 7→
n∑
i=0

ai(x)f(x+ i).

If f is in the null space of L then say f is a sequence solution of L. If f is a solution of some

non-zero operator then call f recursive.

Example 70 (Fibonacci Sequence). The Fibonacci sequence

F (1) = 1, F (2) = 1, F (3) = 2, · · ·

is recursive, since

(τ2 − τ − 1)(F (x)) = F (x+ 2)− F (x+ 1)− F (x) = 0.

N

If f is a sequence solution of L with ord(L) = n and n consecutive values of f are known, then in

most cases (Example 71) we can extend right (extend towards ∞) and extend left (extend towards

−∞). However, there are cases (Example 72) where extending left or right cannot be done.

Example 71. Suppose f ∈ CZ is a solution of L = 2τ2− (2x+3)τ+(2x−1) with f(0) = 0, f(1) = 1.

Then f satisfies the equation

2f(x+ 2)− (2x+ 3)f(x+ 1) + (2x− 1)f(x) = 0. (5.1)

45

Plugging in x = 0 we see that

f(2) =
1

2
((2 · 0 + 3)f(1)− (2 · 0− 1)f(0)) =

3

2
.

In fact, Equation 5.1 implies for integer x > 1, f(x) is determined by f(x− 1), f(x− 2). Then by

induction we can compute f(x) for all positive integer x. This process is right extension of f .

Similarly, f(x) can be extended left (computed for all negative integer x). Here we give f(−1)

as an example and omit the rest:

f(−1) =
−2f(1) + (−2 + 3)f(0)

−2− 1
=

2

3
.

N

Example 72. Suppose f ∈ C1/2+Z is a solution of L = 2τ2 − (2x + 3)τ + (2x − 1) with f(3/2) =

1, f(5/2) = 2. To extend f to left we plug x = 1/2 into the equation

2f(x+ 2)− (2x+ 3)f(x+ 1) + (2x− 1)f(x) = 0,

to obtain that

2 · 2− 4 · 1 + 0 · f(1/2) = 0,

which does not tell us anything about f(1/2).

N

5.1.2 Constructing solutions

Construction (Heuristic special solution algorithm). Suppose L =
∑n

i=0 aiτ
i where ana0 6= 0.

Suppose q is the largest root of an(x) in q + Z. Construct a right sequence solution u : q + Z → C

of L whose terms in [q, q + n] are

u(q) = 0, u(q + 1) = 0, . . . , u(q + n− 1) = 0, u(q + n) = 1.

Clearly, u satisfies the recurrence relation Lu = 0 in the interval [q, q+n]. Since q+n is the largest

root of an in q+Z, it can be extended into a right sequence solution of L. Call u a candidate-special

solution.

Observation: if L is reducible, then the candidate-special solution is often a special solution of

L.

46

Example 73. Let L = (2x2 + x− 1)τ2 + (−3x+ 1)τ + 1. It corresponds to the recurrence relation

(2x2 + x− 1)f(x+ 2) + (−3x+ 1)f(x+ 1) + f(x) = 0.

Notice that f(x + 2) is almost always determined by f(x) and f(x + 1). The only exceptions are

the roots of 2x2 + x − 1. For instance, plugging x = −1 into the recurrence equation leads to the

relation

0f(1)− 2f(0) + f(−1) = 0,

which implies that f(1) is not determined by f(0) and f(−1).

Let u : −1 + Z+ → C be a sequence such that τ(u) = 0 and u(x) = 0 for x < 1. Without loss

of generality, let u(1) = 1. Then the values of u for x > 1 are determined recursively.

0
-1

0
0

1
1

1
2

1
2

3

1
6

4

1
24

5
. . .

Figure 5.1: First few terms of u

Such defined u is a solution of the operator xτ − 1, which turns out to be a right-hand factor of

L. N

The construction does not always lead to all right-hand factors of the input operator. We use

the theory of valuation growths, which is first introduced in [21], as a tool to study when it works

and what kind of factors can be found this way.

5.2 Valuation Growths

5.2.1 Germs of sequences

Pre-universal extensions (Definition 18) of C(x) can be constructed out of spaces of sequences

Cp+N and Cp−N where p ∈ C. In the following we focus on CN and it works the same way in other

cases.

Say f, g ∈ CN are almost everywhere equal if f(x) = g(x) holds for all but finitely many x.

Denote this by f a.e.
== g. It is easy to see a.e.

== is an equivalence relation and the equivalence class

containing 0 is an ideal. Denote by [f]a.e. the equivalence class of f and let V +
0 be the quotient ring

CN/[0]a.e.. Call it the germ of f . The action of τ on CN induces an action on V +
0 by

τ : [(a0, a1, a2, . . .)]a.e. 7→ [(a1, a2, · · ·)]a.e..

47

The inverse of τ on V +
0 does exist and is given by

τ−1 : [(a0, a1, a2, . . .)]a.e. 7→ [(a, a0, a1, · · ·)]a.e.

where a can be any complex number. Then τ is an automorphism of V +
0 .

Claim that (V +
0 , τ) is a difference extension of (C(x), τ) with the inclusion map

C(x)→ V +
0 ,

f(x) 7→ [(f(0), f(1), f(2), · · ·)]a.e.,

where [·]a.e. takes care of finitely many undefined values (or poles) of f . We need to show that
f1
g1

a.e.
== f2

g2
for f1, g1, f2, g2 ∈ C[x] and g1, g2 6= 0 implies f1

g1
= f2

g2
. In fact, when f1

g1

a.e.
== f2

g2
, we

have f1g2
a.e.
== f2g1, and the almost everywhere equality can be replaced by an equality, since two

polynomials in C[x] are equal if and only if they agree at infinitely many points. This proves (V +
0 , τ)

is a difference extension of (C(x), τ).

For L ∈ C(x)[τ], denote by V +
0 (L) the solution space of L in V +

0 . To verify that V +
0 is a pre-

universal extension, we need to show ord(L) = dimC(V +
0 (L)). In fact, for any [u] ∈ V +

0 (L), there

exists a sufficiently large integer N such that L(u(x)) = 0 for x > N , and hence [u] is determined

by its values at N + 1, N + 2, · · · , N + ord(L).

We can also define V +
q and V −q (using sequences in Cq−N) for any q ∈ C in the same way. For

q1, q2 ∈ C such that q1 − q2 ∈ Z, we can identify V +
q1 with V +

q2 , and V
−
q1 with V −q2 . Hence V +

p and

V −p are well-defined for p ∈ C/Z.

5.2.2 Shift singularities and valuation growths

As is seen in Example 72, a left solution of L cannot always be extended to a right solution. If

the extension fails at the point q, we call q a problem point and p = q+Z ∈ C/Z a shift singularity

of L.

Example 74. Let L = (2x+ 1)τ2− 2xτ + 1 and p = 1
2 +Z. Suppose u is a sequence with u(1/2) = 1

and u(3/2) = 1. A division by zero issue arises at q = 2.5 when extending u to right (Figure 5.2).

The point q = 2.5 is a problem point, and p = 1
2 + Z is a shift singularity of L.

N

In order to extend a left (right) sequence solution into a right (left) one, informally speaking,

we can make a perturbation to the domain of a solution such that division by zero can be avoided.

48

. . . -1
−1.5

1
−0.5

1
0.5

1
1.5

undefined
2.5 3.5 4.5

. . .

Figure 5.2: Extension fails due to division by zero

Let ε be a new constant that is transcendental over C(x) to obtain a difference extension C(x, ε)

of C(x).

Consider the map

ı : D → C(x, ε)[τ],

n∑
i=0

ai(x)τ i 7→
n∑
i=0

ai(x+ ε)τ i.

It preserves multiplication since

τ · (x+ ε)− (x+ ε)τ = τ

and hence is a ring homomorphism. In addition it is clearly injective and therefore an embedding.

Let Dε be the image of D under ı. Consider C(ε)q+Z, the space of C(ε)-valued sequences on

q + Z. The action of Dε on C(ε)q+Z is given by

x+ ε : u(x) 7→ (x+ ε)u(x), x ∈ q + Z

τ : u(x) 7→ u(x+ 1), x ∈ q + Z.

Different from the action of D on sequences, C(ε)q+Z is a well-defined Dε-module. Introducing ε

eliminates the division by zero issue, since for any a(x) ∈ C(x)∗ and x ∈ C, a(x+ ε) is always a non-

zero rational function in ε. Therefore, if u ∈ C(ε)q+Z is a solution of Lε of order n, with its initial

values at n consecutive points, we are able to compute any other term by the recurrence relation

without any division by zero issue. For this reason the solution space of Lε is n-dimensional over

C(ε). Denote by Vq(Lε) Vq+Z(Lε) the solution space of Lε in C(ε)q+Z. Denote by vε the ε-valuation

on C(ε).

Definition 75. For a non-zero ũ ∈ Vp(Lε), define its left valuation to be

vε,l(ũ) = lim inf
m→−∞

vε(ũ(m)),

and its right valuation

vε,r(ũ) = lim inf
m→∞

vε(ũ(m)),

49

and the valuation growth

gp,ε(ũ) = vε,r(ũ)− vε,l(ũ).

For L ∈ D, define the set of valuation growths of L at p to be the collection of valuation growths of

solutions of Lε, namely

gp(L) = {gp,ε(ũ)|ũ ∈ Vp(Lε), ũ 6= 0}.

Let gp,r, gp,l be the maximal and minimal valuation growths of L at p, respectively.

Denote

Rp,m = {ũ ∈ Vp(Lε)|vε,r(ũ) > m},

and

Lp,m = {ũ ∈ Vp(Lε)|vε,l(ũ) > m},

where m is an integer.

Lemma 76. For each integer m, Lp,m is a subspace of Rp,m+gp,r and Rp,m is a subspace of Lp,m+gp,l .

Proof. Directly follows from the definitions.

Lemma 77. As C-vector spaces, Rp,m(L)/Rp,m+1(L) ∼= V +
p (L), Lp,m(L)/Lp,m+1(L) ∼= V −p (L).

Proof. We prove Rp,m(L)/Rp,m+1(L) ∼= V +
p (L) for the special case p = Z. Proof for the general

case can be done in the same way. For ũ ∈ Rp,m, denote by C(ũ, x,m) the coefficient of εm in the

Laurent expansion of ũ(x). Consider the map

ψm : Rp,m(L)→ V +
p (L),

ũ 7→ [C(ũ, 1,m), C(ũ, 2,m), · · ·].

We verify the map is well-defined, that is, the image of ũ is indeed in V +
p (L). Suppose L =

∑n
i=0 aiτ

i.

Then the equation
n∑
i=0

ai(x+ ε)ũ(x+ i) = 0 (5.2)

holds for x ∈ Z. By the definition of Rp,m, there exists a large enough integer N such that for

any integer x > N , the ε-adic valuation of ũ(x) is greater than or equal to m, and therefore

C(ũ, x,m) = ε−mũ(x) |ε=0. Dividing both sides of (5.2) and plugging in ε = 0, we have

n∑
i=0

ai(x)C(ũ, x+ i,m) = 0

50

for x > N , which proves ψm is well-defined. It is routine to check ψm is C-linear and its kernel is

Rp,m+1(L).

Lemma 78. The map Ep,r(L) : V −p (L)→ V +
p (L) (resp. Ep,l(L) : V +

p (L)→ V −p (L)) induced by the

inclusion map Lp,m → Rp,m+gp,r (resp. Rp,m → Lp,m+gp,l) is well-defined and independent on m.

Proof. The fact that the image of Lp,m+1 under the inclusion map Lp,m → Rp,m+gp,r is contained

in Rp,m+1+gp,r validates the well-definedness of Ep,r. The independence of Ep,r on m is due to

Lemma 77.

Definition 79. We call Ep,r(l) and Ep,l(L) introduced in Lemma 78 extension maps.

Lemma 80 ([21, Lemma 7]). The compositions of extension maps Ep,r ◦ Ep,l : V +
p → V +

p and

Ep,l ◦ Ep,r : V −p → V −p are either identity maps or zero maps. To be more precise, when gp,r 6= gp,l,

they are zero maps; when gp,r = gp,l, they are identity maps.

Definition 81. Suppose L is singular at p ∈ C/Z.

• If the set of valuation growths gp(L) = {0}, then p is called an apparent shift singularity.

• If gp(L) has one single non-zero element, then p is called a semi-apparent shift singularity.

• If there are more than one elements in gp(L), then p is called a true shift singularity.

If p is a true shift singularity of L, then

0 (Im(Ep,r) ⊆ ker(Ep,l) (Vp,l(L)

and

0 (Im(Ep,l) ⊆ ker(Ep,r) (Vp,r(L).

With the notion of extension maps, some subspaces of V (L) stand out, namely ker(Ep,l) and

ker(Ep,r). The candidate-special solutions constructed in subsection 5.1.2 often lie in the kernels of

extension maps.

With the theory of finite singularities, we can come up with some other special solution algo-

rithms.

Suppose p ∈ C/Z. Let ũ1, ũ2 ∈ Vp(Lε) be solutions with maximal and minimal valuation

growths, respectively. The method to construct such solutions was given in [21, Section 4.2]. Suppose

vl,ε(ũ1) = 0 and vr,ε(ũ2) = 0. Let u1 ∈ V −p (L), u2 ∈ V +
p (L) be the sequence solutions induced by

ũ1, ũ2 under the isomorphisms Lp,0(L)/Lp,1(L) ∼= V −p (L), Rp,0(L)/Rp,1(L) ∼= V +
p (L), respectively.

Claim that under some circumstances u1 or u2 is special.

51

Proposition 82. When L = LCLM(L1, L2) where GCRD(L1, L2) = 1 and gp(L1) 6= gp(L2), at

least one of the following statements is true:

(i) u1 is a solution of either L1 or L2;

(ii) u2 is a solution of either L1 or L2.

Proof. When gp(L1) 6= gp(L2), max(gp(L1)) 6= max(gp(L2)) or min(gp(L1)) 6= min(gp(L2)). We

prove statement (i) for the case max(gp(L1)) 6= max(gp(L2)). The proof of statement (ii) when

min(gp(L1)) 6= min(gp(L2)) is similar.

Without loss of generality, assume max(gp(L1)) > max(gp(L2)). Since L = LCLM(L1, L2), there

exist r1 ∈ Vp(L1,ε) and s1 ∈ Vp(L2,ε) such that ũ1 = r1 + s1. Since max(gp(L1)) > max(gp(L2)), we

have

gp,ε(s1) < max(gp(L1)) 6 max(gp(L)) = gp,ε(ũ1).

Due to the assumption that GCRD(L1, L2) = 1,

vr,ε(ũ1) = min{vr,ε(r1), vr,ε(s1)},

since otherwise L1 and L2 have a common non-zero solution in V +
p . Therefore,

vl,ε(s1) = vr,ε(s1)− gp,ε(s1) > vr,ε(ũ1)− gp,ε(ũ1) = vl,ε(ũ1).

Hence u1 is in fact the image of r1 so it is a solution of L1.

In fact, when the assumption of Proposition 82 holds, the construction in subsection 5.1.2 almost

always produces a special solution.

By combining the heuristic factorizer and the deterministic one from chapter 4, we obtain a

program that is both fast and complete.

52

CHAPTER 6

DEGREE BOUND OF FACTORS

Let D = F (x)[τ] where F is a subfield of C. Suppose u is a sequence solution of L ∈ D and we want

to decide if L is the minimal recurrence for u, or if u satisfies a lower order recurrence. A natural

approach is to let R =
∑n−1

i=0

∑d
j=0 cijx

jτ i and solve the equations Ru = 0 for cij . This raises the

question what d should be.

Hence we ask:

Suppose L ∈ D and R is a primitive right-hand factor of L, how can we bound the
degrees of the coefficients of R?

In this chapter a complete solution is presented and with examples we demonstrate that our

method yields quite sharp bound. The main tool is generalized exponents.

This chapter is organised in the following order: we first define generalized exponents of difference

operators and then derive a relation between generalized exponents and the determinant; next we

prove a theorem which connects determinant and degree bound for leading coefficients; then an

algorithm for bounding the degree of the leading coefficients is presented and an example is given;

finally we show how to bound the degree of other coefficients.

6.1 Generalized Exponents

We have defined generalized exponents for systems in subsection 4.3.2. In this section gener-

alized exponents of operators will be introduced, following the approach in [6, Section 3.2]. Some

background knowledge introduced in subsection 4.3.2 will not be repeated, such as the algebraic

closure of K = C((t)) where t = 1/x, the universal extension of K and the truncation map. Any

notation or concept that lacks a definition in this chapter are defined in subsection 4.3.2.

6.1.1 Indicial equations

To solve a difference operator L ∈ Kr[τ], the first kind of solutions to consider are those in Kr.

In order to find solutions in Kr, a straight-forward idea is to apply L on a power series in Kr with

undetermined coefficients, set the result to be zero and solve the equation for coefficients. This

naturally leads to the notion of indicial equations.

53

Let ∆ = τ − 1. Then K[∆] = K[τ]. The valuation of K extends to one on K[∆], also denoted

by v:

v(
∑
i

ai∆
i) = min{v(ai) + i}.

Computations in Lemma 3.2.1 of [6] show that

v(L(tλ)) = P (λ)tλ+v(L) + o(tλ). (6.1)

where P (λ) ∈ C[λ].

Definition 83. Call P (λ) ∈ C[λ] in the equation 6.1 the indicial equation of L. Denote it by

Ind(L, λ).

Lemma 84 ([6, Lemma 3.2.4]). For L ∈ Kr[τ] where r is finite, there is a non-zero solution of L

in Kr if and only if Ind(L, λ) has a root in 1
rZ. In particular, there exists a solution in Kr whose

valuation is the largest root of Ind(L, λ) in 1
rZ.

Proof. The case r = 1 is proved in [6], using the method of ansatz. The proof for a general r is no

different.

Lemma 85. Claim that Ind(tqτ0, λ) = 1, and Ind(∆, λ) = −λ.

Proof. The desired results follow immediately from

tqtλ = tq+λ

and

∆(tλ) = tλ(1 + t)−λ − tλ = −λtλ+1 + o(t).

Next lemma will play a crucial role later on.

Lemma 86 ([6, Lemma 3.2.5]). Suppose L = L1L2. Then

Ind(L, λ) = Ind(L1, λ+ v(L2)) · Ind(L2, λ).

Recall that in subsection 4.3.2 a new variable l which satisfies τ(l)− l = t is introduced.

Lemma 87 ([6, Theorem 3.2.10]). Suppose L ∈ Kr[τ]\{0}. Then dimC(Sol(L,Kr[l])) is the number

of roots of Ind(L) in 1
rZ.

54

6.1.2 A class of automorphisms

Following the classification of difference modules ([19, Chapter 6]) over K, the solution space of

L ∈ K[τ] in Ω(K) = K{hyp}[l] has a C-basis in K[l]h (defined by (4.4)), that is,

Sol(L) = SpanC{hyp(a1)p1,hyp(a2)p2, · · · , hyp(an)pn}

where a1, . . . , an ∈ K
∗ and p1, . . . , pn ∈ K[l]. We will construct a class of automorphisms φa :

K[τ] → K[τ], where a ∈ K∗, such that solutions of L in hyp(a)K[l] correspond to those of φa(L)

in K[l]. We note that the construction is valid for any difference field.

Observe that

τ · x = (x+ 1)τ, (aτ) · x = (x+ 1)(aτ),

where a ∈ K. This suggests we can extend τ 7→ aτ, x 7→ x to K[τ] to obtain an endomorphism of

K[τ]. The said endomorphism can be expressed by

φa : K[τ]→ K[τ],

n∑
i=0

aiτ
i 7→ ai(aτ)i.

It is routine to check it is indeed an endomorphism. When a ∈ K∗, φa is an automorphism since

φa−1 is its inverse.

Lemma 88. Suppose L ∈ K[τ], a ∈ K∗ and y ∈ Ω(K). Then L(hyp(a)y) = hyp(a)(φa(L))(y).

Proof. It follows from the fact that

τ(hyp(a)y) = a hyp(a)τ(y) = hyp(a)(aτ)(y).

It follows immediately that hyp(a)y is a solution of L if and only if y is a solution of φa(L).

Next we derive some results about how indicial equations behave under φa.

Lemma 89. If Trunc(a) = 1, then Ind(φa(L), λ) = Ind(L, λ).

Proof. By definition a = 1 + o(t). Therefore

(τ − a)(tλ) = ∆(tλ) + (1− a)tλ = (λtλ+1 + o(tλ+1)) + o(tλ+1).

55

By definition Ind(τ − a) = λ. Lemma 84 implies hyp(a) ∈ K has valuation 0. Without loss of

generality, assume hyp(a) = 1 +
∑

i∈ 1
r
Z+
hit

i ∈ Kr.

Since

hyp(a)φa(L)(tλ) = L(hyp(a)tλ),

a comparison of the leading terms of both sides shows that Ind(φa(L), λ) = Ind(L, λ).

As a corollary, Ind(φa(L), λ) = Ind(φTrunc(a)(L), λ).

Lemma 90. Suppose L ∈ K[τ] and c ∈ Q. Claim that

Ind(φ1−ct(L), λ) = Ind(L, λ+ c).

Proof. Notice that (τ(t
c)
tc τ)n = (t−cτtc)n = t−cτntc, which means φ τ(tc)

tc
(L) = t−cLtc. Apply

Lemma 86 to t−cLtc:

Ind(t−cLtc, λ) = 1 · Ind(L, λ+ v(tc)) · 1 = Ind(L, λ+ c).

Since

Trunc(
τ(tc)

tc
) = 1− ct,

we have

Ind(φ1−ct(L), λ) = Ind(t−cLtc, λ) = Ind(L, λ+ c).

6.1.3 Multisets

Generalized exponents of an operator form a finite multiset. In this section we introduce nec-

essary basics of finite multisets that will be used later. In the following a multiset will always be

finite.

A multiset in the universe U is a collection of finite elements in U , where an element is allowed to

appear multiple times. The number of ocurrences of an element in a multiset is called itsmultiplicity.

A multiset can be denoted in the same way as a set by listing all its elements inside a {·}.

Suppose A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} are multisets. Then

A+B := {a1, . . . , an, b1, bm}.

For multisets A and C, if there is a multiset B such that A+ B = C then we say A is a subset of

C, denoted by A ⊆ C. In this case we also write B = C−A. We will only subtract A from C when

A is a subset of C.

56

Example 91. Let A = {1, 1, 2}, B = {1, 2, 2}, C = {1, 2}. Then

A+B = {1, 1, 1, 2, 2, 2}, A+ C = {1, 1, 1, 2, 2}, B + C = {1, 1, 2, 2, 2}.

We have C ⊆ A and C ⊆ B because

C + {1} = A, C + {2} = B.

N

Example 92. The irreducible factors of a polynomial p ∈ F [x] form a multiset, which we denote by

irr(p). Then irr(pq) = irr(p) + irr(q). N

6.1.4 Generalized exponents

Definition 93. Suppose L ∈ K[τ] and g ∈ G∞. If 0 is a root of Ind(φg(L), n) with multiplicity m,

call g a generalized exponent of L with multiplicity m. Denote by gen(L) the multiset of generalized

exponents of L.

Lemma 94. For a ∈ K∗, Trunc(a) is a generalized exponent of L with multiplicity m if and only

if 0 is a root of Ind(φa(L), n) with multiplicity m.

Proof. By Lemma 89, Ind(φa(L), n) = Ind(φgen(a)(L), n).

Lemma 95. For a ∈ K∗, τ − a = {Trunc(a)}.

Lemma 96. If L = L1L2, then gen(L2) ⊂ gen(L).

Proof. This is an immediate consequence of Lemma 86 and the fact that φa is an automorphism of

K[τ] when a 6= 0.

6.1.5 Generalized exponents and solutions

In this section we discuss the relation between generalized exponents and solutions of an operator

and prove Theorem 102, which justifies Definition 51. Nothing in this section will be used for the

major application of generalized exponents in this chapter (Theorem 106), so readers can safely skip

this section if they want.

Extend the t-adic valuation to K[l] by setting

v(

d∑
i=0

ail
i) = min{v(ai) : i = 0, 1, 2, . . . , d}.

57

Lemma 97. For L ∈ K[∆] and P ∈ K[l], v(L(P)) > v(L) + v(P). When v(P) is not a solution of

Ind(L) it is an equality.

Proof. By the triangle inequality of valuation and additivity of ∆ : K[l] → K[l], it reduces to

verifying

v(∆(aln)) > 1 + v(a).

A straight-forward computation shows

∆(aln) = τ(a)(l + t)n − aln = (τ(a)− a)ln + τ(a)
n∑
k=1

(
n

k

)
tkln−k.

Therefore its valuation is

v(∆(aln)) = min{v(τ(a)− a), v(τ(a)t), v(τ(a)t2), . . . , v(τ(a)tn)} = min{v(τ(a)− a), v(τ(a)) + 1}.

It remains to show that v(τ(a)− a), v(τ(a)) + 1 > v(a) + 1. These inequalities are true because

τ(a)

a
= 1− v(a)t+ o(t)

and hence

v(τ(a)) = v(a),

v(τ(a)− a) = v(a)v(
τ(a)

a
− 1) = v(a)v(v(a)t) = v(a) + 1.

Denote

τl : K[l]→ K[l],

P (l) 7→ P (l + 1)

and ∆l = τl − id. Then τl is an automorphism of K[l] that is commutative with τ . If L(P) = 0 for

L ∈ K[τ] and P ∈ K[l], then

L(τl(P)) = L(∆l(P)) = 0.

Lemma 98. For P ∈ K[l], v(∆l(P)) 6 v(P).

Proof. This reduces to the case P = ld, which is obvious.

Lemma 99. Suppose L ∈ K[τ] is the minimal operator for P ∈ K[l]− {0}. Then

Sol(L) = SpanC{∆i
l(P) : i = 0, 1, . . . ,degl(P)}.

58

Proof. Clearly the right-hand side is a subset of the left-hand side. By the classification of difference

modules over K, the minimal operator of P must have an order greater than or equal to degl(P) +

1.

Lemma 100. Suppose L ∈ K[τ] is the minimal operator for P ∈ K[l]−{0} where v(P) = 0. Then

0 is a solution of the indicial equation of L.

Proof. Suppose L1 is the minimal operator of ∆l(P). Then L = L2L1, where

L2 = ∆ · 1

L1(P)
.

Ind(L) = Ind(L2, n+ v(L1))Ind(L1, n) = (v + v(L1)− v(L1(P))Ind(L1, n).

If 0 is a root of Ind(L1, n) then we are done; otherwise v(L1(P)) − v(L1) = v(P) = 0 is a root of

Ind(L).

Lemma 101. Suppose 0 is a solution of Ind(L). Then there exists a solution P with valuation 0.

Proof. Suppose r1 > r2 > · · · > rk > 0 are all positive integer roots of Ind(L). Using the technique

in [6, Lemma 3.2.4] (there exists a solution in K with valuation being the largest integer root of

the indicial equation), we can find L2 with order k such that Ind(L2) = (n− r1)(n− r2) · · · (n− rk)

and L = L1L2. Let s ∈ K be a solution of L1 with the largest integer valuation and u a preimage

of s under L2. Then v(s) = v(L2(u)) > v(L2) + v(u). Since v(s) is the largest integer root of

Ind(L1), v(s) − v(L2) is the largest integer root of Ind(L1, n + v(L2)), which is 0, and hence not

a root of Ind(L1, n). Therefore, v(u) 6 v(s) − v(L2) is not a root of Ind(L1, n) and it follows

v(u) = v(s)− v(L2) = 0.

Theorem 102. An operator L ∈ K[τ] has g ∈ G as a generalized exponent if and only if it has a

solution in the form hyp(e)f , where f ∈ K[l] has valuation 0.

Proof. By definition g is a generalized exponent of L if and only if 0 is a solution of Ind(φe(L), λ),

if and only if φe(L) has a solution f ∈ K[l] with valuation 0 by Lemma 101, if and only if hyp(e)f

is a solution of L.

59

6.2 Generalized Exponents and Determinant

In this section Theorem 106, which connects generalized exponents of an operator with its

determinant (Definition 105), is proved.

Definition 103. For a, b ∈ K, let

ṽ(a, b) = v(aτ − b) = v(a∆ + (a− b)) = min{v(a) + 1, v(a− b)}.

We note ṽ is symmetric although it does not seem so at first glance. When v(a) = v(b), it is

obvious; when v(a) 6= v(b), by the definition of valuation,

ṽ(a, b) = min{v(a) + 1, v(a− b)} = min{v(a) + 1, v(a), v(b)} = min{v(a), v(b)}

and ṽ(b, a) = min{v(a), v(b)} for the same reason. Therefore,

ṽ(a, b) = min{v(a) + 1, v(b) + 1, v(a− b)}.

Lemma 104. Suppose L = L1(τ − a). Claim that

gen(L) = {g : g(1− ṽ(g, a)t) ∈ gen(L1)}+ {a},

or equivalently,

gen(L1) = {g(1− ṽ(g, a)t) : g ∈ gen(L)− {a}}.

Proof. By Lemma 86,

Ind(φg(L), n) = Ind(φg(L1), n+ v(gτ − a))Ind(gτ − a, n) = Ind(φg(L1), n+ ṽ(g, a))Ind(gτ − a, n).

Lemma 90 says

Ind(φg(L1), n+ ṽ(g, a)) = Ind(φg(1−ṽ(g,a)t)(L1), n).

Therefore,

Ind(Φg(L), n) = Ind(Φg(1−ṽ(g,a)t)(L1), n)Ind(Φg(τ − a), n).

As a consequence,

gen(L) = {g | g(1− ṽ(g, a)t) ∈ gen(L1)}+ gen(τ − a) = {g | g(1− ṽ(g, a)t) ∈ gen(L1)}+ {a}.

60

For any L ∈ K[τ] \ {0} there exists a such that

L = L1(τ − a).

This can be seen by the classification of difference modules over K ([19, Chapter 6]). By induction

it implies an order-n operator has exactly n generalized exponents counting multiplicity.

Definition 105. For L =
∑n

i=0 aiτ
i with ana0 6= 0, call det(L) := (−1)n a0an the determinant of L.

Notation: denote a G∼ b for a, b ∈ K∗ when Trunc(a) = Trunc(b), in other words, the images of

a and b in G are identical. Then (1− d1t)(1− d2t)
G∼ 1− (d1 + d2)t.

The following theorem shows the relation between generalized exponents and determinants.

Theorem 106. Let L =
∑n

i=0 aiτ
i ∈ K[τ] where a0 6= 0. Suppose gen(L) = {g1, g2, . . . , gn}. Claim

that

det(L)
G∼ g1g2 · · · gn(1−

∑
0<i<j6n

ṽ(gi, gj)t).

Proof. Assume an = 1 without loss of generality. Then det(L) = (−1)na0.

We prove it by induction. The case n = 1 is proved in Lemma 95.

Assume the result holds for operators with order n. Consider L′ = L(τ − f0) where ord(L) = n.

Suppose gen(L′) = {g0, g1, g2, . . . , gn} where g0
G∼ f0. By Lemma 104, gen(L) = {gi(1− ṽ(g0, gi)t) |

i = 1, 2, . . . , n}.

Denote g′i = gi(1− ṽ(g0, gi)t). We verify ṽ(g′i, g
′
j) = ṽ(gi, gj). Definition of valuation implies

v(g′i) = v(gi) + v(1 +O(t)) = v(gi).

When v(g′i − g′j) < min{v(gi) + 1, v(gj) + 1}, by properties of valuation we know

v(g′i − g′j) = v(g′i − g′j + giṽ(g0, gi)t− gj ṽ(g0, gj)t) = v(gi − gj).

As a result,

ṽ(g′i, g
′
j) = min{v(g′i) + 1, v(g′j) + 1, v(g′i − g′j)}

= min{v(gi) + 1, v(gj) + 1, v(gi − gj)}

= ṽ(gi, gj).

61

Then we have

det(L′) = f0 det(L)

G∼ g0g′1g′2 · · · g′n(1−
∑

0<i<j6n

ṽ(g′i, g
′
j)t)

= g0g1 · · · gn
(n∏
i=1

(1− ṽ(gi, g0)t)
)
(1−

∑
0<i<j6n

ṽ(gi, gj)t)

= g0g1 · · · gn(1−
∑

06i<j6n

ṽ(gi, gj)t).

6.3 Determinant and Degree Bound for Leading Coefficient

In this section denote lc(·) and tc(·) the leading and trailing coefficients of an operator, respec-

tively. Suppose R ∈ F [x][τ] is a right-hand factor of L ∈ F [x][τ] and both operators are primitive.

According to subsection 3.2.1, after a shift, lc(R) is the product of the essential part and the re-

movable part, both defined in Definition 24, and the essential part appears as a factor of lc(L) after

a shift. Hence the essential part is naturally bounded by lc(L) and the problem is to bound the

removable part.

In the following we define essential parts differently from Definition 24 so that they are factors

of the leading coefficient without a shift. We also define essential parts for the trailing coefficient.

Definition 107. Suppose L ∈ F [x][τ] is normal. The leading (resp. trailing) essential part of L at

order k ∈ Z+ ∪ {∞} is a monic polynomial f ∈ F [x] such that

(i) τord(A)(f) | lc(AL) (resp. f | tc(AL)) for any normal operator A ∈ F (x)[τ] with order 6 k

such that AL ∈ F [x][τ];

(ii) f is maximal in terms of divisibility among all polynomials satisfying (i).

Denote by lck(L) (resp. tck(L)) the leading (resp. trailing) essential part of L at order k. Denote

lrpk(L) =
lck−1

lck
(resp. trpk(L) =

tck−1

tck
) for finite k and call it the leading (resp. trailing) removable

part of L at level k.

Remark 108. The relation between lck and lck (Definition 24) is lck(L) = τdegτ (L)(lck(L)). By

properties of lck introduced in subsection 3.2.1 we know lci(L) | lcj(L) if i > j. Hence lrpk(L) ∈ F [x].

Trailing essential parts are not defined in subsection 3.2.1, but they are very similar to the leading

essential parts. In particular, trpk(L) ∈ F [x] and a trailing analog of Theorem 26 holds. In fact,

tc(L) is the leading coefficient of L if we view L as a difference operator in τ−1.

62

The following theorem is the main result of this section.

Theorem 109. Suppose L =
∑n

i=0 aiτ
i ∈ D and R =

∑m
i=0 biτ

i ∈ D are normal and primitive,

and R is a right-hand factor of L. Let B = lc∞(R), A = tc∞(R). There exist c ∈ F, f ∈ F [x]such

that
τ(fbm)

fbm
= c

τ(B)

A
det(R). (6.2)

A straight-forward calculation shows that

τ(fbm)

fbm

G∼ 1 + deg(fbm)t,

where deg(fbm) is obviously a degree bound for bm. On the other side, Trunc(c τ(B)
A det(R)) is on

a finite list because A,B are by definition monic factors of a0, τm−n(an), respectively, and det(R)

can be computed from gen(R) ⊆ gen(L) by Theorem 106.

The rest of this section is devoted to the proof of Theorem 109.

The notion of F -factors is introduced to simplify the proof.

Definition 110. Suppose E/F is a field extension. For a polynomial f ∈ E[x], call a factor of f

in F [x] an F -factor. Denote by fF the monic F -factor of f that is maximal in terms of divisibility.

Clearly F -factors of f are closed under lcm. Hence fF exists by taking the lcm of all F -factors.

Lemma 111. Suppose E/F is a field extension and f, g ∈ E[x]. Then fF gF = (fg)F .

Proof. Clearly fF gF is a monic F -factor of fg. We only need to show it is maximal in terms of

divisibility. Suppose h is an F -factor of fg. Then there exist h1, h2 ∈ F [x] such that h = h1h2 and

h1 | f, h2 | g. Hence h | fF gF .

We will use the main result in [8], a reformulation of which is presented as Theorem 26. Here

we give a second reformulation.

Theorem 112 (Reformulation of Theorem 6 in [8]). Suppose L ∈ F [x][τ] is normal. Introduce new

constants c1, c2, . . . , ck that are algebraically independent over F . Let A = (τ−c1)(τ−c2) · · · (τ−ck)

and L′ = Prim(LCLM(L,A)) ∈ F (c1, . . . , ck)[x][τ]. Then lc(L′)F = τk(lck(L)) and tc(L′)F =

tck(L).

63

We explain why Theorem 26 and Theorem 112 are equivalent. Let c′i denote the coefficient of τ i

in A = (τ − c1)(τ − c2) · · · (τ − ck). Then by the fundamental theorem of symmetric polynomials,

c′0, c
′
1, . . . , c

′
k−1 are algebraically independent. Hence Theorem 26 applies. The result also holds for

trailing coefficients because the original theorem ([8, Theorem 6]) is stated for any Ore operators,

and viewed as an operator in τ−1, the leading coefficient of L is tc(L).

Lemma 113. For a normal and primitive operator L ∈ F [x][τ], τ(lrp1(L)) = trp1(L).

Proof. Denote L =
∑n

i=0 aiτ
i.Let c be a new constant that is transcendental over F . In subsec-

tion 3.6.1 we calculated that

L′ =

n+1∑
i=0

ci(aiτ − τ(ai−1))L

is an LCLM of τ − c and L, where ai = 0 for i > n or i < 0. A further computation shows that

L′ = (aτ − cτ(a))L,

where a =
∑n

i=0 c
iai. By assumption L is primitive, then so is a as a polynomial in c with coefficients

in F [x]. Gauss’s lemma implies a has no non-trivial factor in F [x] as a polynomial in x. In other

words, aF = 1. By Theorem 112, lc(Prim(L′))F = τ(lc1(L)) and tc(Prim(L′))F = tc1(L). On the

other hand,

lc(Prim(L′)) =
lc(L′)

Cont(L′)
=
aτ(lc(L))

Cont(L′)
, tc(Prim(L′)) =

tc(L′)

Cont(L′)
=
cτ(a)tc(L)

Cont(L′)
.

Hence

τ(lrp1(L)) =
lc(Prim(L′))F

τ(lc(L))
=

1

Cont(L′)F
=

tc(Prim(L′))F

tc(L)
= trp1(L).

Theorem 114. For L ∈ F [x][τ], τk(lrpk(L)) = trpk(L).

Proof. Let c1, c2, . . . , ck be new constants that are algebraically independent over F and

L′ = Prim(LCLM((τ − c1)(τ − c2) · · · (τ − ck−1), L)) ∈ F (c1, . . . , ck−1)[x][τ].

Apply Lemma 113 to L′ to obtain

τ(lrp1(L
′)) = trp1(L

′). (6.3)

Let

L′′ = Prim(LCLM(τ − ck, L′)).

64

As a result of Theorem 112, lc(L′′)F = τ(lc1(L
′)), tc(L′′)F = tc1(L

′). On the other side, by the

definition of LCLM, we have

L′′ = Prim(LCLM(τ − ck, (τ − c1) · · · (τ − ck−1), L)) = Prim(LCLM((τ − c1)(τ − c2) · · · (τ − ck), L)),

which implies τ(lc1(L
′))F = lc(L′′)F = τk(lck(L)), tc1(L

′)F = tc(L′′)F = tck(L). Hence by taking

the maximal F -factors on both sides of (6.3) the desired result is proved.

Proof of Theorem 109. Let B = lc∞(R), A = tc∞(R). There exists a sufficiently large N ∈ Z such

that B = lcN (R), A = tcN (R). Then

lc(R) = c1lrp1(R)lrp2(R) · · · lrpN (R)B,

tc(R) = c2trp1(R)trp2(R) · · · trpN (R)A,

where c1, c2 are leading coefficients of lc(R), tc(R), respectively. Taking the quotient of the two

equations, we obtain

det(R) = c
A

B

N∏
i=1

trpi(R)(lrpi(R))−1 = c
A

B

N∏
i=1

τ i(lrpi(R))

lrpi(R)
,

where c = (−1)m c2
c1
. For a polynomial p ∈ F [x], we have τ i(p)/p = τ(pτ(p)···τ i−1(p))

pτ(p)···τ i−1(p)
. This proves

τ(fbm/B)

fbm/B
= c

B

A
det(R)

for some f ∈ F [x]. By the definition of essential parts, we know τn−m(B) | lc∞(L), A | tc∞(L).

6.4 The Algorithm and an Example

Algorithm: degree bound for leading coefficients of factors.

Input: L =
∑n

i=0 aiτ
i ∈ Q(x)[τ] where a0an 6= 0 and positive integer m < n

Output: integer d, which bounds deg(lc(R)) for primitive right-hand factor R with ord(R) = m

1 Compute gen(L) and list all its subsets of m elements.

2 Compute the truncations of all potential determinants of order m factors by using formula
Theorem 106. Discard those that are not in the form c(1 + dt) where c ∈ Q and d ∈ Z. If
there is none left then terminate and return "Order-m right-hand factor does not exist".

65

3 List all (A,B)-pairs where A,B are monic and A | a0, B | τm−n(an). Compute Trunc(τ(B)
A det)

for each (A,B)-pair and each det from the previous step. Only keep the ones that are in the
form c(1 + dt), where c ∈ Q, d ∈ N and deg(B) 6 d. If there is none left, return "Order-m
right-hand factor does not exist"; otherwise output the largest d.

Example 115. Let L =
4∑
i=0

aiτ
i be the recurrence operator from [12], where

a4 = 33x(3x− 1)(3x− 2),

a3 = 11(2047x3 − 10725x2 + 17192x− 8520),

a2 = 9(−4397x3 − 10169x2 + 110500x− 145368),

a1 = −54(2x− 5)(5353x2 − 33313x+ 53904),

a0 = −115668(2x− 5)(2x− 7)(x− 4).

Suppose R =
2∑
j=0

bjτ
j ∈ Q[x][τ] is an order-2 primitive right-hand factor of L.

The generalized exponents of L are

g1 = C1(1− 4t), g2 = C1(1− 4t),

g3 = C2(1−
t

2
), g4 = C2(1−

t

2
),

where C1, C1 are the solutions of the equation 11C2 +891C+3213 = 0, and C2, C2 are the solutions

of 27C2 − 140C + 144 = 0.

There are 6 condidates for genexp(R). Since we focus on finding factors in Q(x)[τ], genexp(R)

can only be {g1, g2} or {g3, g4}. Using Theorem 106 we see that any other candidate leads to det(R)

having irrational coefficients.

Let

det1 = Trunc(g1g2(1− v(g1 − g2)t)) =
3213

11
(1− 8t);

det2 = Trunc(g3g4(1− v(g3 − g4)t)) = −16

3
(1− t).

Next let (A,B) run over all the monic factors of a0, τ−2(a4), respectively. There are two candi-

date for τ(B)
A that are compatible with at least one of potential determinants:

h1 :=
x− 1

x− 4
, h2 :=

(x− 1)(x− 4/3)(x− 5/3)

(x− 5/2)(x− 7/2)(x− 4)
.

Then

Trunc(h1 det1) =
3213

11
(1− 5t),

66

Trunc(h2 det1) =
3213

11
(1− 2t),

Trunc(h1 det2) = −16

3
(1 + 2t),

Trunc(h2 det2) = −16

3
(1 + 5t).

By Theorem 109, deg(bm) is either 2 or 5.

The heuristic special solution algorithm shows that one and likely the only one second-order

right-hand factor is R =
2∑
j=0

bjτ
j , where

b2 = 3(3x− 8)(x− 2)(3x− 7)(221x2 − 1607x+ 2904),

b1 = −2(2x− 5)(7735x4 − 94920x3 + 432119x2 − 864954x+ 642312),

b0 = −36(2x− 5)(2x− 7)(x− 4)(221x2 − 1165x+ 1518).

In particular, deg(b2) = 5. N

6.5 Bounding Other Coefficients

A degree bound for leading coefficient easily yields one for other coefficients using the following

proposition.

Proposition 116. Suppose L,R ∈ F [x][τ] are both primitive and R is a right-hand factor of L.

Then

degx(R) 6 degx(L)− deg(lc(L)) + deg(lc(R)).

Proof. There exists a primitive operator L1 ∈ F [x][τ] and a polynomial f ∈ F [x] such that

fL = L1R.

Hence

deg(f) + degx(L) = degx(L1) + degx(R)

and

deg(f) + deg(lc(L)) = deg(lc(L1)) + deg(lc(R)).

By subtracting the two equations we see that

degx(R) = degx(L)− deg(lc(L))− (degx(L1)− deg(lc(L1)) + deg(lc(R))

6 degx(L)− deg(lc(L)) + deg(lc(R)).

67

A sharper bound is achievable by exploiting the Newton polygons (defined in [6, Page 20]) of L

and R. In fact, Proposition 116 is a tacit application of Newton polygons where we only use the

lowest vertices, which correspond to the terms with the largest x-degree.

68

BIBLIOGRAPHY

[1] S. A. Abramov, M. A. Barkatou, and M. van Hoeij. Apparent singularities of linear difference
equations with polynomial coefficients. Applicable Algebra in Engineering, Communication and
Computing, 17:117 – 133, 2006.

[2] Sergei Abramov. Eg-eliminations. Journal of Difference Equations and Applications, 5:393–433,
01 1999.

[3] Alin Bostan, Xavier Caruso, and Éric Schost. A fast algorithm for computing the characteristic
polynomial of the p-curvature. In Proceedings of the 39th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’14, pages 59–66, New York, NY, USA, 2014. ACM.

[4] Manuel Bronstein. Personal communication.

[5] Manuel Bronstein. An improved algorithm for factoring linear ordinary differential operators.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC
’94, pages 336–340, New York, NY, USA, 1994. ACM.

[6] Yongjae Cha. Closed Form Solutions of Linear Difference Equations. PhD thesis, Florida State
University, 2010.

[7] Shaoshi Chen, Maximilian Jaroschek, Manuel Kauers, and Michael F. Singer. Desingulariza-
tion explains order-degree curves for Ore operators. In Proceedings of the 38th International
Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pages 157–164, New York,
NY, USA, 2013. Association for Computing Machinery.

[8] Shaoshi Chen, Manuel Kauers, and Michael F. Singer. Desingularization of Ore operators.
Journal of Symbolic Computation, 74:617 – 626, 2016.

[9] Thomas Cluzeau. Factorization of differential systems in characteristic p. In Proceedings of
the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC ’03, pages
58–65, New York, NY, USA, 2003. Association for Computing Machinery.

[10] Beke E. Die irreduzibilität der homogenen linearen differentialgleichungen. Math. Ann., 45:278–
294, 1894.

[11] OEIS Foundation Inc. Entry A002777 in the on-line encyclopedia of integer sequences. http:
//oeis.org/A002777.

[12] OEIS Foundation Inc. Entry A025184 in the on-line encyclopedia of integer sequences. http:
//oeis.org/A025184.

[13] OEIS Foundation Inc. Entry A151329 in the on-line encyclopedia of integer sequences. http:
//oeis.org/A151329.

69

http://oeis.org/A002777
http://oeis.org/A002777
http://oeis.org/A025184
http://oeis.org/A025184
http://oeis.org/A151329
http://oeis.org/A151329

[14] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. Published electronically
at http://oeis.org.

[15] Maximilian Jaroschek. Removable Singularities of Ore Operators. PhD thesis, RISC, Johannes
Kepler University Linz, 2013.

[16] Raphaël Pagès. Computing characteristic polynomials of p-curvatures in average polynomial
time. In Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’21, pages 329–336, New York, NY, USA, 2021. Association for Computing
Machinery.

[17] Marko Petkovšek. Hypergeometric solutions of linear recurrences with polynomial coefficients.
Journal of Symbolic Computation, 14(2):243–264, 1992. Symbolic Computation in Combina-
torics.

[18] Harrison Tsai. Weyl closure of a linear differential operator. J. SYMBOLIC COMPUT, 29:4–5,
2000.

[19] M. van der Put and M.F. Singer. Galois Theory of Linear Differential Equations. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2003.

[20] Marius van der Put. Reduction modulo p of differential equations. Indagationes Mathematicae,
7(3):367–387, 1996.

[21] Mark van Hoeij. Finite singularities and hypergeometric solutions of linear recurrence equa-
tions. Journal of Pure and Applied Algebra, 139(1):109 – 131, 1999.

[22] Mark van Hoeij. Implementation of DEtools[Homomorphisms], added to maple in 2005. it uses
LCLM to discard apparant singularities. http://www.math.fsu.edu/~hoeij/files/Hom, 2004.

[23] Robert J. Walker. Algebraic Curves. Springer-Verlag New York, 1978.

[24] Yi Zhang. Contraction of Ore ideals with applications. In Proceedings of the ACM on Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pages 413–420, New
York, NY, USA, 2016. Association for Computing Machinery.

[25] Yi Zhou. Implementations and examples. http://www.math.fsu.edu/~yzhou/desing, 2021.

70

http://oeis.org
http://www.math.fsu.edu/~hoeij/files/Hom
http://www.math.fsu.edu/~yzhou/desing

BIOGRAPHICAL SKETCH

Yi Zhou was born in Jining, Shandong, China. He earned his Bachelor’s degree in Mathematics at

Beijing Normal University. After that, he started to pursue the doctoral degree in Pure Math at

Florida State University under the supervision of Professor Mark van Hoeij. His research interests

include computer algebra and differential/difference algebra.

71

	Title Page
	Table of Contents
	Abstract

	Introduction
	Linear Recurrence Operators
	The Factorization Problem

	Preliminaries
	Difference Rings
	Difference Operators
	Difference Modules
	Solutions of Difference Operators

	Desingularization and p-Curvature
	Introduction
	Preliminaries
	Desingularization
	LCLM method for desingularization
	The p-characteristic polynomial
	BCS algorithm and Pagès' algorithm

	Main Theorem and Corollaries
	Proof of the Main Theorem
	Special case, Gaussian operators
	Proof for the general case

	Application to Computations
	Algorithm
	Implementation and timings

	Fast Algorithms for Desingularization at Order 1
	First algorithm
	Proof
	Desingularizing both leading and trailing coefficients
	Examples and comparisons

	Future Work
	Application to Pagès' algorithm
	Differential case

	Hypergeometric Solutions of Difference Systems
	Introduction
	Hypergeometric Solutions
	Algorithm Version I
	Step BP1
	Step BP2: generalized exponents
	Step BP3

	Algorithm Version II
	Type and local types
	The algorithm
	Discussion

	Algorithm Version III
	Application: Beke-Bronstein Algorithm
	Polynomial case
	Difference case

	Heuristic Factorizer
	Heuristic Factorizer
	Sequences and extension
	Constructing solutions

	Valuation Growths
	Germs of sequences
	Shift singularities and valuation growths

	Degree Bound of Factors
	Generalized Exponents
	Indicial equations
	A class of automorphisms
	Multisets
	Generalized exponents
	Generalized exponents and solutions

	Generalized Exponents and Determinant
	Determinant and Degree Bound for Leading Coefficient
	The Algorithm and an Example
	Bounding Other Coefficients

	Bibliography
	Biographical Sketch

