Desingularization and p-Curvature of Recurrence Operators

Yi Zhou and Mark van Hoeij

Supported by NSF 2007959

Department of Mathematics
Florida State University
ISSAC'2022.

Recurrence operators with rational function coefficients

Let $a_{i}(x) \in \mathbb{Q}(x)$ be rational functions in x.
Recurrence relation:

$$
a_{n}(x) u(x+n)+\cdots+a_{1}(x) u(x+1)+a_{0}(x) u(x)=0 .
$$

Solutions $u(x)$ are functions on subsets of \mathbb{C}.
For subset $\{0,1,2, \ldots\}$, solution is a sequence $u(0), u(1), u(2), \ldots$
Recurrence operator: write the recurrence as $L(u)=0$ where

$$
L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{Q}(x)[\tau]
$$

Here τ is the shift operator. It sends $u(x)$ to $u(x+1)$.
Clearing denominators $\rightsquigarrow a_{i} \in \mathbb{Q}[x]$.
Then $\max \left\{\right.$ degree $\left.a_{i}\right\}$ is the degree and n is the order.
Recurrence relations come from many sources: creative telescoping, walks, QFT computations, OEIS, etc.

Example: Entry A025184 in OEIS

$$
\begin{aligned}
L(u)= & 33 x(3 x-1)(3 x-2) u(x) \\
& +11\left(2047 x^{3}-10725 x^{2}+17192 x-8520\right) u(x-1) \\
& -9\left(4397 x^{3}+10169 x^{2}-110500 x+145368\right) u(x-2) \\
& -54(2 x-5)\left(5353 x^{2}-33313 x+53904\right) u(x-3) \\
& -115668(x-4)(2 x-5)(2 x-7) u(x-4)=0 .
\end{aligned}
$$

$L \in \mathbb{Q}(x)\left[\tau^{-1}\right]$ has order 4 and degree 3.
MinimalRecurrence in Maple 2021 finds

$$
\begin{gathered}
3 x(3 x-1)(3 x-2)\left(221 x^{2}-723 x+574\right) u(x) \\
-2(2 x-1)\left(7735 x^{4}-33040 x^{3}+48239 x^{2}-27998 x+5280\right) u(x-1) \\
-36(x-2)(2 x-1)(2 x-3)\left(221 x^{2}-281 x+72\right) u(x-2)
\end{gathered}
$$

Price to pay: lower order but higher degree (order-degree curve).
Minimal Order Recurrence has 3 true and 2 removable singularities.

Desingularization

Given a recurrence relation:

$$
\begin{gathered}
3 x(3 x-1)(3 x-2)\left(221 x^{2}-723 x+574\right) u(x) \\
-2(2 x-1)\left(7735 x^{4}-33040 x^{3}+48239 x^{2}-27998 x+5280\right) u(x-1) \\
-36(x-2)(2 x-1)(2 x-3)\left(221 x^{2}-281 x+72\right) u(x-2)
\end{gathered}
$$

Desingularization: find out which are true singularities and which ones can be removed if one allows the order to increase.

$$
\begin{gathered}
3 x(3 x-1)(3 x-2)\left(221 x^{2}-723 x+574\right) u(x) \\
-2(2 x-1)\left(7735 x^{4}-33040 x^{3}+48239 x^{2}-27998 x+5280\right) u(x-1) \\
-36(x-2)(2 x-1)(2 x-3)\left(221 x^{2}-281 x+72\right) u(x-2)
\end{gathered}
$$

Applications desingularization

Many algorithms (closed form solutions, RightFactors in Maple 2021) only need the true singularities to work correctly.

Discarding removable singularities reduces the amount of work.
p-curvature: a common tool to study differential or recurrence operators (appears in at least one talk and a poster at this conference).

The Norm of the leading coefficient (leading singularities) plays a key role in the algorithm for computing the p-curvature (Bostan, Caruso, Schost, ISSAC'2014). It is used as denominator-bound.

We expected: discarding removable singularities \rightsquigarrow sharper bound \rightsquigarrow faster computation.
To our surprise we actually get the exact denominator:
Main result: Norm(true singularities) = denominator(p-curvature).

Gauss' lemma does not hold for $\mathbb{Q}[x][\tau] \subset \mathbb{Q}(x)[\tau]$

As illustrated:
L may have a right-factor with lower order but higher degree (after clearing denominators).

Conversely, a multiple of L can have lower degree. We call L Gaussian if that does not happen.

We first prove the main result for Gaussian operators.
To prove the result in general, we use the fact that any operator has a Gaussian multiple.

First some notation.

Recurrence Operators

F : a field
$F(x)$: the field of rational functions
τ : the shift operator
$\mathcal{D}:=F(x)[\tau]:$ ring of recurrence operators over $F(x)$
$\mathcal{P}:=F[x][\tau]$: recurrence operators with polynomial coefficients
Addition: same as polynomials
Multiplication: $\tau \cdot r(x)=r(x+1) \cdot \tau$

Recurrence Relation and Singularities

A recurrence operator $L=\sum_{i=0}^{n} a_{i} \tau^{i} \in \mathcal{P}$ corresponds to the equation

$$
a_{n}(x) u(x+n)+\cdots+a_{0}(x) u(x+0)=0 .
$$

Generally, $u(x+n)$ is determined by $u(x), \cdots, u(x+n-1)$ and L. Except at roots of $a_{n}(x)$.

Definition

Roots or factors of $a_{n}(x-n)$ are called (leading) singularities of L.

Singularities

$L=\sum_{i=0}^{n} a_{i} \tau^{i}$
Some notations:
$\operatorname{lc}(L):=a_{n}$ the leading coefficient
$\operatorname{lc}^{*}(L):=a_{n}(x-n)$ the adjusted leading coefficient
$\mathcal{P}=F[x][\tau]$
$\mathcal{D}=F(x)[\tau]$
If $A \in \mathcal{P}$ then $\mathrm{lc}^{*}(L) \mid \operatorname{lc}^{*}(A L)$ because

$$
\operatorname{lc}^{*}(A L)=\mathrm{lc}^{*}(L) \cdot \text { a shift of } \mathrm{lc}^{*}(A)
$$

However, we will allow $A \in \mathcal{D}$ as long as $A L \in \mathcal{P}$.
Then $\mathrm{lc}^{*}(A L)$ could be smaller than $\mathrm{lc}^{*}(L)$ even if L is primitive!
(i.e. Gauss' lemma does not hold for $\mathcal{P} \subset \mathcal{D}$)

Desingularization

Definition

The essential part of $\mathrm{lc}^{*}(L)$, denoted $\mathrm{LC}^{*}(L)$,

- divides lc* $(A L)$ for any $A L \in \mathcal{P} \quad(A \in \mathcal{D})$
- it is maximal satisfying the first condition.

True singularities: factors/roots of $\mathrm{LC}^{*}(L)$
Removable singularities: remaining factors/roots of $\mathrm{lc}^{*}(L)$, these can disappear in some $A L$

Desingularization: Find out which singularities are removable.

Gaussian Operators

Definition

$L \in \mathcal{P}$ is Gaussian if $A L \in \mathcal{P}$ implies $A \in \mathcal{P} \quad$ (for any $A \in \mathcal{D}$).

Lemma

$L \in \mathcal{P}$ is Gaussian if $\mathrm{LC}^{*}(L)=\mathrm{lc}^{*}(L)$ (no removable singularities)

Recurrence Operators in Characteristic p

F a field of characteristic p, where p is a prime.
Let $Z=x^{p}-x=\prod_{i=0}^{p-1} \tau^{i}(x)=x(x+1) \cdots(x+p-1)$.
Then $F(x) / F(Z)$ has Galois group $<\tau>\cong Z_{p}$.
Let

$$
\begin{gathered}
\mathcal{N}: F(x) \rightarrow F(Z) \\
f(x) \mapsto f(x) f(x+1) \cdots f(x+p-1)
\end{gathered}
$$

be the norm map.

Recurrence Operators in Characteristic p

The center of $\mathcal{D}=F(x)[\tau]$ is $F(Z)\left[\tau^{p}\right]$.
A \mathcal{D}-module is also an $F(x)\left[\tau^{p}\right]$-module, which is an $F(x)$-v.s. equipped with a linear transformation induced by τ^{p}.

Definition

- Suppose M is a finitely dimensional \mathcal{D}-module. The p-curvature of M is the linear transformation induced by τ^{p}.
- An operator $L \in \mathcal{D}$ is naturally associated with the \mathcal{D}-module $\mathcal{D} / \mathcal{D} L$. Define the p-curvature to be that of the module.
- Let $\chi(L) \in F(x)[T]$ be its characteristic polynomial.

p-Curvature: Properties

$1 \chi(L) \in F(Z)[T] \subset F(x)[T]$
2 Identify T with τ^{p}. Then $\chi(L) \in F(Z)\left[\tau^{p}\right]=\operatorname{center}(\mathcal{D})$. By Cayley-Hamilton, it is the zero map on $\mathcal{D} / \mathcal{D} L$. As a result, $\chi(L) \in \mathcal{D} L$.
3χ is multiplicative. $\chi\left(L_{1} L_{2}\right)=\chi\left(L_{1}\right) \chi\left(L_{2}\right)$.
4 Denote $\tilde{\chi}(L)=\mathcal{N}(\operatorname{lc}(L)) \cdot \chi(L)$. When $L \in \mathcal{P}, \tilde{\chi}(L) \in F[Z][T]$.
5 For $L \in \operatorname{center}(\mathcal{D}), \tilde{\chi}(L)=L^{p}$.

Item 4 says that $\mathcal{N}(\operatorname{lc}(L))$ is a denominator bound for $\chi(L)$, this is used in the algorithm for computing $\chi(L)$:

Bostan, Caruso, Schost, ISSAC'2014. A fast algorithm for computing the characteristic polynomial of the p-curvature

Main Theorem

Theorem

Let $L \in \mathcal{P}$. Then $\operatorname{denom}(\chi(L))=\mathcal{N}\left(\mathrm{LC}^{*}(L)\right)$.

The leading coefficient of L contains the

- removable singularities, and the
- true singularities $\mathrm{LC}^{*}(L)$

The theorem implies that all removable singularities disappear in the p-curvature, but more surprisingly:

All true singularities (their norm) do appear in denom(p-curvature), there is no cancellation!

This is unexpected because it implies corollaries in characteristic p that do not hold in characteristic 0 .

Proof: Step 1

$\operatorname{denom}(\chi(L)) \mid \mathcal{N}(\operatorname{LC}(L))$
Proof: $\chi(A L)=\chi(A) \chi(L)$. Since characteristic polynomials are always monic,

$$
\operatorname{denom}(\chi(A L))=\operatorname{denom}(\chi(A)) \cdot \operatorname{denom}(\chi(L))
$$

There exists A such that $\mathrm{lc}^{*}(A L)=\mathrm{LC}^{*}(L)$. Hence

$$
\operatorname{denom}(\chi(L))|\operatorname{denom}(\chi(A L))| \mathcal{N}(\operatorname{lc}(A L))=\mathcal{N}(\operatorname{LC}(L))
$$

Note: $\mathrm{lc}^{*}(A L)$ and $\mathrm{lc}(A L)$ have the same Norm.

Proof: Step 2, Key Step

$\operatorname{denom}(\chi(L))=\mathcal{N}\left(\mathrm{LC}^{*}(L)\right)$ when L is Gaussian.

To prove: $\tilde{\chi}(L)=\mathcal{N}(\operatorname{lc}(L)) \cdot \chi(L) \in F[Z][T]$ is primitive. We know

$$
\operatorname{Prim}(\chi(L))=Q L
$$

for some $Q \in \mathcal{D}$.
Since L is Gaussian, $Q \in \mathcal{P}$.
Apply $\tilde{\chi}$ on $\operatorname{Prim}(\chi(L))$:

$$
\tilde{\chi}(\operatorname{Prim}(\chi(L)))=\tilde{\chi}(Q) \tilde{\chi}(L) .
$$

The LHS is $(\operatorname{Prim}(\chi(L)))^{p}$, which is primitive; the two factors of the RHS are in $F[Z][T]$. By Gauss's Lemma, $\tilde{\chi}(L)$ is primitive.

Proof: Step 3, Sketch

Idea of the proof:
In general, for $L \in \mathcal{P}$, there exists A such that $\mathrm{lc}^{*}(A L)=\mathrm{LC}^{*}(L)$, which implies $A L$ is Gaussian. Then

$$
\operatorname{denom}(\chi(A L))=\mathcal{N}\left(\mathrm{LC}^{*}(L)\right)=\operatorname{denom}(\chi(A)) \cdot \operatorname{denom}(\chi(L))
$$

Attempt to prove: $\operatorname{denom}(\chi(A))=1$.

We can show that using a technical computation based on what we know about A from this paper:

Chen, Kauers, Singer, 2016. Desingularization of Ore operators.

p-curvature complexity?

- Say d is the degree of $\operatorname{lc}(L)$ and d^{*} the degree of $\mathrm{LC}^{*}(L)$. Fast (partial) desingularization replaces d by $\approx d^{*}$.
- Random operators often have no removable singularities. Then $d^{*}=d$, no complexity improvement!
- Does this matter? After all, I learned from Joris' invited talk that I'm a complexity extremist.
- Factoring random operators is not useful, they are irreducible.
- LCLM(two random operators of order n and degree n). Experimentally $d^{*}=2 n=O(\sqrt{d})$.
- So in theory, desingularization does not speed up the p-curvature, and in practice it does.
- Worst case complexity? Average case complexity? What matters is: Actual case complexity.

