1. Let A, B, C be sets. If $A \subseteq B \cup C$ then show $A - B \subseteq C$.

2. Let p, q be statements. Which of the following statements are logically equivalent, if any? Which are tautologies, if any?

 - $S_1: p \lor q$
 - $S_2: (\neg q) \lor (p \implies q)$
 - $S_3: (\neg q) \implies p$

3. Give the definitions of:

 - (a) A function $f : A \to B$ is one-to-one (injective) when:

 - (b) The function $f^{-1} : P(B) \to P(A)$ is defined as follows: If $T \in P(B)$ then $x \in f^{-1}(T)$ if and only if:

 - (c) If $S \subseteq L$ where L is a p.o.set with ordering \leq then u is a greatest lower bound for S when:

 - (d) If u is a bottom element of S, must u then also be a greatest lower bound for S? (Yes/No with brief explanation).

4. Let $f : A \to B$ and $g : B \to C$. If the composition $g \circ f : A \to C$ is onto then show that g is onto.

5. Suppose L is a chain and that $S \subseteq L$ has no top element. Then show $\forall a \in S \exists b \in S \; b > a$.

Test 1, Feb 6 2019, Intro Advanced Math.
Writing proofs.

1. **Direct proof for** \(p \implies q \).

 Assume: \(p \). To prove: \(q \).

2. **Proving** \(p \implies q \) **by contrapositive**.

 Assume: \(\neg q \). To prove: \(\neg p \).

3. **Proving** \(S \) **by contradiction**.

 Assume: \(\neg S \). To prove: a contradiction.

4. **Proving** \(p \implies q \) **by contradiction**.

 Assume: \(p \) and \(\neg q \). To prove: a contradiction.

5. **Direct proof for a** \(\forall x \in A P(x) \) **statement**.

 To ensure you prove \(P(x) \) for all (rather than for some) \(x \) in \(A \), do this:

 Start your proof with: Let \(x \in A \). To prove: \(P(x) \).

6. **Direct proof for** \(\exists x \in A P(x) \) **statement**.

 Take \(x := \) [write down an expression that is in \(A \), and satisfies \(P(x) \)].

7. **Proving** \(\forall x \in A P(x) \) **by contradiction**.

 Assume: \(x \in A \) and \(\neg P(x) \). To prove: a contradiction.

8. **Proving** \(\exists x \in A P(x) \) **by contradiction**.

 Assume: \(\neg P(x) \) for every \(x \in A \). To prove: a contradiction.

9. **Proving** \(S \) **by cases**.

 Suppose for example a statement \(p \) can help to prove \(S \). Write two proofs:

 Case 1: Assume \(p \). To prove: \(S \).

 Case 2: Assume \(\neg p \). To prove \(S \).

10. **Proving** \(p \land q \)

 Write two separate proofs: To prove: \(p \). To prove: \(q \).

11. **Proving** \(p \iff q \)

 Write two proofs. To prove: \(p \implies q \) To prove: \(q \implies p \).

12. **Proving** \(p \lor q \)

 Method (1): Assume \(\neg p \). To prove: \(q \).

 Method (2): Assume \(\neg q \). To prove: \(p \).

 Method (3): Assume \(\neg p \) and \(\neg q \). To prove: a contradiction.

13. **Using** \(p \lor q \) **to prove another statement** \(r \).

 Write two proofs:

 Assume \(p \). To prove \(r \).

 Assume \(q \). To prove \(r \).

14. **How to use a for-all statement** \(\forall x \in A P(x) \).

 You need to produce an element of \(A \), then use \(P \) for that element.