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Recurrence operators with rational function coefficients

Let ai (x) ∈ Q(x) be rational functions in x .

Recurrence relation:

an(x)u(x + n) + · · ·+ a1(x)u(x + 1) + a0(x)u(x) = 0.

Solutions u(x) are functions on subsets of C.
For subset {0, 1, 2, . . .}, solution is a sequence u(0), u(1), u(2), . . .

Recurrence operator: write the recurrence as L(u) = 0 where

L = anτ
n + · · ·+ a0τ

0 ∈ Q(x)[τ ]

Here τ is the shift operator. It sends u(x) to u(x + 1).

Clearing denominators  ai ∈ Q[x ].
Then max{degree ai} is the degree and n is the order.

Recurrence relations come from many sources: creative
telescoping, walks, QFT computations, OEIS, etc.



Example: Entry A025184 in OEIS

L(u) = 33x(3x − 1)(3x − 2)u(x)
+11(2047x3 − 10725x2 + 17192x − 8520)u(x − 1)
−9(4397x3 + 10169x2 − 110500x + 145368)u(x − 2)
−54(2x − 5)(5353x2 − 33313x + 53904)u(x − 3)
−115668(x − 4)(2x − 5)(2x − 7)u(x − 4) = 0.

L ∈ Q(x)[τ−1] has order 4 and degree 3.

MinimalRecurrence in Maple 2021 finds

3x(3x − 1)(3x − 2)(221x2 − 723x + 574)u(x)
−2(2x−1)(7735x4−33040x3 + 48239x2−27998x + 5280)u(x−1)

−36(x − 2)(2x − 1)(2x − 3)(221x2 − 281x + 72)u(x − 2)

Price to pay: lower order but higher degree (order-degree curve).

Minimal Order Recurrence has 3 true and 2 removable singularities.



Desingularization

Given a recurrence relation:

3x(3x − 1)(3x − 2)(221x2 − 723x + 574)u(x)
−2(2x−1)(7735x4−33040x3 + 48239x2−27998x + 5280)u(x−1)

−36(x − 2)(2x − 1)(2x − 3)(221x2 − 281x + 72)u(x − 2)

Desingularization: find out which are true singularities and which
ones can be removed if one allows the order to increase.

3x(3x − 1)(3x − 2)(221x2 − 723x + 574)u(x)
−2(2x−1)(7735x4−33040x3 + 48239x2−27998x + 5280)u(x−1)

−36(x − 2)(2x − 1)(2x − 3)(221x2 − 281x + 72)u(x − 2)



Applications desingularization

Many algorithms (closed form solutions, RightFactors in Maple
2021) only need the true singularities to work correctly.
Discarding removable singularities reduces the amount of work.

p-curvature: a common tool to study differential or recurrence
operators (appears in at least one talk and a poster at this
conference).

The Norm of the leading coefficient (leading singularities) plays a
key role in the algorithm for computing the p-curvature (Bostan,
Caruso, Schost, ISSAC’2014). It is used as denominator-bound.

We expected: discarding removable singularities  sharper bound
 faster computation.
To our surprise we actually get the exact denominator:

Main result: Norm(true singularities) = denominator(p-curvature).



Gauss’ lemma does not hold for Q[x ][τ ] ⊂ Q(x)[τ ]

As illustrated:
L may have a right-factor with lower order but higher degree
(after clearing denominators).

Conversely, a multiple of L can have lower degree.
We call L Gaussian if that does not happen.

We first prove the main result for Gaussian operators.
To prove the result in general, we use the fact that any operator
has a Gaussian multiple.

First some notation.



Recurrence Operators

F : a field

F (x): the field of rational functions

τ : the shift operator

D := F (x)[τ ]: ring of recurrence operators over F (x)

P := F [x ][τ ]: recurrence operators with polynomial coefficients

Addition: same as polynomials

Multiplication: τ · r(x) = r(x + 1) · τ



Recurrence Relation and Singularities

A recurrence operator L =
∑n

i=0 aiτ
i ∈ P corresponds to the

equation

an(x)u(x + n) + · · ·+ a0(x)u(x + 0) = 0.

Generally, u(x + n) is determined by u(x), · · · , u(x + n− 1) and L.
Except at roots of an(x).

Definition

Roots or factors of an(x − n) are called (leading) singularities of L.



Singularities

L =
∑n

i=0 aiτ
i

Some notations:

lc(L) := an the leading coefficient

lc∗(L) := an(x − n) the adjusted leading coefficient

P = F [x ][τ ]
D = F (x)[τ ]

If A ∈ P then lc∗(L) | lc∗(AL) because

lc∗(AL) = lc∗(L) · a shift of lc∗(A)

However, we will allow A ∈ D as long as AL ∈ P.

Then lc∗(AL) could be smaller than lc∗(L) even if L is primitive!
(i.e. Gauss’ lemma does not hold for P ⊂ D)



Desingularization

Definition

The essential part of lc∗(L), denoted LC∗(L),

divides lc∗(AL) for any AL ∈ P (A ∈ D)

it is maximal satisfying the first condition.

True singularities: factors/roots of LC∗(L)

Removable singularities: remaining factors/roots of lc∗(L), these
can disappear in some AL

Desingularization: Find out which singularities are removable.



Gaussian Operators

Definition

L ∈ P is Gaussian if AL ∈ P implies A ∈ P (for any A ∈ D).

Lemma

L ∈ P is Gaussian if LC∗(L) = lc∗(L) (no removable singularities)



Recurrence Operators in Characteristic p

F a field of characteristic p, where p is a prime.
Let Z = xp − x =

∏p−1
i=0 τ

i (x) = x(x + 1) · · · (x + p − 1).
Then F (x)/F (Z ) has Galois group <τ > ∼= Zp.

Let
N : F (x)→ F (Z )

f (x) 7→ f (x)f (x + 1) · · · f (x + p − 1)

be the norm map.



Recurrence Operators in Characteristic p

The center of D = F (x)[τ ] is F (Z )[τp].
A D-module is also an F (x)[τp]-module, which is an F (x)-v.s.
equipped with a linear transformation induced by τp.

Definition

Suppose M is a finitely dimensional D-module. The
p-curvature of M is the linear transformation induced by τp.

An operator L ∈ D is naturally associated with the D-module
D/DL. Define the p-curvature to be that of the module.

Let χ(L) ∈ F (x)[T ] be its characteristic polynomial.



p-Curvature: Properties

1 χ(L) ∈ F (Z )[T ] ⊂ F (x)[T ]

2 Identify T with τp. Then χ(L) ∈ F (Z )[τp] = center(D).
By Cayley-Hamilton, it is the zero map on D/DL.
As a result, χ(L) ∈ DL.

3 χ is multiplicative. χ(L1L2) = χ(L1)χ(L2).

4 Denote χ̃(L) = N (lc(L)) · χ(L).
When L ∈ P, χ̃(L) ∈ F [Z ][T ].

5 For L ∈ center(D), χ̃(L) = Lp.

Item 4 says that N (lc(L)) is a denominator bound for χ(L),
this is used in the algorithm for computing χ(L):

Bostan, Caruso, Schost, ISSAC’2014. A fast algorithm for
computing the characteristic polynomial of the p-curvature



Main Theorem

Theorem

Let L ∈ P. Then denom(χ(L)) = N (LC∗(L)).

The leading coefficient of L contains the

removable singularities, and the

true singularities LC∗(L)

The theorem implies that all removable singularities disappear in
the p-curvature, but more surprisingly:

All true singularities (their norm) do appear in
denom(p-curvature), there is no cancellation!

This is unexpected because it implies corollaries in characteristic p
that do not hold in characteristic 0.



Proof: Step 1

denom(χ(L)) | N (LC(L))

Proof: χ(AL) = χ(A)χ(L). Since characteristic polynomials are
always monic,

denom(χ(AL)) = denom(χ(A)) · denom(χ(L))

There exists A such that lc∗(AL) = LC∗(L). Hence

denom(χ(L)) | denom(χ(AL)) | N (lc(AL)) = N (LC(L))

Note: lc∗(AL) and lc(AL) have the same Norm.



Proof: Step 2, Key Step

denom(χ(L)) = N (LC∗(L)) when L is Gaussian.

To prove: χ̃(L) = N (lc(L)) · χ(L) ∈ F [Z ][T ] is primitive.
We know

Prim(χ(L)) = QL

for some Q ∈ D.
Since L is Gaussian, Q ∈ P.
Apply χ̃ on Prim(χ(L)):

χ̃(Prim(χ(L))) = χ̃(Q)χ̃(L).

The LHS is (Prim(χ(L)))p, which is primitive; the two factors of
the RHS are in F [Z ][T ]. By Gauss’s Lemma, χ̃(L) is primitive.



Proof: Step 3, Sketch

Idea of the proof:
In general, for L ∈ P, there exists A such that lc∗(AL) = LC∗(L),
which implies AL is Gaussian. Then

denom(χ(AL)) = N (LC∗(L)) = denom(χ(A)) · denom(χ(L))

Attempt to prove: denom(χ(A)) = 1.

We can show that using a technical computation based on what
we know about A from this paper:

Chen, Kauers, Singer, 2016. Desingularization of Ore operators.



p-curvature complexity?

Say d is the degree of lc(L) and d∗ the degree of LC∗(L).
Fast (partial) desingularization replaces d by ≈ d∗.

Random operators often have no removable singularities.
Then d∗ = d , no complexity improvement!

Does this matter? After all, I learned from Joris’ invited talk
that I’m a complexity extremist.

Factoring random operators is not useful, they are irreducible.

LCLM(two random operators of order n and degree n).
Experimentally d∗ = 2n = O(

√
d).

So in theory, desingularization does not speed up the
p-curvature, and in practice it does.

Worst case complexity? Average case complexity?
What matters is: Actual case complexity.


