
Factoring Univariate Polynomials over the

Rationals

Andy Novocin
Department of Mathematics

Florida State University
Tallahassee, FL 32306-4510, USA

anovocin@math.fsu.edu

April 13, 2008

Abstract

This thesis presents an algorithm for factoring polynomials over the rationals
which follows the approach of the van Hoeij algorithm. The key theoretical
novelty in our approach is that it is set up in a way that will make it possible to
prove a new complexity result for this algorithm which was actually observed on
prior algorithms. One difference of this algorithm from prior algorithms is the
practical improvement which we call early termination. Our algorithm should
outperform prior algorithms in many common classes of polynomials (including
irreducibles).

Contents

1 Brief History of Factoring Polynomials over the Rationals 4
1.1 Zassenhaus’ Algorithm . 4

1.1.1 Sketch of the Algorithm 5
1.1.2 Two Problems with Zassenhaus’ Algorithm 5
1.1.3 Complexity/CPU cost of Zassenhaus’ algorithm 6

1.2 The LLL Paper . 7
1.2.1 Overview of Lattice Reduction 7
1.2.2 A version of the factoring algorithm from LLL [8] 10

1.3 The van Hoeij Algorithm . 11
1.3.1 Cost of van Hoeij’s algorithm 13
1.3.2 Variations of the van Hoeij Algorithm 13

1.4 The Main Goal of This Thesis . 15

2 Factoring with switch complexity independent of coefficient
size 17
2.1 Partial Reductions . 17
2.2 Partial Reduction of a Special Matrix 20
2.3 New Bounds for Factoring in Q[x] 23
2.4 Conclusion of Chapter . 23

3 Factoring with switch complexity independent of degree and
coefficient size 25
3.1 Why go on? . 25
3.2 Introducing the Active Determinant 26
3.3 How to read this chapter . 27

3.3.1 Summary Sheet . 28
3.3.2 Notations . 29
3.3.3 Some useful Facts . 31
3.3.4 The basic idea of the following algorithm 31

3.4 Initialize . 32
3.4.1 Variables used in this Procedure: 32
3.4.2 Procedure . 33
3.4.3 What This Procedure Does: 34
3.4.4 Properties True at Exit 1 34

1

3.4.5 Properties True at Exit 3 34
3.4.6 Complexity Notes: . 34

3.5 Hensel Step . 35
3.5.1 Variables used in this Procedure: 35
3.5.2 Procedure . 35
3.5.3 What This Procedure Does: 35
3.5.4 Properties true of the Input 36
3.5.5 Properties true at exit 4 36
3.5.6 Properties true at exit 5 36
3.5.7 Complexity Notes: . 37

3.6 Check If Solved . 37
3.6.1 Variables used in this procedure 37
3.6.2 Procedure . 37
3.6.3 What This Procedure Does: 38
3.6.4 Properties true of the Input 39
3.6.5 Properties true at Exits 17 and 18 39
3.6.6 Properties true at Exits 6 and 14 40
3.6.7 Complexity Notes: . 40

3.7 Remove Vectors . 40
3.7.1 Variables used in this Procedure 40
3.7.2 Procedure . 41
3.7.3 What This Procedure Does: 41
3.7.4 Properties true of the Input 41
3.7.5 Properties true at Exit 13 41
3.7.6 Complexity Notes: . 43

3.8 Select Next Coefficient . 43
3.8.1 Variables Used in this Procedure 43
3.8.2 Procedure . 43
3.8.3 What This Procedure Does: 44
3.8.4 Properties true of the Input 46
3.8.5 Properties true of Exit 8 46
3.8.6 Properties true of Exit 7 46
3.8.7 Complexity Notes: . 47

3.9 pLLL the Probationary LLL run 47
3.9.1 Variables used in this Procedure 47
3.9.2 Procedure . 48
3.9.3 What This Procedure Does: 48
3.9.4 Properties true of the Input 50
3.9.5 Properties of BOTH Exits 11a and 11b 50
3.9.6 Properties true at Exit 11b 52
3.9.7 Properties true at Exit 11a 54
3.9.8 Complexity Notes: . 55

3.10 Scale Up . 56
3.10.1 Variables used in this Procedure 56
3.10.2 Procedure . 56
3.10.3 What This Procedure Does: 57

2

3.10.4 Properties true of the Input 57
3.10.5 Properties true at Exit 15 58
3.10.6 Properties true of Exit 16 59
3.10.7 Complexity Notes: . 60

3.11 LLL . 60
3.11.1 Variables used in this Procedure 60
3.11.2 Procedure . 60
3.11.3 What This Procedure Does: 60
3.11.4 Properties true of the Input 60
3.11.5 Properties true at Exit 12 61
3.11.6 Complexity Notes: . 61

3.12 Decide If Vector Added . 61
3.12.1 Variables used in this Procedure 61
3.12.2 Procedure . 62
3.12.3 What This Procedure Does: 63
3.12.4 Properties true of the Input 64
3.12.5 Properties true at Exit 10 64
3.12.6 Properties true at Exit 9 67
3.12.7 Complexity Notes: . 68

3.13 Zassenhaus’ Algorithm . 68
3.14 Switch Complexity of this Algorithm 68

4 Why this thesis is interesting 69
4.1 Early Termination . 69

4.1.1 Good cases for Early Termination 70
4.2 Conclusion . 70
4.3 Future Improvements . 71

3

Chapter 1

Brief History of Factoring
Polynomials over the
Rationals

Let f ∈ Z[x] be separable and monic1 of degree N . We would like to find the
irreducible factors of f in Z[x]. In this chapter we will present several algorithms
for solving this problem in historical order.

Notation: Throughout the paper we use the terms ‘theoretical’ and ‘complex-
ity’ when referring to a proven bound for the number of CPU operations an
algorithm might need. This contrasts the term ‘practical’ which is used when
talking about an algorithm’s actual performance on examples. If there exists
examples where a theoretical complexity bound matches an algorithm’s actual
performance then we call this bound sharp.

1.1 Zassenhaus’ Algorithm

Zassenhaus’ algorithm for factoring polynomials is the earliest of its kind and it
has many nice features. Here is a summary of the important ideas:

1. If g ∈ Z[x] divides f then the coefficients of g are smaller than some M , a
bound, that we can compute. (e.g. the Mignotte bound in [5] page 156)

2. If g ∈ Z[x] divides f then g can be reconstructed when g mod pa is known
for some pa > 2M .

3. Factor f = f1 · · · fr over Zp (the p-adic integers). There are only finitely
many monic factors of f in Zp[x]. Each is of the form gv :=

∏
fvi
i for

some 0–1 vector v = (v1, . . . , vr).
1The monic assumption is for notational purposes, see the Remark at the end of section

1.1.3 for details

4

4. f1, . . . , fr (and hence gv) are not known exactly, but are only known mod
pa. That’s enough using idea 2.

1.1.1 Sketch of the Algorithm

Definition 1. If g ∈ Z[x] or g ∈ Zp[x] then g mods pa denotes the polynomial
with coefficients in (−p

a

2 , p
a

2] that is congruent to g modulo pa. The s in mods
refers to symmetric remainder.

Definition 2. Let f1, . . . , fr be the p-adic factors of f and f̃1, . . . , f̃r their ap-
proximations of accuracy a (i.e. fi ≡ f̃i mod pa). Hensel Lifting is a procedure
which increases the accuracy of the f̃i, a.

Let f1, . . . , fr ∈ Zp[x] denote the p-adic factors.
Compute M = bound for coefficients of factors in Z[x].
Then compute the p-adic factors mod pa for some pa > 2M (first compute the
fi mod p, and then mod pa by Hensel lifting).

1. Given some 0–1 vector v ∈ {0, 1}r one can decide if gv :=
∏
fvi
i is in Z[x]

or not, by checking if gv mods pa divides f in Z[x].

2. A factor in Z[x] can be computed efficiently if its 0–1 vector v is known:
Take the fi with vi = 1 and multiply them mods pa.

1.1.2 Two Problems with Zassenhaus’ Algorithm

Problem 1: Overshooting the Hensel Lifting. Let g1, . . . , gk be the true
factors of f in Z[x] and let f1, . . . , fr be the local factors (over the p-adic inte-
gers). The Zassenhaus algorithm applies Hensel lifting to determine f̃1, . . . , f̃r
with a p-adic accuracy a that is guaranteed to be high enough to recover any
potential factor of f in Z[x].

However, the problem is that this p-adic accuracy, a, is often much higher
than what was actually necessary to recover all the factors g1, . . . , gk. This
implies that Zassenhaus’ algorithm often wastes CPU time on Hensel Lifting.
In practice it frequently happens that f has one large factor, say g1, and zero
or more small factors, say g2, . . . , gk. Then, to recover g1, . . . , gk we do not need
pa to be larger than twice the largest coefficient of g1. All we need is that pa is
larger than twice the largest coefficient in g2, . . . , gk. This suffices to reconstruct
g2, . . . , gk ∈ Z[x] from their modular images, after which the remaining factor
g1 can be determined by a division in Z[x].

It is easy to give examples where this latter a is ten times smaller than the
a used in Zassenhaus’ algorithm. Just multiply a small irreducible polynomial
by a big one.
(Of course a needs to be large enough not only to find g2, . . . , gk, but also large
enough to prove that g1, . . . , gk are irreducible. More precisely, a needs to be
large enough to solve the combinatorial problem mentioned in Problem 2 below.
However, using [6] this can usually be done with much less Hensel lifting than
what is used in Zassenhaus’ algorithm.)

5

Problem 2: Exponential Search Time. When there are many local factors
f1, . . . , fr it can take an exponentially long time to decide which of the local
factors combine to form a rational factor gi. The [6] algorithm presented a
practical solution to this problem but made no attempt at a complexity estimate.

Practical Goal: We want to compute the factors g1, . . . , gk as quickly as pos-
sible, without Hensel lifting further than necessary. The easiest way to prevent
lifting too far is to do these two steps after each Hensel lift:

1. Try to solve the combinatorial problem using [6]

2. and if this succeeds, try to reconstruct g2, . . . , gk from their modular im-
ages (and g1 with a division).

Suppose that lifting to at least p100 was necessary to solve both steps 1
and 2. We use quadratic Hensel lifting, so a doubles each step. This means
that we solve the problem once we lifted to p128, which is close to optimal. So
compared to Zassenhaus’ algorithm we could save much CPU time on Hensel
lifting (Hensel lifting often dominates the CPU time).

Key Practical Problem:

Couldn’t this approach also be slower in some cases? After all: What about the
time that was spent when step 1 or 2 failed when we lifted to p64, or to p32,
etc.? Step 2 costs little CPU time, but if step 1 failed by not lifting far enough,
couldn’t we have wasted CPU time? We will resolve this practical problem in
Chapter 3.

1.1.3 Complexity/CPU cost of Zassenhaus’ algorithm

Notation: We use ‖ f ‖∞ to represent the largest absolute value of coefficients
of f .

If f is irreducible we end up trying 2r (actually 2r−1 by skipping comple-
ments) combinations of (v1, . . . , vr) ∈ {0, 1}r. Then the CPU time will be
roughly: Cost(factoring f mod p) + Cost(Hensel lifting) + 2r·tiny.

1. Cost(factoring mod p) depends polynomially on the degree N .

2. Cost(Hensel lifting) depends polynomially on N , log(‖ f ‖∞).

3. Using ideas from [1, 7], in particular section 3.1.1 in [1], testing one com-
bination can usually be done in a tiny amount of time (even if N and
log(‖ f ‖∞) are large).

Given some polynomial f ∈ Z[x] of degree N , the algorithm tries several
primes p, and then chooses the one for which f has the fewest p-adic factors
f1 · · · fr. Usually r << N and Zassenhaus’ algorithm is fast, with Hensel lifting

6

dominating the CPU time. But for polynomials that have large r at each p the
algorithm suddenly takes exponential time.

The next algorithm for factoring polynomials is in the LLL paper which
is presented in section 1.2.2. We will use its complexity for comparison with
Zassenhaus’ complexity.

Suppose f has degree N ≈ 200, with ≈ 200 digit coefficients. For the best
implementations of Zassenhaus’ algorithm, as long as r < 20 then the precise
value of r has little impact on the CPU time, it will take about a second either
way. On the same example the LLL Algorithm For Factoring [8] would take
a day. However, if we let r = 64 then [8] still only takes about a day but
Zassenhaus would take an estimated 100,000 years (because of the exponential
search).

Although the LLL algorithm for factoring is much better than Zassenhaus
in this example, keep in mind that if we somehow knew which subset(s) of
f1, . . . , f64 to take, then Zassenhaus would only take 1 second which is much
better than 1 day! Thus, the only thing that stands in the way of reducing CPU
time from 1 day to 1 second are objects with only 64 bits of data (namely the
v ∈ {0, 1}r that encode the right subsets of f1, . . . , fr).

The goal of van Hoeij’s algorithm [6] is a quick way to compute this data.
Before discussing the van Hoeij algorithm we will explore the two algorithms of
note in the LLL paper [8].

Remark on non-monic case: The only changes that need to be made are as
follows: Assume content(f) = 1 with f ∈ Z[x]. We will find f = lc · f1 · · · fr
for the p-adic factors, where lc is the leading coefficient of f . If v ∈ {0, 1}r

corresponds to a rational factor compute it as primpart(lc
∏
f

(v)i

i), where (v)i
is the ith entry of v.

1.2 The LLL Paper

In [8] Lenstra, Lenstra and Lovász introduced a lattice reduction algorithm,
which we shall refer to as the LLL algorithm. This algorithm is still one of
the most used algorithms in computational algebraic number theory. The same
paper also presented the first polynomial time algorithm for factoring polyno-
mials, which came as a surprise at the time. Their factoring algorithm avoids
the above mentioned combinatorial problem by constructing factors of f using
the LLL algorithm.

1.2.1 Overview of Lattice Reduction

The purpose of this subsection is to introduce the LLL algorithm for lattice
reduction (which we will call LLL) and list some notations and known facts
(from [8]) which will be used throughout the thesis.

A lattice L is a discrete subset of Rm that is also a Z-module. Let b1, . . . , br ∈
L be a basis of L and denote b∗1, . . . , b

∗
r ∈ Rm as the Gram-Schmidt orthogonal-

7

ization over R of b1, . . . , br. Let li = log4/3(‖ b∗i ‖
2), and denote µi,j = bi·b∗j

b∗j ·b∗j
.

Note that bi, b∗i , li, µi,j will change throughout the algorithm sketched below.

Definition 3. b1, . . . , br is LLL-reduced if ‖ b∗i ‖
2 ≤ 2‖ b∗i+1 ‖

2 for 1 ≤ i < r.
(The definition in [8] is slightly stronger, for convenience we only listed what is
needed for this thesis. See also Remark 2 at the end of this section.)

Algorithm 1 (Rough sketch of Lattice Reduction Algorithms).
Input: A basis b1, . . . , br of a lattice L.
Output: An LLL-reduced basis of L.

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear combinations of
b1, . . . , bi−1 from bi make sure that |µi,j | ≤ 1/2 for all j < i.

2. (LLL Switch). If there is a k such that interchanging bk−1 and bk will
decrease lk−1 by at least 1 then do so.

3. (Repeat). If there was no such k in Step 2, then the algorithm stops.
Otherwise go back to Step 1.

That the above algorithm terminates, and that the output is LLL-reduced
was shown in [8]. Step 1 has no effect on the li. In step 2 the only li that change
are lk−1 and lk. To illustrate step 2 in more detail, suppose that c1, . . . , cr is
a basis of L obtained from b1, . . . , br by applying step 2. So ck = bk−1 and
ck−1 = bk, and cj = bj for the remaining j’s.

Since b1, . . . , br and c1, . . . , cr are bases of the same L, they have the same
determinant (the product of ‖ b∗i ‖ for i = 1, . . . , r) and hence

‖ c∗k−1 ‖
2‖ c∗k ‖

2 = ‖ b∗k−1 ‖
2‖ b∗k ‖

2
. (1.1)

Step 2 is only taken if it decreases lk−1 by at least 1, so ‖ c∗k−1 ‖
2 ≤ 3

4‖ bk−1 ‖2.
The vector b∗k is obtained from bk by reducing it modulo Rb1 + . . .+Rbk−1 while
c∗k−1 is obtained from bk by reducing it modulo Rb1 + . . . + Rbk−2. Hence b∗k
can not be longer than c∗k−1. Combining these we find

‖ b∗k ‖
2 ≤ ‖ c∗k−1 ‖

2 ≤ 3
4
‖ b∗k−1 ‖

2 (1.2)

which by equation (1.1) is equivalent to

‖ b∗k−1 ‖
2 ≥ ‖ c∗k ‖

2 ≥ 4
3
‖ b∗k ‖

2
.

The equations imply:

Observation 1. An LLL switch can not increase max(l1, . . . , lr), nor can it
decrease min(l1, . . . , lr).

8

In summary, an LLL switch reduces lk−1 by at least 1, and increases lk
by the same amount (because of equation (1.1)). This way each LLL switch
moves G-S (Gram-Schmidt) length towards the later vectors, while the sum of
the logarithmic G-S lengths l1 + · · ·+ lr stays the same. Moreover, during the
Lattice Reduction Algorithm, the highest G-S length can not increase, and the
lowest G-S length can not decrease.

Consider the sum
∑
i(r−i)li. Each LLL switch reduces this sum by at least 1.

Hence, if lin was the value of this sum at the beginning of the computation, and
lout was the value at the end, then there can not have been more than lin− lout

LLL switches during the computation. The same idea was used in the proof of
the complexity result given in [8, Proposition (1.26)]. Another useful fact is the
following:

Fact 1. Let B be a positive number. If b1, . . . , br is a basis of L with ‖ b∗r ‖
2
> B

then any vector, v ∈ L with ‖ v ‖2≤ B can be written as a Z-linear combination
of b1, . . . , br−1.

In other words, b1, . . . , br is a basis of some lattice L, and if the last vector
has sufficiently large G-S length, then, in applications (including ours) where
one is only interested in elements of L of squared length ≤ B, one can remove
the last basis element.

Fact 1 follows from the proof of (1.11) in [8], and is true regardless of whether
b1, . . . , br is LLL-reduced or not. However, if one chooses an arbitrary basis
b1, . . . , br of some lattice L, then it is unlikely that the last vector has large
G-S length (after all, ‖ b∗r ‖ is the length of br reduced modulo all R-linear
combinations of b1, . . . , br−1). The effect of LLL reduction (Algorithm 1) is
to move G-S length towards later vectors. So LLL reduction is very useful
because if enough of this G-S length arrives at the last vector, then it can be
discarded, which brings us one step closer to our target. (Our target is to solve
the combinatorial problem of selecting the right v ∈ {0, 1}r from 1.1.3.)

Remarks:

1. There are a number of lattice reduction algorithms that are variations of
the LLL algorithm sketched above. We would like to present our complex-
ity result in a way that is independent of which variation is used.

Each of these variations uses (at least asymptotically) the same number of
LLL switches. The differences in complexity come from differences in the
cost per LLL switch. So we will express our complexity result in terms of
the number of LLL switches. This way our result will be compatible with
each variation on the LLL algorithm.

2. Schönhage [10] gives a slightly different definition of reduced, called semi-
reduced. This allows him to apply a divide-and-conquer strategy called
block-wise reduction that reduces the asymptotic cost per LLL switch.
With minor modifications, the results in this thesis carry through if one
replaces ‘reduced’ by Schönhage’s ‘semi-reduced’.

9

3. There is also a new ‘floating point LLL’ algorithm by Phong Nguyen and
Damien Stehlé [9], which is fast both in practice and in theory.

An LLL reduced basis has a nice property implied in Definition 3: Since
‖ b∗1 ‖=‖ b1 ‖ by the G-S process, we know that ‖ b1 ‖≤ 2r−1 ‖ b∗k ‖ for every
possible k. But every nonzero vector, v ∈ L is at least as big as the smallest
G-S length, i.e. ‖ v ‖≥ min(‖ b∗i ‖), see [8]. These two facts combine to give us
the property that every nonzero vector in L has length ≥ 1

2(r−1)/2 · ‖ b1 ‖

1.2.2 A version of the factoring algorithm from LLL [8]

There are algorithms for approximating roots of a polynomial f . So let α = a+bi
be an approximate2 root of f found by such an algorithm. Then let C be some
large (compared to N , |α|, and the coefficients of f) real number. If we knew3

the degree of the minpoly of α to be n and let L be the lattice spanned by the
rows of this matrix:

M =

1 0 · · · 0 C · Re(α0) C · Im(α0)

0
. . .

...
...

...
...

. . . 0
0 · · · 0 1 C · Re(αn) C · Im(αn)

then we would know that there is a vector v ∈ L with first n + 1 entries

being the coefficients of the minpoly of α and the final two entries being very
small (not quite 0 since we only have an approximation). For a sufficiently large
C and sufficiently accurate approximation of α, the LLL algorithm will discover
this vector (it would be ±b1 in the output) and hence an irreducible factor of f .

Terminology: When we run LLL on a matrix like M we call this feeding data
to LLL. (Here we have ‘fed’ the real and imaginary parts of α0, . . . , αn to LLL.)

Let’s revisit the example from the previous section: suppose f has degree
N ≈ 200, with ≈ 200 digit coefficients, and say r = 64 p-adic factors f =
f1 · · · f64. To construct an irreducible factor g ∈ Z[x] (worst case: g = f if f
is irreducible) with [8] means finding v, the corresponding vector, with lattice
reduction. This vector could contain as much as 200 · log2 10200 ≈ 132, 000 bits
of data, and LLL could take a day.

However, if we had r = 64 bits of data, v = (v1, . . . , vr) ∈ {0, 1}r then we
could compute the corresponding factor g =

∏
fvi
i in 1 second with Zassenhaus.

Main idea in [6]: Use LLL to compute (v1, . . . , vr) in a way that avoids
computing any bits of information about the coefficients of g.

2In [8] they use p-adic approximations rather than floating point approximations.
3We could start guessing that n = 1 and let n increase by one at a time. Although there

is a better way, e.g. [10]

10

1.3 The van Hoeij Algorithm

Let f = f1 · · · fr ∈ Zp[x]. The map

v 7→ gv =
∏

fvi
i

that sends a 0–1 vector v = (v1, . . . , vr) to the corresponding factor of f turns
additions into multiplications. For lattice reduction we need something that is
linear, so we have to turn multiplications back into additions. One way to do
that is using the following map:

g 7→ Tr1(g)

where Tr1(g) is the sum of the roots (with multiplicity) of g. So we get an
additive map

φ : v 7→ Tr1(gv) =
∑

viTr1(fi)

from Zr to the p-adic integers Zp. So lets take ti := Tr1(fi) ∈ Zp for i = 1, . . . , r
and look at this map

φ : v = (v1, . . . , vr) 7→ Tr1(gv) = v1t1 + · · ·+ vrtr

from Zr to Zp. If gv ∈ Z[x] then Tr1(gv) is an integer bounded by some b
(assume for now that f is monic. For b we can then take N times a bound for
the absolute values of the complex roots of f). Set

t̃i := (ti mods pa) ∈ Z

Then
Tr1(gv) = v1t̃1 + · · ·+ vr t̃r + small multiple of pa

for any of our target v’s (the v’s for which gv ∈ Z[x]).
Now Tr1(gv) is a coefficient of the factor gv, but for efficiency we want to

compute (v1, . . . , vr) without computing any coefficients of factors of f (recall
the earlier discussion about 132,000 bits versus 64 bits in 1.1.3). So we take

si :=
t̃i
b
∈ Q

(the implementation rounds this to an integer for efficiency, but we’ll skip that
for simplicity).
Now let Lin be the lattice generated by:

(1, 0, . . . , 0, s1), (0, 1, . . . , 0, s2), . . . (0, 0, . . . , 1, sr)

and (0, 0, . . . , 0, p
a

b).
Any target v = (v1, . . . , vr) corresponds to a vector

v′ = (v1, . . . , vr, Tr1(gv)/b) ∈ Lin.

11

All entries of v′ are bounded by 1, so

‖ v′ ‖6 B :=
√
r + 1 (B is a bit higher if we rounded)

(Note: in the later chapters the notation will be slightly different. There we
will be dealing with squared G-S lengths and B will be r + 1.) Let LB be the
span of all vectors in Lin of length 6 B, and we let π be the projection on the
first r coordinates, then all of our target v’s are in π(LB). Let b1, . . . , br+1 be
an LLL reduced basis. Let s := r + 1. As long as ‖ b∗s ‖> B replace s by s− 1.
After these removals define L := SPANZ{b1, . . . , bs}. If all vectors in Lin\LB
are sufficiently large, then L = LB . But we make no effort to make sure this is
true, so instead we get a lattice L such that:

LB ⊆ L.

Notation: Denote W as the span of our target v’s. The 0–1 vectors cor-
responding to the irreducible factors of f in Q[x] form a basis of W . (The
reduced echelon basis of W .)

Remark: Solving combinatorial problem ⇐⇒ computing W .

For any vector, v, we let π(v) denote the projection of v onto the first r entries.
For any lattice S = SPANZ{v1, . . . , vs} we let π(S) denote SPANZ{π(v1), . . . , π(vs)}.
We now know that:

W ⊆ π(LB) ⊆ π(L).

W is the lattice we want, and L is the lattice we can get from LLL. Given L we
can quickly test whether π(L) equals W or not:

1. Check if the reduced echelon basis of π(L) consists of 0–1 vectors, v1, . . . , vs.

2. If so reconstruct gj =
∏
f

(vj)i

i mods pa and perform a trial division.

3. If each gj divides f in Z[x] then π(L) = W .

If π(L) equals W then we are done, and the resulting factors are irreducible
regardless how many p-adic digits were used.

Prior factoring algorithms need some lower bound on the p-adic precision in
order to prove that the factors are irreducible. The van Hoeij algorithm does
not need such a bound, because of the following:

• The algorithm only terminates if it finds dim(π(L)) factors in Z[x], whose
product equals f .

• Any set of > dim(W) factors in Z[x], with product f , are automatically
irreducible.

• π(L) ⊇W is true for any p-adic precision.

(if we didn’t use any digits at all we’d get L = π(L) = Zr. Using more
digits brings π(L) closer to W , but π(L) ⊇ W will always hold, and
termination only happens when π(L) = W).

12

Since no bounds on the p-adic accuracy are needed to prove that the output is
irreducible, we can be very flexible with how many p-adic digits to use. However,
we only find the factors when π(L) = W , so in order for the algorithm to
terminate, we do need that π(L) eventually becomes W .

So what if π(L) 6= W? We can gradually add more and more p-adic digits,
but that may not be enough. Additional data may be needed. For instance,
instead of Tr1 (= sum of roots) we can also use Tr2 (= sum of squares of roots),
Tr3 (= sum of cubes) etc.

One can prove that π(L) will eventually become W if we keep using more
and more “traces” Tri and p-adic digits, see [6].

1.3.1 Cost of van Hoeij’s algorithm

In the paper [6] van Hoeij only proves the termination of his algorithm and no
attempt to bound the complexity is even made. In practice though the algorithm
has the same costs as Zassenhaus’ algorithm except we replace the 2r term by
the cost of using LLL to solve the combinatorial problem. This is intuitively a
problem related to the size of r, the number of local factors of f .

The cost of LLL dominates the algorithm’s CPU cost if and only if r is large.
It also dominates the theoretical complexity. So we introduce a term to help
express this cost:

Definition 4. We will call the number of LLL switches which take place through-
out an algorithm the Switch Complexity of the algorithm.

For example we can estimate the Switch Complexity of the Schönhage algo-
rithm by O(N2(N + log(H))), where H =‖ f ‖∞.

1.3.2 Variations of the van Hoeij Algorithm

The van Hoeij algorithm is very flexible with what it accepts as data for solving
the combinatorial problem, so long as eventually we have a basis of W . This
raises the question of how many p-adic digits, and of how many traces, need to
be fed to LLL in order to successfully solve the combinatorial problem. If one
uses too few traces or p-adic digits then one may make only partial progress
instead of fully solving the combinatorial problem. If one uses too many, one
can end up solving the combinatorial problem using much more CPU time than
would have been necessary. From a practical point of view, the latter (using
too many traces/digits) is worse because the wasted time can not be recovered,
while the former (using too few traces/digits) can be remedied by gradually
adding more traces and/or digits.

In fact, even if one knew the exact number of p-adic digits and traces that
need to be used in order to solve the combinatorial problem with one call to
LLL, then as explained in [6, section 2.3 item 3] it could still be faster to use
fewer traces/digits for the first call to LLL despite the resulting increase in the
number of calls to LLL. Thus, [6, section 2.3 item 2] proposed to add only few

13

traces at a time, while [6, section 2.3 item 3] suggested to use O(r2) bits of data
in the first call to LLL (a p-adic digit counts as log2(p) bits).

The trade-off is that adding many traces/digits at a time will reduce the
number of calls to LLL while increasing the cost of each call. Adding few
traces/digits at a time reduces the cost of each LLL call, but the number of
calls goes up. There are two extreme positions to make concerning this trade-
off.

A. Minimize the number of calls to LLL. (In the version described in Theo-
rem 4.3 in [3] this number is brought down to 1.)

B. Minimize the complexity of each individual call. (In the version described
by Belabas [2], the cost of each LLL call is bounded by a polynomial that
depends only on r, that is, a polynomial that is independent of both N
and the coefficient size of f .)

The strategy proposed by Belabas in [2] takes side [B] to the extreme. It uses
just one trace at a time, and adds only O(r) bits of data at a time. While this
leads to a good complexity bound for each LLL call, one that depends solely on
r, it becomes difficult to bound the number of LLL calls if one takes side [B].
We expect the number of LLL calls in Belabas’ implementation to be O(r) for
typical examples, however, it should be possible to construct examples where
this number is significantly higher.

What was new about Belabas’ strategy is the order in which the p-adic digits
are used; this is done in such a way that each call to LLL will maximally benefit
from the preceding LLL calls. This way the fact that the number of LLL calls
may be large does not hurt the practical performance of the algorithm. Indeed,
the number of LLL calls appears to have little effect on the running times of
Belabas’ implementation; section 2.5.1 in [2] mentions that reducing the value
of the parameter BitsPerFactor by a factor 2 (which should double the number
of LLL calls) has only a minor impact on the computation timings.

However, having an unknown (and potentially large) number of LLL calls
certainly complicates the problem of bounding the complexity. Thus, to get
a complexity bound, the paper [3] took side [A]. In Theorem 4.3 in [3] it was
shown that the combinatorial problem would be solved with a single LLL call
if one applies LLL to a certain lattice (called the all-coefficients lattice in [3]).
However, this lattice is as big as the one used in [8] and thus one ends up with
the same complexity. The paper [3] also showed (Theorem 4.6 in [3]) how to
bound the complexity for [B] (i.e. for Belabas’ version, called “one coefficient at
a time” in [3]). Although this bound was not spelled out explicitly (Theorem 4.6
in [3] only says “polynomially bounded”), if one follows the steps of the proof
one sees that the complexity result for [B] in [3] is much worse than the bound
for [A], which is ironic, because [B] runs very much faster than [A]. This is one
of the key problems to be resolved in this thesis.

14

Key Theoretical Problem

Ever since the LLL paper in 1982, the algorithms with the best proved com-
plexity bounds are not the algorithms which are the fastest in practice.

Notation: In [3] we see that for large enough a solving the combinatorial
problem can be accomplished by finding an LLL-reduction of the rows of the
following matrix, called the All-Coefficients Matrix:

pa

. . .

pa

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗

.

Here the ∗ represent coefficients of the logarithmic derivative (multiplied by f)
for each of the local factors.

The important result of [3] that we need is that they express an upper bound
for the amount of Hensel Lifting needed before an LLL reduction of the rows of
the All-Coefficients matrix ensures a solution of the combinatorial problem.

Remark: If a proved complexity bound for algorithm A is better than the
proved bound for algorithm B it does not imply that there exists examples for
which algorithm A is faster. It could be that algorithm B is faster but the
complexity bound for B is not sharp.

1.4 The Main Goal of This Thesis

We would like to resolve the key theoretical problem by closing the gap between
theory and practice. In the algorithm with best proved complexity, [10], and in
the algorithm with best practical running times, [2, 6], the dominant term is the
Switch Complexity. So we will only focus on reducing the switch complexity.

The goal is to show an algorithm for factoring polynomials with a Switch
Complexity of O(r3), which is asymptotically sharp. In chapter 2 we will intro-
duce a method (inspired by Belabas’ [B] strategy) for finding a reduction of the
rows of a particular style of matrix with switch complexity independent of the
size of the entries in the matrix. This method works for factoring polynomials
when applied to the All-Coefficients matrix from [3] and has switch complexity
O(Nr2). Chapter 2 is taken largely from a joint preprint with Mark van Hoeij.

In Chapter 3 we expand on this method in an algorithm for factoring poly-
nomials which has switch complexity O(r3). This algorithm is presented in full
detail and with complete and detailed proofs.

The same algorithm from Chapter 3 introduces a new practical feature we
call Early Termination. This new feature allows us to always minimize the
amount of Hensel Lifting without hurting the overall switch-complexity. In cases

15

where the combinatorial problem can be solved before the factors themselves
can be reconstructed (for instance many irreducible polynomials) we might be
able to save a great deal of time, although in worst-case polynomials we do not
see a benefit. This new algorithm should resolve our key practical problem and
thus resolve both problems with Zassenhaus’ algorithm listed in section 1.1.2.

16

Chapter 2

Factoring with switch
complexity independent of
coefficient size

2.1 Partial Reductions

This section presents a type of partial lattice reduction that we will later apply
to factoring polynomials.

Definition 5. Given a lattice L ⊆ Rm and a positive real number B, we call
S = b1, . . . , bk ∈ L a B-reduced sequence for L if:

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2 for 1 ≤ i < k (Same as definition 3).

2. ‖ b∗k ‖2≤ B.

3. Every v ∈ L with ‖ v ‖2≤ B is in SPANZ(S).

Algorithm 2 (B-Reduce).
Input: V = b1, . . . , br a basis of a lattice L.
Output: A B-reduced sequence for L.
Algorithm: The same as algorithm 1 in Section 1.2.1, except that whenever the
last vector has squared G-S length > B, at any point during the computation, it
is removed.

Correctness of the algorithm is based on Fact 1 in subsection 1.2.1. Now
consider the following problem. Let π : Rm+1 → Rm be projection onto the
first m coordinates, and S = b1, . . . , br ∈ Rm+1 with π(b1), . . . , π(br) already
B-reduced. We would like to B-reduce S in a way that takes advantage of the
fact that the first m entries are already B-reduced.

We could just apply algorithm 2 to S, but then the worst-case complexity
would be the same as LLL. Specifically, if we applied algorithm 2 to S, then the

17

switch-complexity may depend on the size of the last entries of the vectors of
S. Recall that the switch-complexity is defined as the number of LLL-switches
(step 2 of algorithm 1) that occur during the algorithm.

We will give a variant of algorithm 2 with a better switch-complexity, one
that (under a mild assumption, see Theorem 1) only depends on B and r and
not the size of the last entries. (This does not imply that the overall complex-
ity itself is independent of the size of last entries because we still work with
numbers of that size. But a lower switch-complexity does imply a lower overall
complexity because both algorithms have to work with vectors of similar size.)
The algorithm uses an idea obtained from strategy B in [2].

Notation: Let (v)i denote the ith entry of any vector v.

Algorithm 3 (Gradual B-Reduce).
Input: S = b1, . . . , br ∈ Rm+1 with π(b1), . . . , π(br) already B-reduced.
Output: A B-reduced sequence.
Algorithm:

1. Let d be the smallest nonnegative integer for which | (bi)m+1
2rd | ≤ 2r for

i = 1, . . . , r, where (bi)m+1 is the last entry of bi.

2. Scale down the last entry of each vector (bi)m+1 := (bi)m+1
2rd (for i =

1, . . . , r) and set s := r.

3. Repeat the following d times:

(a) If 1 < max(|(b1)m+1|, . . . , |(bs)m+1|) (where s is the number of re-
maining vectors) then run algorithm 2 and let s be the number of
remaining vectors.

(b) (Gradually scale back up). Let (bi)m+1 := 2r (bi)m+1 (for i = 1, . . . , s).

4. Run algorithm 2 and stop.

Example for Algorithm 3:
Let B := 10.
Input: S = b1, b2, b3 := (0, 0, 1000), (1, 0, 333), (0, 1, 665). So r = 3, m = 2, and
π(S) = (0, 0), (1, 0), (0, 1) is B-reduced.
1. Find d = 3 so that | 1000

2rd | ≤ 2r.
2. Initial Scale Down: s := 3, 2rd = 512 so b1 := (0, 0, 1000

512), b2 = (1, 0, 333
512),

b3 = (0, 1, 665
512).

3a First Time. 1000/512 > 1 so run algorithm 2 (basically just LLL) and now
have b1 := (1, 0, 333

512), b2 = (0, 1, −335
512), b3 = (−1, 1, 83

128) and s = 3.
3b. Scale the last entries by 2r: b1 := (1, 0, 333

64), b2 = (0, 1, −335
64), b3 =

(−1, 1, 83
16)

3a Second Time. 83/16 > 1 so run algorithm 2 and now have b1 := (1, 1, −1
32),

b2 = (−2, 1, −1
64), and s = 2 (the third vector was removed because LLL reduc-

tion pushed its squared G-S length over B).

18

3b. Scale the last entries by 2r: b1 := (1, 1, −1
4), b2 = (−2, 1, −1

8).
3a Third Time. Now when running algorithm 2: b1, b2 are already B-reduced
so: s := 2 and b1 := (1, 1, −1

4), b2 = (−2, 1, −1
8).

3b. Scale the last entries by 2r: b1 := (1, 1,−2), b2 = (−2, 1,−1).
4. Again already B-reduced. So this call to algorithm 2 does nothing.
Output: b1, b2.

In order to see why this algorithm returns a B-reduced basis we need the fol-
lowing:

Lemma 1. Let σ : Rm+1 → Rm+1 scale up the last entry by some factor δ > 1.
Let S = b1, . . . , br and σ(S) the image of S. Then ‖ b∗i ‖≤‖ σ(bi)

∗ ‖.

The Lemma implies that removing a vector (during the call to algorithm 2 in
step 3a) before the last entry was scaled back up to original scaling (by repeated
calls to step 3b) will not cause removal of a vector whose original squared G-S
length (as it was before step 2) had been ≤ B.

Proof. Let Vi = {bi − (ai−1bi−1 + · · ·+ a1b1) | a1, . . . , ai−1 ∈ R}, then b∗i is just
the shortest vector in Vi. Now the claim is that the shortest vector in Vi is
not longer than the shortest vector in σ(Vi). So let w be the shortest vector
in σ(Vi). There is some v ∈ Vi with σ(v) = w. Let w = (c1, . . . , cm), then
v = (c1, . . . , cm/δ). Now ‖ b∗i ‖≤‖ v ‖≤‖ w ‖=‖ σ(bi)

∗ ‖.

Lemma 2. In algorithm 3 every vector has squared G-S length ≤ 23rB at any
time during steps 3 and 4. In particular, this holds for every removed vector at
the time of its removal.

Proof. Since running B-reduce cannot increase G-S lengths (by Observation 1
in Section 1.2.1) we need to decide how large a vector can possibly be just after
scaling up by 2r. But just before the scaling we know that b1, . . . , bs is B-reduced
which implies that ‖ b∗1 ‖

2 ≤ 2‖ b∗2 ‖
2 ≤ · · · ≤ 2s−1‖ b∗s ‖

2 ≤ 2s−1B, since the
last vector is no larger than B and by the definition of an LLL-reduced basis
(in Section 1.2.1). So just after scaling the largest G-S length can have squared
length no greater than (22r)(2s−1B) ≤ 23rB.

Definition 6 (Progress). Suppose b1, . . . , bs is the current set of vectors at some
point in the algorithm. We will define

P (b1, . . . , bs) = 0 · l1 + 1 · l2 + · · ·+ (s− 1) · ls + r(r − s) log4/3(2
3rB)

which we call the Progress so far in the algorithm. It is a weighted sum (with
weights 0, 1, . . . , s − 1 and r) of the logarithmic G-S lengths, where the r − s
removed vectors are counted as if they had squared G-S lengths 23rB.

Theorem 1. Gradual B-reduce has switch-complexity O(r3 + r2 log(B)) if we
assume that the Gram-Schmidt lengths of π(b2), . . . , π(br) are at least 1.

19

Proof. The assumption on the Gram-Schmidt lengths implies that the value of
P at the end of step 2 is nonnegative. Substituting s = 0 gives an upper-bound
for P because of lemma 2. Hence P ≤ r2 log4/3(23rB) = O(r2(r + log(B)) will
hold at any time during steps 3 and 4. Because each LLL-switch increases P
by at least 1, we can prove the theorem by showing that the progress, P , never
decreases during steps 3 and 4.

Removing a vector can only increase P by Lemma 2. The only steps that
change G-S lengths are scalings and LLL-switches. Lemma 1 shows that scaling
up (step 3b) can only increase G-S lengths and hence can not decrease P .

2.2 Partial Reduction of a Special Matrix

We want to bound the switch-complexity of B-reducing the rows of the following
type of matrix:

dN
. . .

d1

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗

where the lower left hand corner is an r × r

identity matrix, ∗ represents any number, and di2 > 2((r+1)2−(r+1))/2B(r+1). In
addition we require |di| > 1 and that di has the largest absolute value in its
column.

Algorithm 4. Matrix Reduce
Begin with the vectors S = b1, . . . , br which are the rows of the r × r identity
matrix in the bottom left corner, throughout the algorithm we will let s denote the
current number of vectors in S and nrm denote the number of removed vectors.
Then perform the following:

1. Add a row and a column. By this we mean expand the corner of the matrix
we will deal with, which includes adjoining a new entry for each current
row-vector and then inserting the next row-vector (properly truncated).
Note that the new vector is inserted as the first element in S (this will be
used in the proof of lemma 5 below).

2. Call Algorithm 3 on S.

3. Unless the matrix has been exhausted go back to step 1.

Example of Algorithm 4
Let

M =

0 0 0 0 1000
0 0 0 1000 0
0 0 1000 0 0
1 0 333 460 371
0 1 665 −81 −258

20

Let H denote the largest absolute value of the entries of M . We choose B = 10.
Let L be lattice generated by the rows of this matrix. In summary, we have

r = 2, N = 3, B = 10,H = 1000.

Task: B-reduce L. This means finding b1, . . . , bs ∈ L with the following prop-
erties

• b1, . . . , bs is LLL-reduced.

• Any v ∈ L with ‖ v ‖2≤ B is in SPANZ(b1, . . . , bs).

Lemma 7 below states that regardless of the size of H, this task can be done
using no more than this many LLL switches: N(r+1) log4/3(23(r+1)B) = 3(2+
1) log4/3(23(2+1)10) = 9 log4/3(2910) which is 267 rounded down. So even if
we replaced the non-zero numbers in the last three columns of the example M
by million-digit integers we would still have the same switch-complexity. Of
course, for larger H the CPU time does increase, since it takes more time to
add many-digit integers than it does to add small integers. However, the key
point of this section is that the switch-complexity (the bound for the number
of LLL switches) depends only on r, N , and B but is independent of H.

Example continued: We have r = 2, N = 3, and B = 10.
Initialize: Let S := (1, 0), (0, 1), s := 2, nrm := 0.
1. Add entries and we obtain: S = (1, 0, 333), (0, 1, 665).
Now add a vector: S = (0, 0, 1000), (1, 0, 333), (0, 1, 665) and let s := 3.
2. Call Algorithm 3. This produces S = (1, 1,−2), (−2, 1,−1). Now s = 2 and
nrm = 1.
3. There are two more rows/columns left, so go back to step 1.
1. Add entry. To calculate the new entry we need to use entries numbered
1, . . . , r. We obtain: S = (1, 1,−2, 1 · 460 + 1 · (−81)), (−2, 1,−1,−2 · 460 + 1 ·
(−81)).
Now add a vector: S = (0, 0, 0, 1000), (1, 1,−2, 379), (−2, 1,−1,−1001).
2. Call Algorithm 3. This produces S = (−2, 1,−1,−1). Now s = 1 and
nrm = 3.
3. There is one more row/column left, so go back to step 1.
1. Add entry. S = (−2, 1,−1,−1,−2 · 371 + 1 · (−258)).
Now add a vector: S = (0, 0, 0, 0, 1000), (−2, 1,−1,−1,−2,−1000).
2. Call Algorithm 3. This produces S = (−2, 1,−1,−1, 0). Now s = 1 and
nrm = 4.
3. We used all rows/columns.
Output: (−2, 1,−1,−1, 0).

If b1, . . . , bs is the current collection of vectors and nrm is the number of vectors
which have been removed, then we define the Progress, P , of the current vectors
as:

P (b1, . . . , bs) = 0 · l1 + 1 · l2 + · · ·+ (s− 1) · ls + (r + 1)nrm log4/3(2
3(r+1)B)

21

Lemma 3. In step 2 at least one vector gets removed so that s is never more
than r + 1 in Algorithm 4.

Proof. If no vector gets removed then the determinant squared must be the
same both before and after step 2. But before step 2 the determinant squared is
≥ B(r+1)2((r+1)2−(r+1))/2 (because of the di). After step 2 we have ‖ b∗s ‖

2 ≤ B

and ‖ b∗i ‖
2 ≤ 2s−i‖ b∗s ‖

2 which imply that our determinant squared must be
≤ Bs2(s2−s)/2. Since the first time step 2 is called we have s = r + 1 we know
that at least one vector must have been removed. But now by repeating this
logic we have s ≤ r + 1 for every other time step 2 is called. Therefore every
time step 2 is called at least one vector is removed. Also the product of the
G-S lengths is the determinant of S. So if we were to keep all vectors when
adding a column we would need that ‖ b∗s ‖

2 ≤ B. These facts imply that
the determinant squared of the starting lattice must be below Bs2(s2−s)/2 but
di

2 > B(r+1)2((r+1)2−(r+1))/2 for all i, so that the determinant of any of the
lower left hand corners we take is large enough to guarantee at least one vector
is removed.

Corollary 1. No removed vector (at the time of its removal) can have li larger
than log4/3(23(r+1)B), and when lattice reduction (Algorithm 1) is called no
remaining vector has li larger than log4/3(23(r+1)B).

The proof is the same as the proof for Lemma 2.

Lemma 4. The G-S lengths of any vector in Algorithm 4 are always ≥ 1. In
other words li ≥ 0.

Proof. The initial vectors have G-S length ≥ 1 (di ≥ 1 above). So the lemma
follows from Observation 1.

Lemma 5. Progress P never decreases in Algorithm 4.

Proof. We have already shown that Algorithm 3 will not decrease progress. It
remains to show that step 1 will not decrease progress.

Step 1 adds the vector (0, . . . , 0, di) to the beginning of b1, . . . bs. This way
the G-S lengths of b1, . . . , bs are not changed by the addition of an extra entry.
They will only have their weights increased by one in P , which can only increase
P (because of lemma 4). The length of (0, . . . , 0, di) has no impact on P since
it is counted with weight 0.

Lemma 6. Each LLL switch increases Progress, P , by at least 1.

This is the same as in the previous section.

Lemma 7. P is always ≤ N(r + 1)(log4/3(23(r+1)B), so that P = O(Nr(r +
log(B))).

22

Proof. As seen in the previous section when Gradual B-Reducing no li can
become larger than log4/3(23(r+1)B). Thus a remaining vector contributes less
to progress than a removed vector. In this application however we do allow a
large G-S length but only when the new vector is added in step 1. However by
adding this vector as the first vector in our set it contributes nothing to progress
and when algorithm 3 is called its size is immediately scaled back down. Thus
the progress is always less than it would be if all vectors were removed.

This implies that the number of LLL switches is bounded by
N(r + 1) log4/3(23(r+1)B) = O(Nr(r + log(B))), since each switch ensures an
increase of at least 1.

2.3 New Bounds for Factoring in Q[x]

Now we simply observe that factoring over Q can be accomplished by B-reducing
a matrix with the same format as our special matrix in the previous section.

Notation: Let f ∈ Q[x] be a polynomial of degree N , and p a prime such that
f ≡ f1 · · · fr mod p is the factorization of f in Fp[x]. Let f ≡ f̃1 · · · f̃r be the
factorization of f mod pa for some positive integer a, with fi ≡ f̃i mod pa for
all i. Let B := r + 1.

We will make some minor changes to the All-Coefficients matrix defined in
section 1.3.2 to produce a matrix that looks like:

pa−bN

. . .

pa−b1

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗

where pbi represents

√
N times a bound on the ith coefficient of the logarith-

mic derivative, and we have Hensel lifted high enough to ensure that pa−bi >
2((r+1)2−(r+1))/2B(r+1)

√
N for all i. A B-reduction of this matrix will also solve

the recombination problem by a similar argument. Thus the switch complexity
of factoring over Q is bounded by N(r + 1)(log4/3(23(r+1)B) = O(Nr2) (this
adjustment allows B to only depend on r).

2.4 Conclusion of Chapter

This new switch-complexity of O(Nr2) is an improvement over [10, 8, 3] which
has switch complexity O(N2(N + log(H))), where H =‖ f ‖∞. Note that our
switch complexity is independent of coefficient size.

23

We tried to create an algorithm that would allow us to bound the LLL
switches while not deviating too far from the fastest current implementations
like [2].

One might wonder why the central algorithm of this chapter is not presented
in more detail, after all its complexity bound is better than prior complexity
bounds. The truth is that it is unlikely that this algorithm will be used, because
existing implementations perform much better in practice (see the remark in
section 1.3.2). Also we are about to present an algorithm with even better
switch complexity for which we give full details.

The main purpose of presenting this algorithm was to introduce the most
important concepts of the algorithm appearing in the upcoming chapter. We
will heavily rely on the concept of Progress, P , for bounding LLL switches, we
will also feed in the information gradually as we did in this chapter. The new
algorithm will allow us to prove a switch complexity of O(r3), independent of
both degree and coefficient size.

24

Chapter 3

Factoring with switch
complexity independent of
degree and coefficient size

3.1 Why go on?

We have just shown that our algorithm from Chapter 2 has the best switch
complexity of any factoring algorithm over the rationals. Also the upcoming
chapter is long, technical, and difficult to write. So why aren’t we content with
the new algorithm from chapter 2? There are some problems with the chapter
2 algorithm:

1. A Small Problem It doesn’t seem like this complexity is sharp since the
combinatorial problem in Zassenhaus only depends on r, while this Switch
Complexity (O(Nr2)) depends on N as well.

2. A Big Problem It is unlikely that this algorithm will be used because
existing algorithms perform much better in practice (see the Remark in
section 1.3.2).

The algorithm in chapter 2 is impractical because the amount of Hensel
Lifting required is very large and the algorithm only begins when that
level of accuracy is reached. In fact problem 1 with Zassenhaus’ algorithm
from section 1.1.2 has been made much worse and not better! In fact there
is a third problem which is true of all prior algorithms:

3. Problem with all prior algorithms: Every existing algorithm requires
using just as much Hensel Lifting as the Zassenhaus algorithm even though
there are examples where less lifting would be sufficient.

We would like to resolve all three problems with a single new algorithm:

25

The goal of this chapter is to make an algorithm which is the fastest
both in theory and in practice.

To do this we have to find a way of using less Hensel Lifting, and we would
like to remove the N from the switch-complexity. Which means that we will
have to try solving the problem before very much Hensel lifting, and we cannot
use all N logarithmic derivative coefficients. One key idea is to only use data
that is likely to help solve the problem.

3.2 Introducing the Active Determinant

We will present an algorithm that follows the ideas of the previous chapter with
the following differences: We use much less hensel lifting and we must skip some
of the coefficients of g′f

g in order to obtain a switch-complexity which is inde-
pendent of N , the degree of f . Which means we need to have a way of deciding
when a coefficient/new entry will lead to progress and when a coefficient/new
entry will not lead to progress.

Consider the following situation from Algorithm 4 in Section 2.2:

1. We add a new entry to each vector and a new vector to our lattice (Step 1
in algorithm 4)

2. We run Gradual B-Reduce (Algorithm 3) to increase progress which does
the following:

(a) LLL reduction during calls to algorithm 2

(b) Removes vectors in algorithm 2 which are no longer needed (perhaps
also increasing progress).

Now b1, . . . , bs is B-reduced, and if we were to run LLL again immediately we
would accomplish nothing (no switches would be made). Suppose that the next
time we run Step 1 in Algorithm 4 the new entry which we add to b1, . . . , bs is
already very small. In this case running B-reduce/LLL will still not make many
switches (progress) because all of the new entries are so small that the basis
has a good chance of staying LLL reduced (the G-S lengths are not altered by
much). So we need to know when extra information (a new entry) will lead to
progress and when it won’t.

Definition 7. Let b1, . . . , bs be the active vectors and b∗i the ith G-S vector, then
we call AD =

∏
‖ b∗i ‖ the Active Determinant.

This is a measure of how much usable information is stored in the lattice
currently (in the form of G-S length). AD is independent of LLL since LLL
switches don’t change the product of the involved G-S lengths. So the scenario
of adding entries (or any other action we take) will now look like this:

1. We only add a new entry (and make some action) if it increases AD by a
sufficient amount.

26

2. We run LLL which is guaranteed to increase Progress because of 1.

3. We remove vectors (which decreases AD by a bounded amount per re-
moved vector).

4. Repeat: We must increase AD again before LLL can make more progress.

This is the basic loop of the new algorithm. Termination and complexity
bounds can be derived if we ensure that:

1. AD is bounded

2. The amount we choose to increase AD by in step 1 is at least 2r more
than the amount removed in step 3.

3.3 How to read this chapter

This algorithm is highly recursive and the proof of its complexity rather tech-
nical. We present the algorithm divided into its 10 procedures.

So we have presented each procedure as its own independent section. Each
procedure’s section is divided into several subsections:

1. A list of variables used in the procedure with meanings and references.

2. Each section then has the procedure written out in full detail.

3. We list the properties which should be true at the moment the procedure
is called. We assume these in the proofs.

4. We then prove the properties which should be true at the moment the
procedure is terminated and another procedure is called. This is the sub-
section which contains the meat of our proofs.

5. Finally we present some notes on the complexity of the section as it related
to the entire algorithm. This should include comments on how many
times this procedure is called from other procedures and how often this
procedure calls other procedures.

We provide a summary sheet that contains the flow chart and the 14 prop-
erties which should be proved at every output/exit arrow. Properties 1 through
11 should be proved verbatim and will remain true throughout the entire algo-
rithm. The other three properties are more procedure specific and the . . . on
the summary sheet will be filled in for each specific procedure. The heart of
our claims on switch-complexity are summarized in 8. nswitches ≤ P and the
bound on P proved in section 3.6. The later properties illustrate the effect of
a given procedure on AD and ‖ b∗i ‖. While properties 1-7 are global properties
which are needed in many of the proofs.

27

3.3.1 Summary Sheet

The r3 Algorithm:

Solved

Check If

3.6:

Entries Up

Scale Last

3.10:

Vectors

Remove Big

3.7:

Run LLL

3.11:

(add vector)

pLLL

3.9:

Vector Added

Decide If

3.12:

Usable Coeff

Find Next

3.8:

Hensel Step

3.5:

Initialize

3.4 :

Factorization

Complete

Output a

Solved

Check If

3.6:

Algorithm

Zassenhaus’

3.13:
-1

-16

-18

?
3

?
5

?

17

?
8

?
9

?
12

�10

�

�11b

11a
�13

�

2

� 6-

4

-15

-7

614

For each procedure/section prove the following 14 properties:
1. s < b 3r

2 c s = r + ngood − nrm is the dimension of L
2. ngood ≤ 3r + 2 ngood counts ‘good’ coefficients (Exit 11a)
3. nbad ≤ 3r2 − 2r + 1 nbad counts ‘bad’ coefficients (Exit 11b)
4. nnovec ≤ 3r + 2 nnovec counts ‘no vector’ coeffs (Exit 10)
5. nrm ≤ r + ngood − 1 ≤ 4r + 1 nrm counts vectors removed in 3.7
6. nscales ≤ 3r + 2 nscales counts successful scalings (Exit 15)
7. nentries ≤ 3r2 + 5r + 5 nentries counts entries in bi, i.e. L ⊆ Znentries

8. nswitches ≤ P nswitches counts LLL switches throughout
9. P out ≥ P in Progress, P , is how we bound nswitches

10. W ⊆ π(L) W is the solution lattice in Zr

11. ‖ π−1(vg) ‖
2 ≤ r + (nentries) · (1√

3r2+5r+5
)2 ≤

r + 1 for any irreducible factor g
This is how we ensure W ⊆ π(L)

12. max{‖ (bout
i))∗ ‖} ≤ 2... We bound the G-S length of any bi

13. ADout ≤ 2... AD is always bounded by something
14. ADout ≥ . . .ADin Also AD increases after most procedures

28

3.3.2 Notations

1. In order to show change in any variable we use the convention of xout

to represent the value of any variable, x, at the conclusion of the sub-
procedure and xin to be the value of the variable at the input.

2. Let b∗1, . . . , b
∗
s be the Gram-Schmidt Orthogonalization (G-S) of b1, . . . , bs.

3. Let li := log√
4/3

(‖ b∗i ‖) = log4/3(‖ b∗i ‖2). Also let li,2 := log2(‖ b∗i ‖).

4. L is SPANZ{b1, . . . , bs}. The phrase ‘Our Lattice’ refers to L.

5. AD:=det(L) :=‖ b∗1 ‖ · · · ‖ b∗s ‖.

6. In all sections but 3.9(pLLL) we will use the following formula for progress:

P := 1 · l1 + · · ·+ (s) · ls

+
3r
2
· nbad +

3r
2
· 2r log√

4/3
(2) · nrm

7. In 3.9 we use a variant of this formula to deal with the probationary vector
(the vector with li,2 > 2r). During 3.9 if there is an lj,2 > 2r, then:

P := 1 · l1 + · · ·+ (j − 1) · lj−1 + (j) · lj+1 + · · ·+ (s− 1) · ls

+
3r
2
· nbad +

3r
2
· 2r log√

4/3
(2) · nrm

+(j − 1)

Otherwise use the formula for P from item 6.

Essentially when li,2 > 2r the formula is the formula from item 6 with lj
removed, and j − 1 added.

8. f is the polynomial to be factored, p a prime chosen so that f is squarefree
mod p. Let f1, . . . , fr ∈ Zp[x] be the p-adic factors of f . Let f̃1, . . . , f̃r ∈
Z[x] be approximations of f1, . . . , fr of accuracy a. This means that f̃i ≡ fi
mod pa, which implies that f ≡ f̃1 · · · f̃r mod pa.

9. Hensel Lifting is the process of increasing the accuracy of f̃1, . . . , f̃r as
approximations of f1, . . . fr. (Increasing a). This process is similar to a
Newton Step; it doubles the precision a.

10. We use the notation (v)i to represent the ith entry of any vector v. Also
for simplicity (v)−1 will denote the final entry of v.

11. Throughout the chapter we use vg to represent the 0-1 vector correspond-
ing with a monic irreducible rational factor g of f . More precisely: If
g|f and g irreducible in Z[x] then there exists a vector vg ∈ {0, 1}r with
g ≡ (f1)(vg)1 · · · (fr)(vg)r mod pa.

29

12. The word mods denotes the symmetric remainder. n mods pa returns the
number, ñ in the congruence class of n modulo pa with ñ ∈ (−pa

2 ,
pa

2].

13. We use CLDa
c (g) := Coefficient(g

′f
f , x

c) mods pa, to represent the cth

Coefficient of the Logarithmic Derivative times f , for any factor g of f .
Note that CLDa

c (fi) can be computed from f̃i because the accuracy of f̃i
is a.

14. CB(c) is chosen so that 2CB(c) ≥ |CLDa
c (g)| for any rational factor, g, of f .

There is a bound for CB(c) in [3], namely CB(c) ≤ dlog2(2N−1·N · ‖ f ‖2)e.
Note: we write ≤ because a better bound is possible.

15. d := dlog2(
√

3r2 + 5r + 5)e is chosen so that 2d ≥ √
nentries throughout

the algorithm. nentries will be defined in 3.4.

16. Avail Bits(c) := dlog2(
pa

2CB(c)+d)e, tells us how many bits of information
above the coefficient bound our algorithm can use. If this turns out to be
insufficient then we can increase it by Hensel Lifting.

17. We use ψac (v) to represent
r∑
i=1

(v)iCLDa
c (fi). Note that ψac (vg) is congruent

to CLDa
c (g) mod pa but need not be equal because CLDa

c always returns
a number which is reduced mods pa where as ψac might not.

18. IB should be an experimentally determined bound such that if a < IB then
it becomes unlikely that the algorithm can terminate without additional
calls to 3.5(Hensel Step). For now we choose IB := the value for a for
which

∑
Avail Bits(c) is approximately r2

8 .

19. Let W ⊆ Zr be the lattice generated by the vg. In other terms: If f fac-
tors completely over Q as g1 · · · gk then define W := SPANZ{vg1 , . . . , vgk

}
where vgi is the 0-1 vector corresponding with gi, see item 11.

20. We use π(bi) to represent the projection of bi onto its first r entries. Also
π(L) = SPANZ{π(b1), . . . , π(bs)}.

21. Let π−1(vg) denote a shortest vector in the pre-image of vg. By de-

sign of the algorithm we have π−1(vg) = (vg,
CLDa

c1
(g)

TS1
, . . . ,

CLDa
ctc

(g)

TStc
).

The notation TSi and tc will be introduced in 3.10(Scale Up) and
3.4(Initialize) respectively.

22. Just like in [6] the aim is to keep making the lattice π(L) smaller during
the algorithm until eventually π(L) will be W at termination.

23. Is Zero One Basis(b1, . . . , bs) decides if there is a 0-1 basis for π(L).

24. Attempt Reconstruction tries to reconstruct a rational factor of f from
the f̃i if π(L) has a 0-1 basis. The procedure simply multiplies the f̃i
mods pa and does a trial division of f . (See step 10 of algorithm 2.2 in
[6])

30

3.3.3 Some useful Facts

Fact 2. If g ∈ Q[x] is an irreducible factor of f , then Coeffc(g)

2CB(c)+d ≤ 1√
3r2+5r+5

Observation 2. It is important to distinguish CLDa
c (g) and ψac (vg), the true

CLDa
c (g) is reduced mods pa where as ψac might not be. So when we add new

coefficients we need to add a vector of the form (~0, pa) to our lattice in order to
verify property 11 from the summary sheet.

NOTE: Property 11. ‖ π−1(vg) ‖
2 ≤ r + (nentries) · (1√

3r2+5r+5
)2 ≤ r + 1 for

any irreducible factor g, will hold true if each new entry we add to π−1(vg) is
of size ≤ 1√

3r2+5r+5
because of property 7. nentries ≤ 3r2 + 5r + 5.

Lemma 8. If r > 10 and there is a B-reduced sequence of s ≤ 3r/2 elements
(and B = r + 1) then the AD of this sequence is ≤ 2r

2
, and ‖ bi ‖≤ 2r−1 ≤ 2r

for all i.

Proof. LLL reduced sequences satisfy the property ‖ b∗i ‖
2 ≤ 2‖ b∗i+1 ‖

2 for any
i. A B-reduced sequence has the final element with ‖ b∗s ‖2≤ B ≤ 2r/2−1 if
r ≥ 10. So ‖ b∗i ‖≤ 2(s−i)/2+r/2−1. When s < 3r/2 we see ‖ b1 ‖≤ 2r−1. Thus
the product of G-S lengths is ≤ B3r/42(3r/2−1)3r/8 ≤ 2r

2
. The ‖ bi ‖≤ 2r−1

follows from (1.7) in LLL.

3.3.4 The basic idea of the following algorithm

In 3.6(Check If Solved) we see that the algorithm can only terminate if
π(L) = W . We start in 3.4(Initialize) with π(L) = Zr and s = r. The aim is
now to append entries to the basis b1, . . . , bs so that the vectors vg1 , vg2 , . . . stay
smaller than B, while the vectors v with π(v) /∈ W grow large so that Gradual
B-reduce (algorithm 3 in the previous chapter and arrows 12, 13, 14 and 15 in
this chapter) can perhaps remove them. Each time we add (or scale) an entry
we increase AD, the determinant of b1, . . . , bs. If AD increases by a sufficient
amount it becomes inevitable that there is a G-S length large enough for B-
reduce to remove it; thereby bringing π(L) closer to W . The tricky problem
is that each time we add an entry we also need to add a vector (of the form
(0, . . . , 0, ∗)). So we need to ensure not only that vectors are removed every
once in a while, but also that, at least in the long run, more vectors are removed
then are added. This is done by ensuring that each removed vector lowers the
determinant by less than the amount the determinant increases when we add a
vector. We can make sure of this by providing an upper bound for the size of a
removed vector and a lower bound for the size of an inserted vector. Then an
upper bound for AD will ensure that the number of removed vectors must, in
the long run, outnumber the number of added vectors.

So in 3.9(pLLL) we add a new entry and vector just like in the example of
algorithm 4 from section 2.2. We then run LLL reduction and make sure that
the vectors are small again before we remove them (if there is a vector which is
not small enough we call this a Bad Vector).

31

Then we remove any vectors whose G-S lengths are > B in 3.7(Remove
Vectors). Next 3.10(Scale Up) is the procedure by which we squeeze every
bit of information we can get from the new entry. This is why there is a loop
in the lower left hand corner of the flow chart. In fact this loop is basically the
Gradual B-Reduce algorithm from section 2.1.

In the odd case that the size of the new vector (~0, pa) is much much larger
than the new entries, we might be able to remove it without using any LLL
switches. This is the 3.12(No Vector Added) procedure.

3.4 Initialize

3.4.1 Variables used in this Procedure:

• r represents the number of local factors.

• f1, . . . , fr are the local factors, their images in (Z/pZ)[x] are f̃1, . . . , f̃r
irreducible with f̃1 · · · f̃r ≡ f mod p.

• bi is the ith vector in the current basis of our lattice L. Most of the work
of the algorithm is done by altering the bi.

• nentries will be a counter for the number of entries in each bi. It will change
when we add a new entry to each bi, which happens only in 3.9 step 1 or
3.12 step 10e.

• We also use tc which is just nentries − r, but provides a convenient index
for the history of our coefficients. (For instance I might need to refer to
the total scaling done to the fifth coefficient we encountered, the (r+ 5)th

entry in each vector. This is stored as TS5.)

• a represents our p-adic accuracy at the moment. It only changes during
3.5(Hensel Step), and when a new coefficient is selected we store the
p-adic accuracy under atc for reference in proofs.

• B = r + 1 is an upper bound for the length of π−1(vg) throughout the
algorithm, for any factor g ∈ Z[x] of f . (Provided property 11 holds
throughout.)

• d is chosen so that 2d ≥ √
nentries throughout the entire algorithm. It’s

used to make sure we don’t over scale in 3.12(No Vector Added) and
3.10(Scale Up). It also contributes to the amount of information we
consider sufficient in 3.8(Find Next Coeff).

• ngood counts the number of good vectors we have encountered so far and
only changes during 3.9(pLLL).

• nbad counts the number of bad vectors we have encountered so far and
only changes during 3.9.

32

• nnovec counts the number of No Vector Added coefficients (coefficients
for which no vector needed to be added as decided in 3.12(No Vector
Added)) we have encountered so far and only changes during 3.12.

• nrm counts the number of vectors which have been removed during 3.7(Remove
Vectors).

• nscales counts the number of successful scalings have taken place in 3.10.

• s is the current number of vectors (bi) in the algorithm at the moment.
This will be ngood+r−nrm except during 3.9 where s = ngood+r−nrm+1
during the LLL run there. This number only changes during 3.9 and 3.7.

• nswitches counts the number of LLL switches which take place in the al-
gorithm, this is the number we are most concerned with bounding. It
changes during 3.11(LLL) and 3.9(pLLL).

• ε is a constant and is chosen somewhat arbitrarily as 0.1. It is used during
some proofs in 3.12 and 3.10.

3.4.2 Procedure

1. Find r and f1, . . . , fr irreducible mod p, with f1 · · · fr ≡ f mod p. (See
[5])

2. If r < 10 then exit this procedure and call 3.13(Zassenhaus) (Exit 1)

3. b1, . . . , br := e1, . . . , er ∈ Zr

4. s := r

5. a := 1

6. d := d(1/2) log2(3r2 + 7r + 10)e

7. nentries := r

8. B := r + 1

9. nnovec, ngood, nbad, nrm, nscales := 0, 0, 0, 0, 0

10. tc := ngood + nbad + nnovec

11. ε := .1

12. nswitches := 0

13. Exit This Procedure and Call 3.5(Hensel Step) (Exit 3)

33

3.4.3 What This Procedure Does:

• This is where factoring mod p takes place. One of the key steps in Zassen-
haus’ algorithm.

• Since Zassenhaus’ algorithm has an exponential running time in r it will
be efficient to call 3.13(Zassenhaus) for sufficiently low r.

• If r is large enough we will define some starting variables to be used and
altered throughout the algorithm.

• This procedure initializes L = SPANZ{b1, . . . , bs} for the first time with
L = Zr. b1, . . . , bs only change during the procedures: 3.11(LLL), 3.9(pLLL),
3.12(No Vector Added), 3.10(Scale Up), and 3.7(Remove Vec-
tors). While 3.11 does alter the bi it doesn’t alter L.

3.4.4 Properties True at Exit 1

• r < 10 so Zassenhaus will be efficient.

3.4.5 Properties True at Exit 3

• L = Zr, AD = 1, and max(li) = 0.

• Our basis b1, . . . , bs is B-reduced (defined in Section 2.1).

• Properties 1, 2, 3, 4, 5, 6, and 7 are all true by definition.

• 9. P out ≥ P in doesn’t apply. However since nbad = 0, nrm = 0, and li = 0
for all i, we know P = 0. Which confirms 8. nswitches ≤ P since nswitches

:= 0.

• 10. W ⊆ π(L) since vg ∈ Zr = L for every factor of f . W is defined in
item 19 in Section 3.3.2.

• 11. ‖ π−1(vg) ‖
2 ≤ r+ (nentries) · (1√

3r2+5r+5
)2 ≤ r+ 1 for any irreducible

factor g is true because π−1(vg) = vg at the moment, and vg is a 0-1 vector
in Zr.

• 12. max{‖ (bout
i))∗ ‖} ≤ 20 and 13. ADout ≤ 20 are mere observations.

• Property 14 doesn’t apply since there is no ADin.

3.4.6 Complexity Notes:

• This procedure is only called once.

• Exit 1 happens at most once.

• Exit 3 happens at most once.

• The CPU cost of this procedure is dominated by Factoring mod p. (see
[4] for complexity results)

34

3.5 Hensel Step

3.5.1 Variables used in this Procedure:

• f1, . . . , fr are the p-adic factors of f , f̃1, . . . , f̃r are approximations of
the fi with accuracy a (defined in 3.4). It should always be true that
f̃1 · · · f̃r ≡ f mod pa.

• IB is a level of p-adic accuracy chosen so that there is a good chance of
solving the problem when a ≥ IB. (See Section 3.3.2)

• c will be the current coefficient of g′f
g that we will explore. It will update

in 3.8(Find Next Coeff) and 3.10(Scale Up), and reset whenever we
need more Hensel Lifting.

3.5.2 Procedure

1. Improve the accuracy of f̃1, . . . , f̃r to 2a. So now: f̃1 · · · f̃r ≡ f mod p2a.

2. a := 2a

3. If a < IB then exit this procedure and call 3.5(Hensel Step) (Exit 4)

4. c := 0

5. Exit this procedure and call 3.8(Find Next Coeff) (Exit 5)

3.5.3 What This Procedure Does:

This procedure uses Hensel Lifting to increase the p-adic accuracy of our local
factors of f by a factor 2. The higher the accuracy, a the more information
(Avail Bits) we have for solving the factorization. It was noted in [3] that if
the local factors are known to sufficient accuracy (we give this accuracy, called
nhensel, in 3.8) then the all-coefficients matrix (see Section 2.3) will contain
enough information to solve the entire problem. So nhensel is a bound for a,
meaning that once a reaches nhensel we can be sure that the algorithm will not
call Hensel lifting again.

What’s new compared to chapter 2 is that we do only one Hensel Step
at a time, rather than lifting to pnhensel at the beginning. In many examples
Hensel Lifting is the practical bottleneck of the algorithm. So by beginning our
search early, we will minimize this practical bottleneck. This Chapter actually
shows that this early checking doesn’t hurt the complexity, which means we
have resolved the key practical problem from section 1.1.2! We actually make
significant practical gains when the polynomial is irreducible or has a single
large factor.

IB = probably sufficient Hensel lifting
nhensel = provably sufficient Hensel lifting

35

The IB was suggested in the additional comments of van Hoeij’s original
paper. If we haven’t lifted to pIB we lift again by calling 3.5(Hensel Step) (Exit
4). Once IB has been reached we always move on by calling 3.8(Find Next
Coeff) (Exit 5).

3.5.4 Properties true of the Input

• To confirm these check the properties at exits 3, 4, and 6 from 3.4(Initialize),
3.5(Hensel Step), and 3.6(Check If Solved) respectively.

• b1, . . . , bs is B-reduced (defined in Section 2.1).

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

3.5.5 Properties true at exit 4

No variables other than a and c changed and so

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

all remain true.

3.5.6 Properties true at exit 5

No variables other than c and a changed and no vectors changed so the input
properties all remain true.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

• Also pa ≥ pIB. (See 3.3.2.)

36

3.5.7 Complexity Notes:

• This procedure can only be called ≤ log2(nhensel) times (see section 3.8.3),
including the log2(IB) times that it calls itself (Exit 4). Although the CPU
time is always dominated by the final call.

• This procedure calls itself log2(IB) times (Exit 4).

• This procedure is called 1 time from 3.4(Initialize) (Exit 3).

• Since there are three inputs (two well known already) and we’ve bounded
the total number of calls, then the number of calls from 3.6(Check If
Solved) (exit 6) is bounded by log2(nhensel)− 1− log2(IB).

• There are only two exits and Exit 4 is called log2(IB) times, so exit 5 (to
3.8(Find Next Coeff)) is called at most log2(nhensel) − 1 − log2(IB)
times.

• The total complexity of all calls to this procedure is dominated by the
Hensel Lifting in the final call to this procedure.

3.6 Check If Solved

3.6.1 Variables used in this procedure

• b1, . . . , bs, the current basis of L.

• Is Zero One Basis is a sub-procedure for deciding if there is a 0-1 basis of
π(L) and what it is:

1. Partition {1, . . . , r} with i, j in the same equivalence class if (v)i =
(v)j for all v ∈ {b1, . . . , bs}.

2. If the number of classes = s then rref(π(b1), . . . , π(bs)) is a 0-1 basis.

• Attempt Reconstruction is the same procedure from van Hoeij algorithm
2.2 step 10.

• f̃1, . . . , f̃r and f are used in Attempt Reconstruction.

3.6.2 Procedure

1. If called from 3.7(Remove Vectors) then

(a) If Is Zero One Basis(b1, . . . , bs) then

i. If Attempt Reconstruction succeeds then exit the algorithm and
Output Factorization (Exit 18)

ii. Exit this procedure and call 3.10(Scale Up) (Exit 14)

(b) Exit this procedure and call 3.10 (Exit 14)

37

2. If called from 3.8(Find Next Coeff) then

(a) If Is Zero One Basis(b1, . . . , bs) then

i. If Attempt Reconstruction succeeds then exit the algorithm and
Output Factorization (Exit 17)

ii. Exit this procedure and call 3.5(Hensel Step) (Exit 6)

(b) Exit this procedure and call 3.5(Hensel Step) (Exit 6)

3.6.3 What This Procedure Does:

This procedure checks if the combinatorial problem is solved, and is called in
two places. The only difference in the two if statements is which Procedure gets
called in case the problem is still unsolved. (See flow chart on the summary
page.)

Definition 8. Let g ∈ Z[x] be a factor of f . We say that a is large enough to
reconstruct g from its modular image if and only if g = (g mods pa). In other
words, when pa is larger than 2· ‖ g ‖∞.

Unlike other algorithms we already attempt factorization with pa smaller
than the bound mentioned in Zassenhaus’ algorithm (Section 1.1). So it is
possible that some but not all factors can be reconstructed. Note that in the
case where all but one factor is reconstructible the remaining factor can be found
by division rather than reconstruction from its modular image.

We’ve decided to explain this procedure early in the chapter for the benefit of
readers who are unfamiliar with other factoring algorithms. To understand what
is really happening in van Hoeij style factoring algorithms you must understand
the following lemma which is a small variation of a statement in van Hoeij’s
paper:

Lemma 9. Assuming 10. W ⊆ π(L), this procedure has an output if and
only if π(L) = W and a is large enough to reconstruct all, or all but one,
of the irreducible factors of f in Z[x]. Further if π(L) = W then there is a
1-1 correspondence between the reduced echelon basis of π(L) and the set of
irreducible factors of f in Z[x].

Proof. If π(L) = W then a reduced row echelon basis of π(L) is the set vg1 , . . . , vgk

by the uniqueness of RREF, so the algorithm will find a 0-1 basis and it will
produce an output if we have Hensel Lifted enough to reconstruct the actual
factors. Note that if dim(L) = 1 (i.e. s = 1) then we have proved that f is
irreducible even if a is too low to reconstruct f from its modular image.

If this procedure produces an output then the 0-1 basis of π(L) corresponds
with some factorization of f over Z. But because W ⊆ π(L) we know that vgi

is in the span of our 0-1 basis of π(L), and thus we must have that π(L) = W
by unique factorization in Z[x].

W was defined so that its reduced row echelon basis corresponds with a
complete irreducible factorization of f .

38

In order to use this lemma we need to know that the input satisfies 10. W ⊆
π(L). In order for this procedure to eventually terminate we need π(L) to
approach W . Which requires vectors v ∈ L with π(v) /∈W to become large (so
that 3.7(Remove Vectors) can remove them).

Every time 3.7(Remove Vectors) actually removes vectors π(L) gets a
little bit closer to W . (W remains a subset of π(L) using Fact 1 in section 1.2.1.)

To make the v ∈ L with π(L) /∈ W large, we keep adding entries to bi that
are small for π−1(vg) and possibly large for v ∈ L with π(v) /∈W .

The actual structure of this procedure is as follows: The sub-procedure
Is Zero One Vector is a fast way to determine if a 0-1 basis for π(L) exists and
what it is if it does. Next we only try reconstructing the true factors if we have
first found a 0-1 basis for π(L).

3.6.4 Properties true of the Input

• To confirm these properties look at exits 7 and 13, from 3.8(Find Next
Coeff) and 3.7(Remove Vectors) respectively.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

3.6.5 Properties true at Exits 17 and 18

At the time of output we have:

Theorem 2. nswitches ≤ P < 68r3. Thus the number of LLL switches used
throughout the entire algorithm is bounded by 68r3.

Proof. Lemma 14 in Section 3.9.7 shows that nin
good ≤ 3r + 1 (and nout

good ≤
3r + 2). The same proof can be used here to show ngood ≤ 3r + 1. This
provides a better bound for nrm ≤ r + ngood − 1 ≤ 4r. Similarly the proof of
Lemma 13 in 3.9.6 can be used to show nbad ≤ 3r2 − 2r. Also we know that
12in. max{‖ (bini))∗ ‖} ≤ 2r, so plugging these into the formula for P (section
3.3.2 item 6) we get P in ≤ 67.8r3. We then use 8. nswitches ≤ P , see 3.6.4.

Theorem 3. The output is a complete irreducible factorization of f over the
rationals.

Proof. Follows from lemma 9.

39

3.6.6 Properties true at Exits 6 and 14

None of the vectors or any of the variables have changed so the input properties
remain true.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

3.6.7 Complexity Notes:

• 3.5(Hensel Step) (Exit 6) is called ≤ log2(nhensel)− 1− log2(IB) times
(see section 3.5).

• Terminating after 3.8(Find Next Coeff) (Exit 17) happens at most 1
time.

• The number of calls from 3.8 (Exit 7) is therefore bounded by log2(nhensel)−
log2(IB).

• This procedure will be called from 3.7(Remove Vectors) (Exit 13)
nnovec + nscales + ngood + nbad times (see section 3.7).

• Terminating after 3.7 (Exit 18) happens at most 1 time.

• So 3.10(Scale Up) (Exit 14) is called nnovec + nscales + ngood + nbad ≤
3r2 + 7r + 6 times or nnovec + ngood + nbad + nscales − 1 times.

• Thus the total number of calls to this procedure (from either input) is
≤ 3r2 +7r+6+log2(nhensel)− log2(IB)−1 times (still can only terminate
once).

3.7 Remove Vectors

3.7.1 Variables used in this Procedure

• s is the current number of vectors in the active basis of L, it only changes
in 3.9(pLLL) and this procedure. We decrease s by one every time we
remove a vector (once per loop).

• b∗s is the final vector in the G-S orthogonalization of b1, . . . , bs. If ‖ b∗s ‖
is larger than B then π(bs) is not needed to ensure 10. W ⊆ π(L) (see
Fact 1 in section 1.2.1).

• nrm is only changed in this procedure and counts how many vectors we
have removed so far.

40

3.7.2 Procedure

1. While ‖ b∗s ‖2> B do

(a) Remove the last vector, bs
(b) s := s− 1;

(c) nrm := nrm + 1;

od;

2. Exit this procedure and call 3.6(Check If Solved) (Exit 13)

3.7.3 What This Procedure Does:

This procedure simply removes the final vector until the new final vector has
squared G-S length ≤ B = r + 1. Each time this happens s is decreased and
nrm increased. The output of this step is actually B-Reduced, since the input
is LLL reduced.

Fact 1 in 1.2.1 states that if the final vector in b1, . . . , bs has squared G-S
length > B and v ∈ SPANZ(b1, . . . , bs) with ‖ v ‖2≤ B then v is still an element
of SPANZ(b1, . . . , bs−1). Since the basis vectors of W (the vgi) have square
length ≤ B, it follows that 10. W ⊆ π(L) remains true during this procedure.

3.7.4 Properties true of the Input

• To confirm these properties check 3.9(pLLL) (both exit 11a and 11b) and
3.11(LLL) (Exit 12).

• b1, . . . , bs is LLL reduced but not B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 22r

• 13in. ADin ≤ 2
3
2 r

2+ 5
2 r−1

3.7.5 Properties true at Exit 13

First we need to present an important theorem:

Theorem 4. The only procedure where AD is decreased is 3.7(Remove Vec-
tors). AD can decrease by no more than a factor 22r·4(nrm), where 4(nrm) =
nout

rm − nin
rm = sin − sout.

41

Proof. There are only five procedures which alter any vectors 3.12(No Vector
Added), 3.9(pLLL), 3.11(LLL), 3.7(Remove Vectors), and 3.10(Scale
Up). None of these but 3.7 decreases AD and the proof of this is in each
procedure’s subsection under the proof of Property 14.

Observe that the input of 3.7 has the property 12in. max{‖ (bini))∗ ‖} ≤
22r and each removed vector divides AD by its G-S length. So the only decrease
in AD throughout the entire algorithm comes only when nrm is increased and
no more than a factor 22r per removed vector.

• b1, . . . , bs is B-reduced (defined in Section 2.1) since only final vectors with
squared G-S length > B were removed (uses Fact 1 in 1.2.1).

• s certainly did not increase so 1. s < b 3r
2 c remains true.

• ngood, nbad, nnovec did not change so 2. ngood ≤ 3r + 2, 3. nbad ≤ 3r2 −
2r + 1, 4. nnovec ≤ 3r + 2 all remain true.

• nrm did increase but 5. nrm ≤ r + ngood − 1 ≤ 4r + 1 holds since we
must have nrm ≤ r + ngood − 1 (can’t remove more vectors than the
total we’ve added: r + ngood, in fact, at least one must remain since
s =dim(L) ≥dim(W) ≥ 1) and 2. ngood ≤ 3r + 2 is true.

• nscales and nentries do not change so 6. nscales ≤ 3r + 2 and 7. nentries ≤
3r2 + 5r + 5 remain true.

• 8. nswitches ≤ P . It suffices to show 9. P out ≥ P in since no switches are
made. But 12in. max{‖ (bini))∗ ‖} ≤ 22r and 1. s < b 3r

2 c so replacing
(s) · ls by (3r/2) · 2r log√

4/3
(2) only increases Progress.

• This is the most important place to check 10. W ⊆ π(L).

Proof. Lin satisfies property 11 so for every vg in the basis of W we know
that Fact 1 from 1.2.1 applies. Thus vg ∈ Lout for every vg in the basis of
W , which implies 10. W ⊆ π(L).

• 11. ‖ π−1(vg) ‖
2 ≤ r+ (nentries) · (1√

3r2+5r+5
)2 ≤ r+ 1 for any irreducible

factor g remains true since π−1(vg) doesn’t change during 3.7(Remove
Vectors). (The entries don’t change at all.)

• We now have a B-reduced set, so an appeal to Theorem 8 in section
3.3.2 implies both 12. max{‖ (bout

i))∗ ‖} ≤ 2r and 13. ADout ≤ 2r
2
.

• 14. ADout ≥ 1
22r·4(nrm) ·ADin follows from Theorem 4.

42

3.7.6 Complexity Notes:

• This procedure is called from 3.11(LLL) (Exit 12) nscales + nnovec times
(see complexity notes in 3.11).

• This procedure is called from 3.9(pLLL) (Exits 11a and 11b) ngood+nbad

times (see complexity notes in 3.9).

• There is only one exit from this procedure (Exit 13) and is thus called
ngood + nbad + nnovec + nscales times.

• The step can be done very quickly if we modify LLL and pLLL to output
not only b1, . . . , bs also their G-S lengths.

3.8 Select Next Coefficient

3.8.1 Variables Used in this Procedure

• N is the degree of f .

• Each loop tests the cth coefficient of the f ′if
fi

for usability. If the cth coeff
is not usable then increase c by one and try again.

• kmax is the index of the current vector who would receive the largest new
entry if we were to use the cth coeff. This index is used in 3.12(No Vector
Added) and reassigned in 3.10(Scale Up).

• ψc(bini) is the new entry we would add and equals
∑
j CLDa

c (fj) · (bini)j .

• CB(c) + d is our bounding factor. 2CB(c) ≥ |CLDa
c (g)| where g is any

rational factor of f (see 3.3.2). So if vg corresponds with a rational factor
of f then CLDa

c (vg)

2CB(c) ≤ 1. d was decided in 3.4(Initialize) so that 1
2d ≤

1√
3r2+5r+5

.

• tc is the current number of coefficients which have been added to the
vectors bi. note: tcin = ngood + nbad + nnovec.

• atc and ctc are book keeping variables so that we can later know the level
of p-adic accuracy and which coefficient went in the (tc + r)th entry of any
vector. These numbers are never changed again.

3.8.2 Procedure

1. For i from 1 to N do:

(a) If Avail Bits(c) ≥ 3r then:

i. kmax := i where i any index with |ψac (bini)| ≥ |ψac (binj)|∀j

43

ii. If |ψac (binkmax
)| > 22r · 2CB(c)+d then:

(Note: 22r · 2CB(c)+d ≥ 2r· ‖ binkmax
‖ ·2CB(c)+d)

A. tc := tc + 1;
B. ctc := c; Keeps a record of which coefficient was the tcth

coefficient we use.
C. atc := a; Keeps a record of the p-adic accuracy of the tcth

coefficient we use.
D. Exit this procedure and call 3.12(No Vector Added) (Exit

8)
fi;

fi;

(b) c := c+ 1 mod N ;

od;

2. Exit this procedure and call 3.6(Check If Solved) (Exit 7)

3.8.3 What This Procedure Does:

In the previous chapter we applied Gradual B-Reduction (Algorithm 3) to a
special matrix. The reason that the switch complexity had an N in it was
because there were N + r columns of the All-Coefficients Matrix from [3] (each
of the final N columns being one of the CLDa

c). 3.7 is a rather simple sub-
procedure which is the key to removing the N from the switch complexity,
namely, we no longer use every column/coefficient of the logarithmic derivative.
The Coefficients we will use have two properties:

• The bound on that particular coefficient is sufficiently lower than our level
of p-adic accuracy, so that we can have a vector of length roughly 23r to
add to the lattice.

• At least one new entry is sufficiently large. We formulate this property in
a way which will be useful for other proofs.

If no coefficient is left which satisfies these two properties we will go back to
3.5(Hensel Step) again but first check to see if the problem is solved since a
solved problem won’t find any usable coefficients either. (Exit 7)

If a usable coefficient is found than we will first check if it is a No Vector
Coefficient by calling 3.12(No Vector Added) (Exit 8).

44

Finding nhensel and some Termination Notes

Lemma 10. There is an nhensel such that if pa > pnhensel and 3.8 does not
succeed (find a usable coefficient and then take Exit 8) then π(L) = W .

Begin Proof Assume π(L) 6= W . Let f = g1 · · · gk be the factorization over
Q of f with degree N , and f1, . . . , fr be the p-adic factors of f . Now define
ei ∈ {0, 1} so that g1 =

∏
fei
i . Let w1 = (e1, . . . , er,Coeffs of g′1f

g1
). By Cor. 4.2

in [3] we have ‖ w1 ‖≤
√
r + (2N−1 ·N · ‖ f ‖2)

2. Likewise define w2, . . . , wk.

Let B′ :=
√
r + (2N−1 ·N · ‖ f ‖2)

2.

1. CB(c) ≤ dlog2(2N−1 ·N · ‖ f ‖2e. See Section 3.3.2 and Cor 4.2 in [3]. Let
M := 2(2r+dlog2(2

N−1·N ·‖f‖2e+d).

2. Procedure 3.8 succeeds (uses Exit 8) if ∃i with |ψac (bi)| > 2(2r+CB(c)+d).

3. W ⊆ π(L) so if π(L) 6= W then ∃i with π(bi) /∈W .

4. ‖ bi ‖≤ 2r (see Lemma 8 in Section 3.3.3).

5. Let v = π(bi) from 3. Let v = (v1, . . . , vr), and let ṽ = (v1, . . . , vr, ψ0(v), . . . ψN−1(v)) mods pa.

6. If ‖ ṽ ‖2> (r + N) ·M2 then 3.8 succeeds, by 1, 2, and 4. Let K :=√
r +N ·M .

7. Now we follow the proof of Theorem 4.3 in [3]. We only mention the parts
we need for our computation:

First adjust ṽ so that it will satisfy the conditions in Lemma 3.2 from [3],

which produces: b = ṽ +
k∑
j=1

njwj . Here nj ∈ {0, 1} for all but one j and

nj ∈ {0− e, 1− e} for one j, where e ∈ {v1, . . . , vr}, see [3] for details. So
|e| ≤ 2r by 4.

Thus if ṽ ≤ K then ‖ b ‖≤ K + (|e| + k) · B′ ≤ K + (2r + r) · B′ which
define as B′′.

Let the entries of b = (b1, . . . , br, u0, . . . , uN−1). Let H :=
∑
uix

i.

Then 0 < Res(H, f) ≤ (B′′· ‖ f ‖2)N , and pa|Res(H, f).

Therefore pa ≤ (B′′ ‖ f ‖2)N = 2O(N2+N log(‖f‖2)).

Now define nhensel := logp((B′′· ‖ f ‖2)N).

8. Hence if a > nhensel and π(L) 6= W then procedure 3.8 succeeds.

End Proof

45

3.8.4 Properties true of the Input

• To Confirm these properties check 3.10(Scale Up) (Exit 16) and 3.5(Hensel
Step) (Exit 5).

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

3.8.5 Properties true of Exit 8

The current coefficient, c, might have changed and it was chosen in step 1a so
that there is at least 23r available information (between our coefficient bound
and the accuracy of our hensel lifting so far), and at least one entry has usable
size larger than 2r times the vector without the new entry (see step 1(a)ii and
the fact that ‖ binkmax

‖≤ 2r (property 12in)).
No other variables changed and no vectors changed so the input properties

holds still.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

Also:

• Avail Bits(c) ≥ 3r

• There is a large entry that we can add:
|ψac (binkmax

)| > 22r · 2CB(c)+d ≥ 2r· ‖ binkmax
‖ ·2CB(c)+d

3.8.6 Properties true of Exit 7

No variables except c changed and no vectors changed so

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

all remain true.

46

3.8.7 Complexity Notes:

• This procedure is called from 3.5(Hensel Step) (Exit 5) at most log2(nhensel)−
log2(IB) times. (See 3.5.)

• This procedure is called from 3.10(Scale Up) (Exit 16) at most nnovec +
ngood + nbad times. (See 3.10.)

• There are only two procedures which call this procedure, so the total
number of times this procedure is called is ≤ nnovec + ngood + nbad +
log2(nhensel)− log2(IB) times.

• This procedure calls 3.12(No Vector Added) (Exit 8) every time there
is a usable coefficient. Every usable coefficient will increase the counter
nnovec or ngood or nbad so this exit is used nnovec + ngood + nbad times.

• There are only two exits, so this procedure can only call 3.6(Check If
Solved) (Exit 7) ≤ log2(nhensel)− log2(IB) times.

• Each loop might check N coefficients, which creates a complexity term
with N in it, but it is not related to switch complexity.

3.9 pLLL the Probationary LLL run

3.9.1 Variables used in this Procedure

• i is just a local variable for looping through the bi.

• c is the current coefficient of g′f
g which will add to our vectors. ψac (bi) is

congruent mod pa to the cth coefficient of g′f
g , where g =

r∏
j=1

f
(bi)j

j .

• ISD is the initial scale down, which was1 chosen in 3.12(No Vector
Added). This was chosen so that 23r−1 < pa

2ISD ≤ 23r. This is the first
scaling done to a new coefficient and is done to all new entries added in
this step. This first scale down corresponds roughly to step 1 in Gradual
B-Reduce.

• nentries is increased by one during this procedure so we will need to prove
that 7. nentries ≤ 3r2+5r+5 remains true. nentries was defined first during
3.4(Initialize), and only increases here and in 3.12.

• nswitches is increased during this procedure once for every LLL switch
which takes place, and only changes during this procedure and 3.11(LLL).

• Either nbad or ngood will increase in this procedure and this is the only
procedure where these variables change.

1The word ‘was’ refers to the fact the 3.12 comes before 3.9 in the algorithm. In the thesis
we present 3.9 first because these concepts are central to the rest of the thesis.

47

• s is the number of vectors in the active basis of L, and ‖ b∗s ‖ is the G-S
length of the final vector. This procedure and 3.7(Remove Vectors) are
the only procedures where s might change. In this procedure s increases
by one if we are in the Good Coeff Case and stays the same if we are in
the Bad Coeff Case.

3.9.2 Procedure

1. For i from s+ 1 to 2 do

bi := (bi−1,
ψa

c (bi−1)
2ISD); (Appended Entries and shifted indices)

od;

2. b1 := (~0, pa

2ISD);

3. s := s + 1 (We now have one more vector and have increased AD by a
factor pa

2ISD .)

4. nentries := nentries + 1;

5. Run LLL on (b1, . . . , bs) and update nswitches .

6. Bad Coeff Case: If ‖ b∗s ‖> 22r then

(a) nbad := nbad + 1 and

(b) Remove bs (don’t increase nrm)

(c) s := s− 1

(d) Exit this procedure and call 3.7(Remove Vectors) (Exit 11b)

fi;

7. Good Coeff Case: If ‖ b∗s ‖≤ 22r then

(a) ngood := ngood + 1

(b) Exit this procedure and call 3.7(Remove Vectors) (Exit 11a)

fi;

3.9.3 What This Procedure Does:

This procedure adds a new entry and new vector in the same manner as algo-
rithm 4 in Section 2.2 did, so nentries and s are both increased by 1. This is the
first time LLL is called on the new entry, and this is the only time in the entire
algorithm which allows a vector to have G-S length > 22r. We use the term
probationary:

48

Definition 9. Any vector with G-S length > 22r is called a probationary vector.

The vector b1 = (~0, pa

2ISD) in step 2 is probationary when step 5 is called, and
it plays several important roles in this algorithm:

• When step 2 makes this vector the first vector in our basis, b1, we can see
that the G-S lengths of b2, . . . , bs+1 are unaltered by their new entry (i.e.
‖ b∗i ‖=‖ (bini−1)

∗ ‖).

• Since L is the span of the bi the introduction of this vector, b1, means that
any v in Lin has a corresponding vector, ṽ for which the newly added last
entry is reduced mods pa (by adding or subtracting b1).

• Because of our choice for ISD we know that ‖ b∗1 ‖=‖ b1 ‖> 23r−1, which
means AD increased by at least a factor 23r−1.

Recall that we need the G-S length of any added vectors to be larger than
the G-S length of any removed vectors. This was in order to make sure that the
algorithm eventually removes more vectors than it adds. The 3.9 procedure is
what ensures that the length of the added vectors is at least 23r−1.

Theorem 5. Every time ngood is increased by 1 we must have AD multiplied
by a factor ≥ 23r−1, so that it is always true AD ≥ 2(3r−1)ngood+(−2r)nrm .

Proof. We add a vector of size ≥ 23r−1 while the other G-S lengths stayed fixed
which proves the first part. The second follows from Theorem 4 in 3.7.

While generally the G-S length of a removed vector is ≤ 22r. The one
possible exception is during the first time LLL is called with the new entry, in
which case a vector of size larger than 22r can survive LLL. We call this the
Bad Vector Case because the large removed vector leads to a worse bound for
how many times a new vector can be added. Was it possible that some second
large vector became probationary? No because we carefully choose 22r as the
cutoff for probationary status:

Lemma 11. There exists at most one probationary vector.

Proof. We know that ‖ (bini)∗ ‖≤ 2r, ‖ b∗1 ‖= pa

2ISD ≤ 23r, and ‖ b∗j ‖=‖
(binj−1)

∗ ‖≤ 2r just before step 5.
During this step LLL switches are made which may involve a probationary

vector and may not. When LLL switches two vectors, bi, bi+1 there are some
properties we must rely on: the product of their G-S lengths is fixed and the
max(‖ b∗i ‖, ‖ b∗i+1 ‖) cannot increase from the switch. So every time the second
largest G-S length (in the entire basis) increases the largest G-S length must
have decreased. However when the problem began the largest G-S length was
23r and the second largest 2r. So if a switch involves both the largest and second
largest vector then 23r+r must be the product of their G-S lengths after and
before the switch. Suppose the largest is now 23r−α then the G-S length of the
formerly second largest is 2r+α. But if α 6= r then one vector has G-S length
> 22r and one below. If α = r then they both have G-S length = 22r.

49

Lemma 12. If there exists a probationary vector after step 5 it must be the last
vector.

Proof. The G-S lengths of b2, . . . , bs+1 are actually all ≤ 2r−1 (Theorem 8 in
section 3.3.3) before step 5. Let’s say that there are exactly k non-probationary
vectors of G-S length 2r−1+αi > 2r−1 after the LLL run in step 5, and let’s say
that the probationary vector is of length 22r+ε. We know that α1+· · ·+αk ≤ r−ε
because any G-S length above 2r−1 must have been taken away from the largest
vector (or passed it around to other vectors).

However after LLL we know that this set is LLL reduced so ‖ b∗i ‖2≤ 2j ‖
bi+j ‖2 for j ≥ 0. Now suppose that the probationary vector is the (s − j)th

vector, and let ‖ b∗s−j+i ‖= r − 1 + αi for i from 1 to j. Then 4r + 2ε ≤
2r−2+2αi+ i so αi ≥ r+1+ε− i/2. However we saw before that

∑
αi ≤ r−ε.

This implies that jr + j + jε− (1/2)(j(j + 1)/2) ≤ r − ε. This equation is true
when j = 0, but not when j = 1 and the left hand side of this equation increases
with j for j ≤ 2r + 2ε − 1/2. But j ≤ s which is ≤ 3r/2 + 1 by 1. s < b 3r

2 c.
(+1 just to be safe since we’ve yet to prove property 1 for the output but s only
increases by 1).

Notation: If there still remains a probationary vector after running LLL in
step 5 then we call the probationary vector a Bad Vector. We choose the
word bad because in this case ADin might be only marginally more than ADout,
making the bound for nbad quadratic in r not linear.

3.9.4 Properties true of the Input

• To Confirm these properties check 3.12 Exit 9.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

• Avail Bits(c) ≥ 3r

• There is a large potential entry:
|ψac (binkmax

)| > 22r · 2CB(c)+d ≥ 2r· ‖ binkmax
‖ ·2CB(c)+d

3.9.5 Properties of BOTH Exits 11a and 11b

Properties 8 and 11 have long proofs which are the same in both the good and
the bad case so we will include them in this separate section. We also prove
12. max{‖ (bout

i))∗ ‖} ≤ 22r and 9. P out ≥ P in.

• Now proving 8. nswitches ≤ P , requires showing that each switch in-
creased Progress by at least 1 but this is the same in both good and bad
case:

50

Statement 1. When LLL makes a switch it involves consecutive vectors,
let them be bi and bi+1, let li and li+1 be the log of their G-S lengths. Let
b′i, b

′
i+1, l

′
i, and l′i+1 be the vectors and their logarithmic G-S lengths after

the switch. Then li ≥ li+1, li+1 ≤ l′i ≤ li − 1, li+1 + 1 ≤ l′i+1 ≤ li, and
li + li+1 = l′i + l′i+1. Also the G-S lengths of each of the other vectors
remain unaltered by the switch.

Statement 2. Switches not involving the probationary vector in step 5
increase progress by at least 1.

Proof. The vectors that this statement considers are weighted by ili in P .
Using the notations and facts from statement 1 we can compare progress
contributed from the two vectors in question before and after the switch.
Call progress contributed from two vectors before the switch Pb := ili +
(i+ 1)li+1 and after: Pa := il′i + (i+ 1)l′i+1. Observe: Pb + 1 = ili + (i+
1)li+1 + 1 = i(l′i + l′i+1 − li+1) + (i+ 1)li+1 + 1 = il′i + il′i+1 + (li+1 + 1) ≤
il′i + (i)l′i+1 + (l′i+1) = il′i + (i+ 1)l′i+1 = Pa.

Statement 3. Switches involving the probationary vector increase progress
by at least 1.

Proof. The contribution of the probationary vector, bi, to progress, P , is
just i−1, and the other vectors are weighted as if the probationary vector
doesn’t alter their index. So the weight of any vector, bj with j > i is
(j − 2)lj and with j < i is (j − 1)lj .

When making a switch involving the probationary vector it must be the
vector with lower index since it is the vector with largest li. So the Progress
contributed by the two involved vectors before the switch will be denoted
Pb = (i − 1) + ili+1. There are three outcomes from the switch, the
probationary vector keeps the same index, increases its index, or becomes a
good vector (G-S length below 22r). Each one has a different contribution
to P , which we denote Pa:

Case 1: Probationary vector keeps same index: Pa := (i− 1) + il′i+1. So
Pb + 1 = (i− 1) + ili+1 + 1 ≤ (i− 1) + i(li+1 + 1) ≤ (i− 1) + i(l′i+1) = Pa.
(This required i ≥ 1.)

Case 2: Probationary vector increases its index: Pa := il′i + (i). So
vb + 1 = (i− 1) + i(li+1) + 1 ≤ i(l′i) + (i) = Pa.

Case 3: Probationary vector now has G-S length ≤ 22r: Pa := il′i + (i+
1)l′i+1 (and in this case alone all of the vectors of index> i+1 increase their
weight to jlj but li ≥ 0 so this effect cannot decrease progress P). So if
li+1 ≥ 0 and if l′i ≥ 0 then Pb+1 ≤ i+(i+1)li+1 ≤ [i+(i+1)li+1]+1+il′i =
(i+ 1)(li+1 + 1) + il′i ≤ il′i + (i+ 1)(l′i+1) = Pa.

51

• 12. max{‖ (bout
i))∗ ‖} ≤ 22r follow from construction in the good case. In

the bad case we have removed one vector of size > 22r but lemma 11 en-
sures us that only one such vector existed.

• 9. P out ≥ P in requires the above proofs for 8. nswitches ≤ P , and the fact
that the removal of a probationary vector can only increase P . Since it is
only weighted by its index and 1. s < b 3r

2 c ensures us that (s−1) ≤ 3r/2.

• 11. ‖ π−1(vg) ‖
2 ≤ r+ (nentries) · (1√

3r2+5r+5
)2 ≤ r+ 1 for any irreducible

factor g.

Proof. We’ve increased the number of entries so all that we need to check
is if the new entry has size ≤ 1√

3r2+5r+5
.

But since (π−1(vg))in ∈ Lin and we add a new entry which is ψa
c (vg)
2ISD to

(π−1(vg))in. But the existence of the vector (~0, pa

2ISD) in L allows us to
reduce the last entry mod pa. So (π−1(vg))out has last entry Coeffa

c (vg)
2ISD . So

an appeal to Fact 2 in 3.3.3, shows a sufficiently small last entry.

Note that when we are in the bad vector case we removed a vector of G-S
length ≥ 22r > B, so π−1(vg) ∈ Lout by Fact 1 in section 1.2.1.

3.9.6 Properties true at Exit 11b

• s, ngood, nnovec, nrm, nscales didn’t change so 1. s < b 3r
2 c, 2. ngood ≤ 3r+2,

4. nnovec ≤ 3r+ 2, 5. nrm ≤ r+ ngood − 1 ≤ 4r+ 1, 6. nscales ≤ 3r+ 2 all
remain true.

• 10. W ⊆ π(L) follows from Fact 1 in section 1.2.1 when the one removed
vector is the final vector.

• 13. ADout ≤ 2r
2+3r−2r since adding the probationary vector increased

the AD by no more than 23r and ensured that the other G-S lengths were
unaffected and the removed vector had G-S length > 22r.

• 14. ADout ≥ 2 ·ADin requires a rather long proof:

Statement 4. If the outcome of 3.9 is a bad vector (nbad) then the net
effect of 3.9 on AD is multiplication by a factor of at least 2.

Proof. S := B · (2(3/2)(s−1) − 2), T := pa−2ISD·B
K , and K := |ψac (bkmax)|

come from 3.12.

We use the following facts: B ≤ 2r/2, s ≤ 3r/2, S ≥ T , and S < 2s − 1.

Let w0 := (~0, pa

2ISD) and M :=‖ w0 ‖= pa

2ISD .

CLAIM: If S ≥ T then there is at least one k with |(bout
k)−1| >

2 · |bink |

52

Suppose not, then |ψac (bini)| ≤ 2ISD · 2· ‖ bini ‖≤ 2r+1+ISD for all i, so
K ≤ 2r+1+ISD. (Since 12in. max{‖ (bini))∗ ‖} ≤ 2r.)

Note that S < 2s − 1, that B ≤ 2r/2, and that pa

23r−1 > 2ISD ≥ pa

23r .

So S·K+B·2ISD ≤ (2s−1)(2r+1)(pa

23r−1)+(2r/2)(pa

23r−1) = pa[2s+r+1−3r+1−
2r+1−3r+1 + 2r/2−3r+1] and we know 1. s < b 3r

2 c and r ≥ 10 so this is
≤ pa[4

2r/2 − 4
22r + 2

25r/2] ≤ pa.

But then S < T a contradiction.

End of Claim’s Proof.

Let the LLL reduced set returned by LLL in step 5 be denoted by v1, . . . , vs, v0
and we will define vectors c1, . . . , cs so that vi = (ci, (vi)−1). We also split
up v0 as (~v, α).

For ease we will call w0 = (~0,M).

Now let L′ := SPANZ(c1, . . . , cs) and note that ci ∈ Lin for all i so L′ ⊆
Lin.

If ‖ v∗0 ‖≤M/2 then
∏s
i=1 ‖ v∗i ‖≥ 2 ·ADin since ADin ·M =

∏s
i=0 ‖ w∗i ‖

which =‖ v∗0 ‖ ·
∏s
i=1 ‖ v∗i ‖ which is ‖ v∗0 ‖ ·ADout.

So if the following is true then we are done: To Prove: ‖ v∗0 ‖≤M/2 So
suppose that ‖ v∗0 ‖> M/2 then there are two cases to be treated:

Case 1: L′ 6= Lin.

Then det(L′) > det(Lin) but [Lin : L′] ∈ Z so det(L′) ≥ 2det(Lin).

However
∏s
i=1 ‖ v∗i ‖≥ det(L′) ≥ 2det(Lin) = 2 · ADin which would give

us the outcome we desire which indirectly contradicts the assumption.

Case 2: L′ = Lin.

Then ci are linearly independent so (~0,M) cannot be in SPANZ(v1, . . . , vs),
while it is in SPANZ(v1, . . . , vs, v0). If we also observe that v ∈ Lin = L′

we reveal that there must be ai ∈ Z with v0 = (−1)n(~0,M)+
∑s
i=1(ai) ·vi.

Also if k is the index ensured by the above claim then wk ∈ SPANZ(v1, . . . , vs)
since bink ∈ Lin = L′.

All of this leads to the fact that there must be real numbers r1, . . . , rs
such that v0 −

∑s
1(rivi) = (−1)n(~0,M) + (−1)n+1(M

(wk)−1
) ·wk which has

length ≤M/2.

But this bounds the G-S length of v0 and we prove the contradiction.

Thus in either case the Bad Vector Case multiplied AD by a factor≥ 2.

It remains to show: 3. nbad ≤ 3r2 − 2r + 1 and 7. nentries ≤ 3r2 + 5r + 5.

• To prove 3. nbad ≤ 3r2 − 2r + 1 we want to show that:

53

Lemma 13. nin
bad ≤ 3r2 − 2r

Proof. To bound nbad we recall that 2r
2 ≥ ADin. But since nbad is a

counter and every time it increases by one we know that AD increases by
a factor 2, and we know that Theorem 4 in 3.7 ensures us that AD is only
ever decreased by increasing nrm we must have ADin ≥ 2n

in
bad+(−2r)nrm .

Also nrm ≤ r+ ngood − 1 and every time ngood increases AD increased by
more than 23r−1 > 22r (see Theorem 5 in 3.9) so to get an upper bound
for nbad we should use nrm = r − 1. So we have 2r

2 ≥ 2n
in
bad−2r2+2r and

thus nin
bad ≤ 3r2 − 2r.

Now just observe that nout
bad = nin

bad + 1.

• 7. nentries ≤ 3r2 + 5r + 5 now follows from 3. nbad ≤ 3r2 − 2r + 1 with
2. ngood ≤ 3r + 2, 4. nnovec ≤ 3r + 2 and fact that nentries = r + ngood +
nbad + nnovec.

3.9.7 Properties true at Exit 11a

• nbad, nnovec, nrm, nscales don’t change so 3. nbad ≤ 3r2−2r+1, 4. nnovec ≤
3r+ 2, 5. nrm ≤ r+ ngood − 1 ≤ 4r+ 1, and 6. nscales ≤ 3r+ 2 all remain
true.

• 10. W ⊆ π(L) is true because π(L) is invariant under new entries.

• 13. ADout ≤ 2r
2+3r since we added a new vector of G-S length ≤ 23r, the

other G-S lengths were unaltered, and LLL switches preserve AD.

• 14. ADout ≥ 23r−1 ·ADin by the same reasoning (see Step 3).

Remains to show: 1. s < b 3r
2 c, 2. ngood ≤ 3r + 2, and 7. nentries ≤

3r2 + 5r + 5:

• 1. s < b 3r
2 c requires some extra thought in this section since s might have

increased by 1, so we will prove sin < b3r/2c − 1:

Statement 5. ADin ≤ 2(s−1)s/4+(sr/4)

Proof. Since we began with a B-reduced set and B = r + 1 < 2r/2 for
r > 10 we know that ‖ b∗s ‖≤ 2r/4. Also the definition of LLL reduced
implies that ‖ b∗s−i ‖≤ 2r/4+i/2. Thus AD =

∏
‖ b∗i ‖≤ 2sr/4+1/2

Ps−1
0 i ≤

2sr/4+(s−1)(s/4).

Statement 6. ADin ≥ 2(3r−1)(s−r)

Proof. Every time s has increased AD has been multiplied by > 23r−1 and
when s has decreased AD has been divided by something < 23r−1. Also
our starting basis had r vectors.

54

Statement 7. sin < b3r/2c − 1

Proof. sin ≤ b3r/2c − 1 by property 1. It just remains to prove that
sin 6= b3r/2c − 1. First note that: (3r/2 − 1) ≥ b3r/2c − 1 > 3r/2 − 2.
If we can show that 2(3r−1)(s−r) > 2(s−1+r)(s/4) for s = b3r/2c − 1 then
we will arrive at a contradiction between the previous two statements.
So using the above inequality we see that (3r − 1)(b3r/2c − 1 − r) >
(3r − 1)(3r/2 − 2 − r) = 3r2/2 − 13r/2 + 2 = Q1 and (s/4)(s− 1 + r) ≤
(3r/8− 1/4)(3r/2− 2 + r) = 15r2/16− 11r/8 + 1/2 = Q2.

If we can show that Q1 − Q2 > 0 for r > 10 then we are done. But
Q1−Q2 = 9r2/16−43r/8+3/2 which is increasing for r > 5 and Q1−Q2 =
4 when r = 10.

• 2. ngood ≤ 3r + 2 requires the following lemma:

Lemma 14. nin
good ≤ 3r + 1

Proof. We know that 2r
2 ≥ ADin. Also theorem 4 in section 3.7 ensures

us that only nrm decreases AD. Every time ngood increased so does AD
by a factor 23r−1, so ADin ≥ 2(3r−1)nin

good−2rnrm . But nrm ≤ nin
good + r− 1,

so ADin ≥ 2(r−1)nin
good−2r2+2r. Altogether we get 23r2−2r ≥ 2(r−1)nin

good ,
which implies that nin

good ≤ 3r + 1.

• 7. nentries ≤ 3r2+5r+5 now follows from 2. ngood ≤ 3r+2, 3. nbad ≤ 3r2−
2r+1, 4. nnovec ≤ 3r+2, and fact that nentries = r+ngood +nbad +nnovec

3.9.8 Complexity Notes:

• This procedure is only called from 3.12(No Vector Added) (Exit 9),
and every time it is called either ngood or nbad is increased so the number
of calls to 3.9(pLLL) is ngood + nbad.

• Every time we leave the procedure in the Bad Coeff Case nbad is increased
so Exit 11b happens nbad times.

• Every time we leave the procedure in the Good Coeff Case ngood is in-
creased so Exit 11a happens ngood times.

• The total complexity of this step is split into the LLL costs, and the
non-LLL costs. The non-LLL costs are very small compared with the
algorithm’s overall complexity, and the LLL costs are going to be lumped
with the costs of 3.11(LLL).

55

3.10 Scale Up

3.10.1 Variables used in this Procedure

• The notation (bj)−1 is used to represent the final entry of the vector bj .

• kmax is local to this procedure (the same notation is used in 3.8(Find
Next Coeff) and 3.12(No Vector Added)). It is simply the index of
the basis vector with maximal final entry.

• MSU and CSU are global variables which are defined in 3.12, and updated
in this procedure. MSU stands for the Maximum Scale Up, and is chosen
so that we never scale beyond MSU in order to help Property 11stay true
throughout the algorithm. CSU, stands for Current Scale Up, and is the
running count of how much scaling up has already taken place on the last
entry. Note that Scaling Up is distinguished from the Scaling Down done
in 3.12 and 3.9(pLLL).

• ISD and ESD are the scaling down terms from 3.12. They are only in-
cluded here to emphasize that TStc is always ISD + ESD− CSU.

• TStc is the term for Total Scaling done to the final entry of our vectors.
This is done so that we know that (π−1(vg))−1 is always CLDa

c (vg)
2TStc . Think

of it as storing the amount of scaling done to the (r + tc)th entry of any
vector in L.

• l is also local to this procedure and is a chosen so that

22r−1−ε < 2l · |(bkmax)−1| ≤ 22r−ε

and CSU + l ≤ MSU. The first condition is so that enough information is
added by this scaling to justify calling 3.11(LLL). The second condition is
to make sure we don’t scale up by more than we the original scale down.
If there is no such l then this coefficient must be milked dry (the final
entries are all fairly small).

• nscales is the counter for how many successful scalings have taken place so
far, and is only changed in this procedure. In the worst-case complexity
estimate nscales = 0 since every successful scaling contributes as much
information as a Good Coefficient.

3.10.2 Procedure

1. Find and define kmax an index with |(bkmax)−1| ≥ |(bj)−1|∀j

2. If there is an l ∈ {0, . . . , (MSU− CSU)} with 22r−1−ε < 2l · |(bkmax)−1| ≤
22r−ε then

(a) nscales := nscales + 1; (Successful scaling)

56

(b) CSU := CSU + l; (Current Scale Up)

(c) TStc := ISD + ESD− CSU;

(d) for i to s do
(bi)−1 := (bi)−1 · 2l

od;

(e) Exit this procedure and call 3.11(LLL) (Exit 15)

fi;

3. c:=c+1;

4. exit this procedure and call 3.8(Find Next Coeff) (Exit 16)

3.10.3 What This Procedure Does:

This procedure is made to squeeze every bit of data out of our current coefficient
before moving on to a new coefficient (c→ c+ 1).

This is very similar to the scaling which takes place in Gradual B-Reduce
from the previous chapter (Step 3b of Algorithm 3 in Section 2.1). The difference
is that rather than scaling by a fixed amount we actually scale until we have at
least one vector with G-S length > 22r−1−ε and no more than it takes to have
all vectors with G-S length ≤ 22r−ε. This algorithm will also never allow the
current coefficient to be scaled by more than MSU the maximum scale up. If
the last entries are still too small after the maximum scale up then we move on
to the next coefficient (Exit 16).

If we found a successful scaling then we increase nscales continue to track
CSU and TS (the Total Scaling so far on this entry), scale each last entry by
2l, and call 3.11(LLL) satisfied that progress will be made. This is Exit 15.

3.10.4 Properties true of the Input

• To confirm these properties check 3.6(Check If Solved) (Exit 14).

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

57

3.10.5 Properties true at Exit 15

• s, ngood, nbad, nnovec, nrm, nentries have not changed so 1. s < b 3r
2 c, 2. ngood ≤

3r+2, 3. nbad ≤ 3r2−2r+1, 4. nnovec ≤ 3r+2, 5. nrm ≤ r+ngood−1 ≤
4r + 1, and 7. nentries ≤ 3r2 + 5r + 5 still remain true.

• 8. nswitches ≤ P and 9. P out ≥ P in are equivalent and follow from
fact 1 in Section 2.1 which states that multiplying an entry by a positive
scalar can only increase G-S lengths.

• 10. W ⊆ π(L) remains true since π(L) is unaffected by scaling one of the
later entries.

• 12. max{‖ (bout
i))∗ ‖} ≤ 22r

Proof. We are given 12in. max{‖ (bini))∗ ‖} ≤ 2r and that bin1 , . . . , b
in
s is

a B-reduced (defined in Section 2.1) set. So in particular we know that
‖ bi ‖≤ 2r (actual lengths).

There is a new last entry for each bi, |(bout
i)−1|, and we chose l so that

|(bout
i)−1| ≤ 22r−ε. So ‖ bout

i ‖=
√

(‖ bini ‖)2 + |(bout
i)−1|2

Which is ≤
√

22r + 24r−2ε = 22r(
√

1
22r + 1

22ε) ≤ 22r.

These are actual lengths which implies that ‖ b∗i ‖≤ 22r.

• 13. ADout ≤ 23r2 by 12. max{‖ (bout
i))∗ ‖} ≤ 22r and 1. s < b 3r

2 c. (This
is an unimportant bound.)

• 14. ADout ≥ 2r−1−εADin

Proof. We are given 12in. max{‖ (bini))∗ ‖} ≤ 2r and that bin1 , . . . , b
in
s is

a B-reduced (defined in Section 2.1) set. So in particular we know that
‖ bi ‖≤ 2r (actual lengths) (see Theorem 8 in 3.3.3).

There is a new last entry for each bi, |(bout
i)−1|, and we chose l so that

|(bout
i)−1| ≤ 22r−ε. The choice of l also gives that the kth

max vector has
|(bout

kmax
)− 1| > 22r−1−ε, or in other words a non-zero last entry. Also this

particular last entry is larger than all of the other last entries.

It was a fact that multiplying all the last entries by a scalar can only
increase G-S lengths so: ‖ (bini)∗ ‖≤‖ (bout

i)∗ ‖. So ADin ≤ ADout.

It is also a fact that the product of G-S lengths is invariant under changes
to basis ordering. So if we were to rearrange both bases (in and out) so that
the kth

max vector is now first then we would know that ‖ (binkmax
)∗ ‖≤ r and

‖ (bout
kmax

)∗ ‖≥ 2r− 1− ε. So the product of the rearranged output vectors
is still = ADout ≥ 2r−1−εADin. Since the product of the rearranged input
vectors is = ADin and 22r−1−ε = 2r−1−ε · 2r.

58

It remains to show Properties 6, 9 and 11

• 6. nscales ≤ 3r + 2 needs to be checked in this section, so let’s prove that
nin

scales ≤ 3r + 1 which will verify that nout
scales ≤ 3r + 2 since nscales only

increased by one during this procedure.

Lemma 15. nin
scales ≤ 3r + 1

Proof. We know the ADin ≤ 2r
2
. We also know that every time nscales

increases by one AD increases by a factor ≥ 2r−1−ε. An appeal to The-
orems 4 in section 3.7, and 5 in 3.9, and nrm ≤ r + ngood − 1 reveals
that ADin ≥ 2(r−1)ngood−2r2+2r regardless of nscales. So in the worst case
ADin ≥ 2(r−1−ε)nin

scales−2r2+2r and thus 23r2−2r ≥ 2(r−1−ε)nin
scales which im-

plies nin
scales ≤ 3r + 1.3 for ε = .1. Since r and nin

scales are both integers we
have completed the proof.

• 9. P out ≥ P in follows from 12. max{‖ (bout
i))∗ ‖} ≤ 22r

• 11. ‖ π−1(vg) ‖
2 ≤ r+ (nentries) · (1√

3r2+5r+5
)2 ≤ r+ 1 for any irreducible

factor g

Proof. For each vg the lift of vg into Lout has a last entry scaled by TS ≤
MSU so this entry is still smaller than 1√

3r2+5r+5
. This is enough by

observing Fact 2 in section 3.3.3.

3.10.6 Properties true of Exit 16

In this case no vectors or variables have changed except c (if we keep that
format) so

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

all remain true.

59

3.10.7 Complexity Notes:

• This Procedure is only called from 3.6(Check If Solved) (Exit 14). This
happens ≤ nnovec + ngood + nbad + nscales times. (See complexity notes in
3.6.)

• If there was a successful scaling then we call 3.11(LLL) (Exit 15), and
nscales increases every time this happens. So Exit 15 is called nscales times.

• The other exit is a call to 3.8(Find Next Coeff) (Exit 16) which there-
fore happens ≤ nnovec + ngood + nbad times.

3.11 LLL

3.11.1 Variables used in this Procedure

• nswitches counts the number of LLL switches which have taken place through-
out the algorithm and only changes here and in 3.9(pLLL).

• Running LLL makes actual changes to the bi but does not change L.

3.11.2 Procedure

1. Run LLL and let nswitches do its thing

2. Exit this procedure and call Remove Vectors (Exit 12)

3.11.3 What This Procedure Does:

This is any lattice reduction algorithm so perhaps we will be using B-reduce
from before or maybe Stehlé’s floating point LLL. It should be noted that AD
is invariant under LLL switches. Also the maximum li cannot be increased (nor
the minimum decreased), and if the second largest G-S length does increase it
is at the expense of the largest. The output will of course be LLL reduced or
B-reduced (defined in Section 2.1). nswitches is increased every time an LLL
switch takes place.

3.11.4 Properties true of the Input

• To confirm these properties check 3.10(Scale Up) (Exit 15) and 3.12(No
Vector Added) (Exit 10).

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 22r

• 13in. ADin ≤ 23/2r2+5/2r−1

60

3.11.5 Properties true at Exit 12

• b1, . . . , bs form an LLL reduced basis, not yet B-reduced, and Lout = Lin.

• s, ngood, nbad, nnovec, nrm, nscales, nentries are unaffected so 1. s < b 3r
2 c,

2. ngood ≤ 3r + 2, 3. nbad ≤ 3r2 − 2r + 1, 4. nnovec ≤ 3r + 2, 5. nrm ≤
r+ngood−1 ≤ 4r+1, 6. nscales ≤ 3r+2, and 7. nentries ≤ 3r2 +5r+5 re-
main true.

• 8. nswitches ≤ P follows from the fact that every switch increases Progress
by at least 1 (proved already in Section 3.9).

• 9. P out ≥ P in follows from our proof of property 8.

• 10. W ⊆ π(L) and 11. ‖ π−1(vg) ‖
2 ≤ r+(nentries) · (1√

3r2+5r+5
)2 ≤ r+1

for any irreducible factor g, remain true because L was fixed

• 12. max{‖ (bout
i))∗ ‖} ≤ 22r is true by LLL observation 1 in section 1.2.

• 13. ADout ≤ 23r2 and 14. ADout = ADin both true since AD invariant
under LLL switches (although the bound is not important).

3.11.6 Complexity Notes:

• This procedure is called nnovec times from 3.12(No Vector Added) (Exit
10) and nscales times from 3.10(Scale Up) (Exit 15).

• There is only one exit which is calling 3.7(Remove Vectors) (Exit 12).
Therefore this happens nscales + nnovec times.

• The complexity of this step is combined with the complexity of the LLL
part of 3.9(pLLL). We bound nswitches and multiply this by the cost of
a single switch. We then include the overhead cost of an LLL call times
nnovec + nscales for this procedure and ngood + nbad for 3.9.

3.12 Decide If Vector Added

3.12.1 Variables used in this Procedure

• ISD, ESD, CSU, MSU are all variables related to the scaling of the current
coefficient and are initialized here.

• ISD stands for the Initial Scale Down. ISD is chosen so that 23r−1 <
pa

2ISD ≤ 23r.

• ESD is the Extra Scale Down we can do only in this step and it might
not be needed, but is the primary difference between this scaling and the
scaling in 3.10. (It will scale down in the case that there is a new entry
which is larger than 22r−ε, which doesn’t happen in 3.10.) It should be

61

noted that we might need ESD to actually be a scale up (not down) here,
but this doesn’t change anything.

• CB(c) + d was a quantity defined in 3.8(Find Next Coeff). This is
the bound we use for making sure MSU the maximum scale up prevents
us from scaling the entries by too much. This is what is needed to keep
Property 11 true throughout the algorithm.

• MSU is the Maximum (available) Scale Up, it is used in 3.10, but ensures
that the scaling back up doesn’t go too far (in which case we could violate
property 11).

• CSU, the Current Scale Up, is initialized as 0 here for emphasis but doesn’t
come into play until 3.10.

• TStc is Total Scaling and is also initialized here. This number will be
updated in 3.10, and is a historical marker of how much scaling has been
performed on what is currently the final ((tc + r)th) entry of the bi. Since
tc will change as we use new coefficients but TStc will not then we can
later refer to the total scaling done on the ith coefficient used.

• kmax was found in 3.8. K is a local variable just used, for emphasis, as
the size of the largest potential new entry.

• T and S (used here and in a proof during the bad coeff case in 3.9(pLLL))
are designed to test when we need the (~0, pa) vector to ensure 10. W ⊆
π(L) (Exit 9), and when we don’t (the No Vector Added Case, Exit 10).

• nnovec is increased only in this procedure and only when the No Vector
Added Case happens (Exit 10).

• nentries counts the number of entries in each bi, and is increased in this
procedure if it uses Exit 10or is increased in 3.9 otherwise.

• i is a local variable for a simple index.

3.12.2 Procedure

1. ISD := dlog2(
pa

23r)e (Initial Scale Down) (Note: 23r−1 < pa

2ISD ≤ 23r)

2. CSU := 0; (Current Scale Up)

3. ESD := 0; (Extra Scale Down)

4. MSU := ISD− CB(c)− d; (Maximum Scale Up)

5. TStc := ISD−CSU; (Total Scaling so far on the tcth coefficient/new entry
we have used.)

6. K := |ψac (bkmax)|; (kmax was computed in 3.8(Find Next Coeff))

62

7. T := pa−2ISD·B
K ;

8. S := B · (2(3
2)s−1 − 2);

9. Probationary Case: If S ≥ T then exit this procedure and call 3.9(pLLL) (Exit
9)

10. No Vector Added Case: If S < T then

(a) nnovec := nnovec + 1;

(b) ESD := dlog2(
|ψa

c (bkmax)|
22r−ε)e − ISD; (Extra Scale Down)

(Note: 2r−1−ε ‖ bkmax ‖≤ 22r−1−ε <
|ψa

c (bkmax)|
2ESD+ISD ≤ 22r−ε.)

(c) MSU := MSU + ESD (New Max Scale Up)

(d) TStc := ISD + ESD− CSU (New Total Scaling of tcth new entry)

(e) For i to s do

bi := (bi,
ψa

c (bi)
2ESD+ISD)

od;

(f) nentries := nentries + 1

(g) Exit this procedure and call 3.11(LLL) (Exit 10)

fi;

3.12.3 What This Procedure Does:

In general, when we add a new entry, we also need to add a vector of the form
(0, . . . , 0, ∗) to ensure that property 11 remains true (so that 10. W ⊆ π(L) will
hold during 3.7(Remove Vectors)). In the very rare case that S < T is true,
we can ensure that 11 remains true even if we do not add the vector (0, . . . , 0, ∗).
By not inserting the (0, . . . , 0, ∗) vector at the beginning of b1, . . . , bs we can save
a small number (namely O(r)) of LLL switches. Saving these switches means
a small improvement to the algorithm, but not one that is likely to have any
observable impact in practice. However, knowing that S ≥ T when we call
3.9 greatly simplifies our complexity proof.

If we don’t need the (0, . . . , 0, ∗) vector then we then can perform a scaling
on the new entry before calling 3.11(LLL). It should be noted that all of the
scaling which takes place in this procedure is encapsulated in the choice of ESD
which ensures that no vector can be smaller than 22r−1−ε in G-S length, and no
vector can have G-S length larger than 22r.

In the likely event that S ≥ T we use Exit 9, and this procedure has done
almost nothing other than define kmax and decided that S ≥ T .

63

3.12.4 Properties true of the Input

• To confirm these properties check 3.8(Find Next Coeff) (Exit 8).

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12in. max{‖ (bini))∗ ‖} ≤ 2r

• 13in. ADin ≤ 2r
2

• Avail Bits(c) ≥ 3r

• There is a large potential entry:
|ψac (binkmax

)| > 22r · 2CB(c)+d ≥ 2r· ‖ binkmax
‖ ·2CB(c)+d

3.12.5 Properties true at Exit 10

• s, ngood, nbad, nrm, nscales have not changed so 1. s < b 3r
2 c, 2. ngood ≤

3r + 2, 3. nbad ≤ 3r2 − 2r + 1, 5. nrm ≤ r + ngood − 1 ≤ 4r + 1, and
6. nscales ≤ 3r + 2 still remain true.

• 8. nswitches ≤ P just requires showing that 9. P out ≥ P in since nswitches

is unaffected. But all we have done is add an entry to each vector which
can only increase G-S lengths, not decrease them. So P can only go up
and certainly not down.

• 10. W ⊆ π(L) remains true since π(L) is unaffected by adding new entries
to the bi.

• 12. max{‖ (bout
i))∗ ‖} ≤ 22r:

Proof. We are given 12in. max{‖ (bini))∗ ‖} ≤ 2r and that bin1 , . . . , b
in
s is a

B-reduced set. So in particular we know that ‖ bi ‖≤ 2r (actual lengths).

There is a new last entry for each bi, |(bout
i)−1|, and we chose ESD so that

|(bout
i)−1| ≤ 22r−ε. So ‖ bout

i ‖=
√

(‖ bini ‖)2 + |(bout
i)−1|2

Which is ≤
√

22r + 24r−2ε = 22r(
√

1
22r + 1

22ε) ≤ 22r.

These are actual lengths which implies that ‖ b∗i ‖≤ 22r.

• 13. ADout ≤ 23r2 is a rough bound from using 12. max{‖ (bout
i))∗ ‖} ≤

22r and 1. s < b 3r
2 c. (It plays no important role.)

• 14. ADout ≥ 2r−1−ε ·ADin

64

Proof. We want to investigate ADout/ADin. Here we want to take advan-
tage of the big vector that never got added, since a vector of the form
(~0, . . .) keeps the new G-S lengths from changing.

So let w1 := (~0, pa

2ESD+ISD), w2 := bout
1 , . . . , ws+1 := bout

s , and w∗i the cor-
responding G-S vectors. Note that w∗i and (bini−1)

∗ have all the same

entries except w∗i has an extra 0 as a last entry (i 6= 1). So
s+1∏
i=1

‖

w∗i ‖= ADin · pa

2ISD+ESD
. But products of G-S lengths are invariant

under basis ordering so this would still be true if we rearranged wi as
v2 := w2, . . . , vs+1 := ws+1, v1 := w1 now let the G-S orthogonalization of
this rearranged set be defined as v∗i .

But in that ordering
∏s+1

2 ‖ v∗i ‖=
∏
‖ (bout

i)∗ ‖= ADout.

So if we knew the G-S length of the big vector when it’s the last vector
then we know how much the AD has increased from beginning to end.
Or in other words if we let v∗1 denote the G-S vector of v1 when it is the
last vector in our basis we see: ADin · (pa

2ISD+ESD) = ADout· ‖ v∗1 ‖. So
ADout/ADin = pa

2ISD+ESD·‖v∗1‖
.

When investigating ‖ v∗1 ‖ it should be noted that ‖ v∗1 ‖≤‖ v1 − x · bout
j ‖

for any j and any x ∈ R. In particular if we choose j = kmax and x =
pa

2ISD+ESD·(bout
kmax

)−1
then the last terms will cancel and ‖ v1 − x · bout

j ‖=
pa‖binkmax‖

2ISD+ESD·|(bout
kmax

)−1| .

But the choice of ESD made sure that this is ≤ pa

2ISD+ESD·2r−1−ε

So overall we have ‖ v∗1 ‖≤ pa

2ISD+ESD·2r−1−ε which implies that ADout

ADin ≥
2r−1−ε proving 14. ADout ≥ 2r−1−ε ·ADin.

It remains to prove properties 4, 7, and 11.

• 4. nnovec ≤ 3r + 2 needs to be checked in this section, so let’s prove that
nin

novec ≤ 3r + 1 which will verify that nout
novec ≤ 3r + 2 since nnovec only

increased by one during this procedure.

Lemma 16. nin
novec ≤ 3r + 1

Proof. We know the ADin ≤ 2r
2
. We also know that every time nnovec

increases by one AD increases by a factor ≥ 2r−1−ε. An appeal to The-
orems 4 in section 3.7, and 5 in 3.9, and nrm ≤ r + ngood − 1 reveals
that ADin ≥ 2(r−1)ngood−2r2+2r regardless of nnovec. So in the worst case
ADin ≥ 2(r−1−ε)nin

novec−2r2+2r and thus 23r2−2r ≥ 2(r−1−ε)nin
novec which im-

plies nin
novec ≤ 3r + 1.3 for ε = .1. Since r and nin

novec are both integers we
have completed the proof.

65

• 7. nentries ≤ 3r2+5r+5 now follows from 4. nnovec ≤ 3r+2, 2. ngood ≤ 3r+
2, 3. nbad ≤ 3r2−2r+1, and fact that nentries = r+nnovec +ngood +nbad.

• 11. ‖ π−1(vg) ‖
2 ≤ r+ (nentries) · (1√

3r2+5r+5
)2 ≤ r+ 1 for any irreducible

factor g requires a rather long proof:

Proof. With Fact 2 and Observation 2 from 3.3.3 and the fact that nentries

increased by one, we just need to show that |(π−1(vg))−1| = Coeffa
c (g)

2TS since
TS > CB(c) + d. Then this new entry will be small enough to satisfy the
property.

We know that vg ∈ π(L) for every g and that our new entry ensures that
(π−1(vg))−1 = ψa

c (vg)
2ISD , but if we also include the vector v = (~0, pa

2ISD) in L,
then (π−1(vg))−1 = Coeffa

c (vg)
2ISD and ‖ π−1(vg) ‖≤ B.

So if L = SPANZ{bout
1 , . . . , bout

s , v} then we have ‖ π−1(vg) ‖≤ B with
π−1(vg) ∈ L. Now I claim that ‖ v∗ ‖> B, in which case π−1(vg) ∈
Lout = SPANZ{bout

1 , . . . , bout
s } satisfying the property.

So all that remains is to prove the claim:

CLAIM: ‖ v∗ ‖> B

Proof of Claim:

By observation of G-S process we know that there are ci ∈ R with v∗ =
(~0, pa

2ISD)−
∑s
i=1 ci(b

in
i ,

ψa
c (bini)
2ISD) there are two cases:

Case 1:
∑s
i=1 |ci| <

pa−2ISDB
|ψa

c (binkmax
)|

In this case we will show that the last component of v∗ has size > B.

B · 2ISD < pa − (
∑

|ci|) · |ψac (binkmax
)| ≤ pa − (

∑
ciψ

a
c (b

in
i))

which implies:

(v∗)−1 =
pa

2ISD
− (

∑
ci
ψac (b

in
i)

2ISD
) > B

which gives: ‖ v∗ ‖> B

Case 2:
∑s
i=1 |ci| ≥

pa−2ISDB
|ψa

c (bkmax)|

In this case we show that the length of ‖
∑
cib

in
i ‖> B which is size of all

but the last entry of v∗.

Observe: bini = (bini)∗+
∑
j<i µi,j(b

in
j)∗ for all i, and since LLL reduced we

know |µi,j | ≤ 1
2 .

s∑
i=1

cibi =
s∑
i=1

ci(b∗i +
∑
j<i

µi,jb
∗
j) =

s∑
i=1

(ci +
∑
k>i

µk,ick)b∗i

66

and b∗i are pairwise orthogonal with lengths ≥ 1 so ‖
∑s
i=1(cibi) ‖≥√∑s

i=1 (ci +
∑
k>i µk,ick)

2.

So if there is at least one i with |ci +
∑
k>i µk,ick| > B then we are done.

Assume that there is no such i.

Then |cs| ≤ B and |cs−1+µs,s−1cs| ≤ B so |cs−1| ≤ B · 32 (since |µ| ≤ 1/2).

This leads to an inductive argument which shows: |cs−i| ≤ B · (3
2)i.

We know |cs−i| ≤ B · (3/2)i works for i = 0, 1.

Assume this is true for all i < k.

We know that |cs−k + µs−(k−1),s−kcs−(k−1) + · · ·+ µs,s−kcs| ≤ B

Supposing that all µs−i,s−k = (−1/2) and |cs−i| ≤ B · (3
2)i shows |cs−k| ≤

(1
2) ·B · (3

2)k−1 + · · ·+ (1
2) ·B · (3

2)1 + (1
2) ·B +B = B(3

2)k.

Therefore
∑s
i=1 |ci| =

∑s−1
i=0 |cs−i| ≤ B · (

∑s−1
i=0 (3

2)i) but S < T and

the case 2 criteria show that B · (
∑s−1
i=0 (3

2)i) < pa−2ISDB
|ψa

c (bkmax)| ≤
∑s
i=1 |ci|

Which gives a contradiction. So there must have been at least one i with
|ci +

∑
k>i µk,ick| > B

⇒‖ v∗ ‖> B This concludes the proof of the claim.

End Proof of Claim.

Now we know that the property holds just before the extra scale down,
so we need to show that ESD doesn’t scale down by too much so that
ISD + ESD = TStc ≥ CB(c) + d after the procedure.

The choice of ESD shows us that ψa
c (bkmax)
22r−ε ≤ 2ESD+ISD.

But we know from the properties of the input that 22r2CB(c)+d ≤ ψac (bkmax).

Putting these together we see that 2CB(c)+d+ε ≤ 2ISD+ESD.

3.12.6 Properties true at Exit 9

No important variables changed and no vectors changed so the input properties
remain true.

• b1, . . . , bs is B-reduced (defined in Section 2.1)

• Properties 1 through 11 are all true

• 12. max{‖ (bout
i))∗ ‖} ≤ 2r

• 13. ADout ≤ 2r
2

• 14. ADout = ADin

• Avail Bits(c) ≥ 3r

67

• There is a large potential entry:
|ψac (binkmax

)| > 22r · 2CB(c)+d ≥ 2r· ‖ binkmax
‖ ·2CB(c)+d

• We also learned that S ≥ T

3.12.7 Complexity Notes:

• This procedure has two exits one of them is 3.11(LLL) (Exit 10) which
only happens in the No Vector Added Case so nnovec times.

• The other exit is 3.9(pLLL) (Exit 9) which happens ngood + nbad times
(see complexity notes 3.9).

• Since this procedure is only called from one place (3.8(Find Next Co-
eff) Exit 8) this can only happen nnovec + ngood + nbad times.

• The complexity of this procedure is small compared to the overall com-
plexity of the algorithm.

3.13 Zassenhaus’ Algorithm

Run the Standard Zassenhaus Algorithm on f with p.
Call Output with a complete irreducible factorization of f over the rationals.

(Exit 2)
Note that this will be efficient since r < 10.

3.14 Switch Complexity of this Algorithm

Since 8. nswitches ≤ P and 9. P out ≥ P in hold throughout the entire algorithm
and P ≤ 68r3 when the algorithm outputs during 3.6, then the number of
switches made throughout the entire algorithm is ≤ 68r3. Thus the switch-
complexity is now O(r3), independent of both degree and coefficient size. The
switch complexity is the dominant term of the van Hoeij and LLL factoring
algorithms’ complexities. We don’t have time to compute the actual complexity
before this publication but we have provided a count of how often each step is
called as a step toward the overall complexity.

68

Chapter 4

Why this thesis is
interesting

The switch complexity of O(Nr2) in Chapter 2 is already a pretty interesting
result, and Chapter 3 is long and technical for such a small improvement in
switch complexity to O(r3). So why is it worth it? Because now for the first time
since the early 1980’s the fastest algorithm in practice and the fastest algorithm
in theory are one and the same, which would not be true had we stopped. Seeing
why this algorithm is actually faster than van Hoeij’s algorithm (in many cases,
and certainly never slower) is a matter of exploring the new practical feature:
Early Termination.

4.1 Early Termination

We recall the Key Practical Problem: Suppose we want to factor a polynomial
f and that Hensel Lifting to accuracy p100 is enough to solve the combinatorial
problem and reconstruct all of the factors. Well with the quadratic Hensel
Lifting we perform we would reach p128 before solving the problem which is
near optimal. Recall the key practical problem from 1.1.2 for effective early
termination algorithms:

Shouldn’t it waste CPU time to stop after p32 and p64 and search through
coefficients and try solving the combinatorial problem? Why wouldn’t it be
faster to lift to p128 immediately and begin trying there?

Because of the design of our algorithm we ensured that we only ever take
steps which lead to an increase in Progress, and when Progress reaches its bound
the algorithm will be stopped. So it didn’t matter where the data came from
and the work done during early Hensel Steps is never wasted.

So now the two basic problems with Zassenhaus’ algorithm from Chapter 1
have been resolved:

• The exponential search through local factors is now fast because of van

69

Hoeij’s approach.

• The possibility of Hensel Lifting too far (if the bound on coefficients of
factors is too pessimistic) is resolved by this Early Termination algorithm.

What’s more is that both practical problems are resolved by an algorithm
with good theoretical complexity! So we have resolved our key theoretical prob-
lem from section 1.3.2.

4.1.1 Good cases for Early Termination

We’ve now seen that the Early Termination algorithm will never slow down the
algorithm, but when will it speed up the algorithm? In the case that f is a
large irreducible multiplied by any number of smaller polynomials (including f
being irreducible) we will be able to reconstruct the smaller factors with much
less Hensel Lifting than it takes to reconstruct the large factor. In this case we
divide away the small factors and if we know that what remains is a single factor
than we don’t need to reconstruct it since we know f and all but one factor so
division will provide the final factor. In the case that f is irreducible this just
amounts to the fact that solving the combinatorial problem often requires less
Hensel Lifting than is used when Hensel Lifting to the bound in Zassenhaus.

4.2 Conclusion

Ever since LLL (1983) there has been a gap between the best factoring algo-
rithm in theory, and the best algorithm in practice. Before 2001, the Zassenhaus
algorithm performed best in practice, while LLL/Schönhage had the best theo-
retical complexity. This gap between theory and practice grew even wider with
[6] because this algorithm was even faster in practice, while even worse in theory
([6] contains no complexity bound).

Then in [3] the gap was made smaller; polynomial time complexity bounds
for two versions of the [6] algorithm were given. However, the gap between
theory and practice remained very large because the version that was faster in
practice received the worse theoretical bound!

We have now resolved this unfortunate situation. In this thesis we have
made the (in practice) fastest version even faster, in practice, by saving time
on Hensel lifting. We have proved a bound for the switch-complexity that is
asymptotically sharp. This bound perfectly captures the actual behavior of the
algorithm, in fact, the progress P could even be used to give a realistic progress
bar!

We do not merely reduce the gap between theory and practice; we eliminate
the gap altogether. The algorithm that is best in practice, and the algorithm
that is best in theory, will now be the same algorithm.

Our theoretical work resulted in more than just a better bound for the
complexity of factoring.

70

It also allowed us to solve the key practical problem (mentioned earlier) in
designing an efficient early termination algorithm. Recall that the key problem
was wasting time on attempts that were “unsuccessful” because we had not
lifted far enough.

4.3 Future Improvements

To make to this algorithm even faster in practice there is another improve-
ment we can make. The scalings performed throughout this algorithm leave us
with rational entries in our vectors, where as, if these entries were integers we
could perform the LLL switches faster. The problem is fairly easily resolved
by rounding the entries to something in 2−kZ for a fixed k and adjusting the
entries occasionally. But the question is whether the error terms can decrease
P . Well it does decrease P a little bit, but only by a fixed amount so long as we
re-round every so often. This improvement is relatively easy to deal with and
has no effect on the theoretical complexity other than maybe a slightly larger
constant term in switch complexity (but a smaller term in cost per switch).

Also we haven’t dealt with the total complexity of the algorithm yet, only
the switch complexity since it was the dominant term in prior algorithms.

71

Bibliography

[1] J. Abbott, V. Shoup and P. Zimmermann, Factorization in Z[x]: The
Searching Phase, ISSAC’2000 Proceedings, 1–7 (2000).

[2] K. Belabas A relative van Hoeij algorithm over number fields, J. Symbolic
Computation, 37 (2004), pp. 641–668.

[3] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel, Factoring polynomials
over global fields, preprint arXiv:math/0409510v1 (2004).

[4] E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Tech-
nical Journal 46, 1853-1859, (1967).

[5] J. von zur Gathen and J. Gerhard, Modern Computer Algebra 1st ed.,
Cambridge University Press, (1999).

[6] M. van Hoeij, Factoring polynomials and the knapsack problem, J. Number
Theory, 95 (2002), pp. 167–189.

[7] E. Kaltofen, Polynomial factorization. In: Computer Algebra, 2nd ed,,
editors B. Buchberger et all, Springer Verlag, 95–113 (1982).

[8] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials
with rational coefficients, Math. Ann. 261 (1982), pp. 515–534.

[9] P. Nguyen, and D. Stehlé, Floating-Point LLL Revisited, Lecture Notes in
Computer Science, Proceedings of Eurocrypt 2005, Springer-Verlag, Vol.
3494 pp. 215-233.

[10] A. Schönhage, Factorization of univariate integer polynomials by Dio-
phantine approximation and an improved basis reduction algorithm, Proc.
ICALP 84, Springer Lec. Notes Comp. Sci. 172, (1984), pp. 436–447.

[11] H. Zassenhaus, On Hensel factorization I, Journal of Number Theory
(1969), pp. 291–311.

72

