Desingularization and p-Curvature of Recurrence Operators

Yi Zhou and Mark van Hoeij Supported by NSF 2007959

> Department of Mathematics Florida State University

> > ISSAC'2022.

Recurrence operators with rational function coefficients

Let $a_i(x) \in \mathbb{Q}(x)$ be rational functions in x.

Recurrence relation:

$$a_n(x)u(x+n) + \cdots + a_1(x)u(x+1) + a_0(x)u(x) = 0.$$

Solutions u(x) are functions on subsets of \mathbb{C} . For subset $\{0, 1, 2, ...\}$, solution is a sequence u(0), u(1), u(2), ...

Recurrence operator: write the recurrence as L(u) = 0 where

$$L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{Q}(x)[\tau]$$

Here τ is the shift operator. It sends u(x) to u(x+1).

Clearing denominators $\rightsquigarrow a_i \in \mathbb{Q}[x]$. Then max{degree a_i } is the degree and n is the order.

Recurrence relations come from many sources: creative telescoping, walks, QFT computations, OEIS, etc.

Example: Entry A025184 in OEIS

$$\begin{split} L(u) &= 33x(3x-1)(3x-2)u(x) \\ &+ 11(2047x^3 - 10725x^2 + 17192x - 8520)u(x-1) \\ &- 9(4397x^3 + 10169x^2 - 110500x + 145368)u(x-2) \\ &- 54(2x-5)(5353x^2 - 33313x + 53904)u(x-3) \\ &- 115668(x-4)(2x-5)(2x-7)u(x-4) = 0. \end{split}$$

 $L \in \mathbb{Q}(x)[\tau^{-1}]$ has order 4 and degree 3.

MinimalRecurrence in Maple 2021 finds

 $\begin{array}{r} 3x(3x-1)(3x-2)(221x^2-723x+574)u(x)\\ -2(2x-1)(7735x^4-33040x^3+48239x^2-27998x+5280)u(x-1)\\ -36(x-2)(2x-1)(2x-3)(221x^2-281x+72)u(x-2)\end{array}$

Price to pay: lower order but **higher degree** (order-degree curve). Minimal Order Recurrence has 3 true and 2 removable singularities. Given a recurrence relation:

$$3x(3x-1)(3x-2)(221x^2-723x+574)u(x) -2(2x-1)(7735x^4-33040x^3+48239x^2-27998x+5280)u(x-1) -36(x-2)(2x-1)(2x-3)(221x^2-281x+72)u(x-2)$$

Desingularization: find out which are true singularities and which ones can be removed if one allows the order to increase.

 $\begin{array}{r} 3x(3x-1)(3x-2)(221x^2-723x+574)u(x)\\ -2(2x-1)(7735x^4-33040x^3+48239x^2-27998x+5280)u(x-1)\\ -36(x-2)(2x-1)(2x-3)(221x^2-281x+72)u(x-2)\end{array}$

Many algorithms (closed form solutions, RightFactors in Maple 2021) only need the true singularities to work correctly. Discarding removable singularities reduces the amount of work.

p-curvature: a common tool to study differential or recurrence operators (appears in at least one talk and a poster at this conference).

The Norm of the leading coefficient (leading singularities) plays a key role in the algorithm for computing the p-curvature (Bostan, Caruso, Schost, ISSAC'2014). It is used as denominator-bound.

We expected: discarding removable singularities \rightsquigarrow sharper bound \rightsquigarrow faster computation.

To our surprise we actually get the exact denominator:

Main result: Norm(true singularities) = denominator(*p*-curvature).

As illustrated:

L may have a right-factor with lower order but higher degree (after clearing denominators).

Conversely, a multiple of L can have lower degree. We call L Gaussian if that does not happen.

We first prove the main result for Gaussian operators. To prove the result in general, we use the fact that any operator has a Gaussian multiple.

First some notation.

F: a field

F(x): the field of rational functions

 $\tau :$ the shift operator

 $\mathcal{D} := F(x)[\tau]$: ring of recurrence operators over F(x)

 $\mathcal{P} := \mathcal{F}[x][\tau]$: recurrence operators with polynomial coefficients

Addition: same as polynomials

Multiplication: $\tau \cdot r(x) = r(x+1) \cdot \tau$

A recurrence operator $L = \sum_{i=0}^{n} a_i \tau^i \in \mathcal{P}$ corresponds to the equation

$$a_n(x)u(x+n) + \cdots + a_0(x)u(x+0) = 0.$$

Generally, u(x + n) is determined by $u(x), \dots, u(x + n - 1)$ and L. Except at roots of $a_n(x)$.

Definition

Roots or factors of $a_n(x - n)$ are called (leading) singularities of L.

Singularities

$$L = \sum_{i=0}^{n} a_i \tau^i$$

Some notations:

$$lc(L) := a_n \text{ the leading coefficient}$$

$$lc^*(L) := a_n(x - n) \text{ the adjusted leading coefficient}$$

$$\mathcal{P} = F[x][\tau]$$

$$\mathcal{D} = F(x)[\tau]$$
If $A \in \mathcal{P}$ then $lc^*(L) \mid lc^*(AL)$ because

$$lc^*(AL) = lc^*(L) \cdot a$$
 shift of $lc^*(A)$

However, we will allow $A \in \mathcal{D}$ as long as $AL \in \mathcal{P}$.

Then $lc^*(AL)$ could be smaller than $lc^*(L)$ even if L is primitive! (i.e. Gauss' lemma does not hold for $\mathcal{P} \subset \mathcal{D}$)

Definition

The essential part of $lc^*(L)$, denoted $LC^*(L)$,

- divides $lc^*(AL)$ for any $AL \in \mathcal{P}$ $(A \in \mathcal{D})$
- it is maximal satisfying the first condition.

True singularities: factors/roots of $LC^*(L)$

Removable singularities: remaining factors/roots of $lc^*(L)$, these can disappear in some AL

Desingularization: Find out which singularities are removable.

Definition

 $L \in \mathcal{P}$ is *Gaussian* if $AL \in \mathcal{P}$ implies $A \in \mathcal{P}$ (for any $A \in \mathcal{D}$).

Lemma

$L \in \mathcal{P}$ is Gaussian if $LC^*(L) = lc^*(L)$ (no removable singularities)

F a field of characteristic *p*, where *p* is a prime. Let $Z = x^p - x = \prod_{i=0}^{p-1} \tau^i(x) = x(x+1)\cdots(x+p-1)$. Then F(x)/F(Z) has Galois group $\langle \tau \rangle \cong Z_p$.

Let

$$\mathcal{N}: F(x) \to F(Z)$$

 $f(x) \mapsto f(x)f(x+1)\cdots f(x+p-1)$

be the norm map.

The center of $\mathcal{D} = F(x)[\tau]$ is $F(Z)[\tau^p]$. A \mathcal{D} -module is also an $F(x)[\tau^p]$ -module, which is an F(x)-v.s. equipped with a linear transformation induced by τ^p .

Definition

- Suppose M is a finitely dimensional D-module. The p-curvature of M is the linear transformation induced by τ^p.
- An operator $L \in D$ is naturally associated with the D-module D/DL. Define the *p*-curvature to be that of the module.
- Let $\chi(L) \in F(x)[T]$ be its characteristic polynomial.

p-Curvature: Properties

1
$$\chi(L) \in F(Z)[T] \subset F(x)[T]$$

- 2 Identify T with τ^{p} . Then $\chi(L) \in F(Z)[\tau^{p}] = \operatorname{center}(\mathcal{D})$. By Cayley-Hamilton, it is the zero map on $\mathcal{D}/\mathcal{D}L$. As a result, $\chi(L) \in \mathcal{D}L$.
- 3 χ is multiplicative. $\chi(L_1L_2) = \chi(L_1)\chi(L_2)$.
- 4 Denote $\tilde{\chi}(L) = \mathcal{N}(\operatorname{lc}(L)) \cdot \chi(L)$. When $L \in \mathcal{P}$, $\tilde{\chi}(L) \in F[Z][T]$.

5 For
$$L \in \operatorname{center}(\mathcal{D})$$
, $\tilde{\chi}(L) = L^p$.

Item 4 says that $\mathcal{N}(\operatorname{lc}(L))$ is a denominator bound for $\chi(L)$, this is used in the algorithm for computing $\chi(L)$:

Bostan, Caruso, Schost, ISSAC'2014. A fast algorithm for computing the characteristic polynomial of the p-curvature

Main Theorem

Theorem

Let $L \in \mathcal{P}$. Then denom $(\chi(L)) = \mathcal{N}(\mathrm{LC}^*(L))$.

The leading coefficient of L contains the

- removable singularities, and the
- true singularities $LC^*(L)$

The theorem implies that all removable singularities disappear in the *p*-curvature, but more surprisingly:

All true singularities (their norm) do appear in denom(*p*-curvature), there is no cancellation!

This is unexpected because it implies corollaries in characteristic p that do not hold in characteristic 0.

$\operatorname{denom}(\chi(L)) \mid \mathcal{N}(\operatorname{LC}(L))$

Proof: $\chi(AL) = \chi(A)\chi(L)$. Since characteristic polynomials are always monic,

 $\operatorname{denom}(\chi(AL)) = \operatorname{denom}(\chi(A)) \cdot \operatorname{denom}(\chi(L))$

There exists A such that $lc^*(AL) = LC^*(L)$. Hence

 $\operatorname{denom}(\chi(L)) \mid \operatorname{denom}(\chi(AL)) \mid \mathcal{N}(\operatorname{lc}(AL)) = \mathcal{N}(\operatorname{LC}(L))$

Note: $lc^*(AL)$ and lc(AL) have the same Norm.

denom $(\chi(L)) = \mathcal{N}(LC^*(L))$ when L is Gaussian.

To prove: $\tilde{\chi}(L) = \mathcal{N}(\operatorname{lc}(L)) \cdot \chi(L) \in F[Z][T]$ is primitive. We know

 $\operatorname{Prim}(\chi(L)) = QL$

for some $Q \in \mathcal{D}$. Since *L* is Gaussian, $Q \in \mathcal{P}$. Apply $\tilde{\chi}$ on $\operatorname{Prim}(\chi(L))$:

 $\tilde{\chi}(\operatorname{Prim}(\chi(L))) = \tilde{\chi}(Q)\tilde{\chi}(L).$

The LHS is $(Prim(\chi(L)))^p$, which is primitive; the two factors of the RHS are in F[Z][T]. By Gauss's Lemma, $\tilde{\chi}(L)$ is primitive.

Idea of the proof: In general, for $L \in \mathcal{P}$, there exists A such that $lc^*(AL) = LC^*(L)$, which implies AL is Gaussian. Then

 $\operatorname{denom}(\chi(AL)) = \mathcal{N}(\operatorname{LC}^*(L)) = \operatorname{denom}(\chi(A)) \cdot \operatorname{denom}(\chi(L))$

Attempt to prove: denom $(\chi(A)) = 1$.

We can show that using a technical computation based on what we know about *A* from this paper:

Chen, Kauers, Singer, 2016. Desingularization of Ore operators.

p-curvature complexity?

- Say *d* is the degree of lc(L) and d^* the degree of $LC^*(L)$. Fast (partial) desingularization replaces *d* by $\approx d^*$.
- Random operators often have no removable singularities. Then d* = d, no complexity improvement!
- Does this matter? After all, I learned from Joris' invited talk that I'm a complexity extremist.
- Factoring random operators is not useful, they are irreducible.
- LCLM(two random operators of order *n* and degree *n*). Experimentally $d^* = 2n = O(\sqrt{d})$.
- So in theory, desingularization does not speed up the *p*-curvature, and in practice it does.
- Worst case complexity? Average case complexity? What matters is: Actual case complexity.