Test 1 Answers, Feb 6 2019, Intro Advanced Math.

1. Let \(A, B, C \) be sets. If \(A \subseteq B \cup C \) then show \(A - B \subseteq C \).

To prove: \(x \in A - B \implies x \in C \). Read WP#1 (Writing Proofs item 1):
Let \(x \in A - B \). To prove \(x \in C \).
\(x \in A - B \) means \(x \in A \) and \(x \notin B \).
\(x \in A \) and \(A \subseteq B \cup C \) so \(x \in B \cup C \) but since \(x \notin B \) we have \(x \in C \).

2. Let \(p, q \) be statements. Which of the following statements are logically equivalent, if any? Which are tautologies, if any?
\(S_1 \) : \(p \lor q \)
\(S_2 \) : \((\neg q) \lor (p \implies q) \)
\(S_3 \) : \((\neg q) \implies p \).

\(S_2 \) is a tautology. \(S_1 \) is logically equivalent to \(S_3 \).

3. Give the definitions of:
 (a) A function \(f : A \to B \) is one-to-one (injective) when:
 \[\forall_{a_1, a_2 \in A} f(a_1) = f(a_2) \implies a_1 = a_2. \]
 (b) The function \(f^{-1} : P(B) \to P(A) \) is defined as follows: If \(T \in P(B) \) then \(x \in f^{-1}(T) \) if and only if: \(f(x) \in T \).
 (c) If \(S \subseteq L \) where \(L \) is a p.o.set with ordering \(\leq \) then \(u \) is a greatest lower bound for \(S \) when:
 (1): \(u \) is a lower bound for \(S \): \(\forall_{s \in S} u \leq s \)
 (2): any other lower bound for \(S \) is \(\leq u \).
 (d) If \(u \) is a bottom element of \(S \), must \(u \) then also be a greatest lower bound for \(S \)?
 Yes. Bottom element means \(u \) is a lower bound and \(u \in S \). If \(v \) is any other lower bound, then \(v \leq s \) for all \(s \in S \). But \(u \in S \), so \(v \leq u \).

4. Let \(f : A \to B \) and \(g : B \to C \). If the composition \(g \circ f : A \to C \) is onto then show that \(g \) is onto.

Given: (G) \(\forall_{c \in C} \exists_{a \in A} g(f(a)) = c \).
To prove: \(\forall_{c \in C} \exists_{b \in B} g(b) = c \). Read WP#5:
Let \(c \in C \).
To prove: (*) \(\exists_{b \in B} g(b) = c \).
(G) says: \(\exists_{a \in A} g(f(a)) = c \). Read WP#6 on how to prove (*).
Proof of (*): Take \(b = f(a) \).

5. Suppose \(L \) is a chain and that \(S \subseteq L \) has no top element.
To prove: \(\forall_{a \in S} \exists_{b \in S} b > a \).
If \(a \in S \) then \(a \) is a top element if \(\forall_{b \in S} b \leq a \).
So \(S \) has a top element if: \(\exists_{a \in S} \forall_{b \in S} b \leq a \).
So \(S \) has no top element if: \(\forall_{a \in S} \exists_{b \in S} \neg(b \leq a) \)
(Read "Quantifiers and Negation" in Handouts.html !)
Note that \(\neg(b \leq a) \) is the same \(b > a \) since \(L \) is a chain.
Writing Proofs.

1. **Direct proof for** \(p \implies q \).
 Assume: \(p \). To prove: \(q \).

2. **Proving** \(p \implies q \) **by contrapositive**.
 Assume: \(\neg q \). To prove: \(\neg p \).

3. **Proving** \(S \) **by contradiction**.
 Assume: \(\neg S \). To prove: a contradiction.

4. **Proving** \(p \implies q \) **by contradiction**.
 Assume: \(p \) and \(\neg q \). To prove: a contradiction.

5. **Direct proof for a** \(\forall x \in A \) \(P(x) \) **statement**.
 To ensure you prove \(P(x) \) for all (rather than for some) \(x \) in \(A \), do this:
 Start your proof with: Let \(x \in A \). To prove: \(P(x) \).

6. **Direct proof for** \(\exists x \in A \) \(P(x) \) **statement**.
 Take \(x := [\text{write down an expression that is in } A, \text{ and satisfies } P(x)] \).

7. **Proving** \(\forall x \in A \) \(P(x) \) **by contradiction**.
 Assume: \(x \in A \) and \(\neg P(x) \). To prove: a contradiction.

8. **Proving** \(\exists x \in A \) \(P(x) \) **by contradiction**.
 Assume: \(\neg P(x) \) for every \(x \in A \). To prove: a contradiction.

9. **Proving** \(S \) **by cases**.
 Suppose for example a statement \(p \) can help to prove \(S \). Write two proofs:
 Case 1: Assume \(p \). To prove: \(S \).
 Case 2: Assume \(\neg p \). To prove \(S \).

10. **Proving** \(p \land q \)
 Write two separate proofs: To prove: \(p \). To prove: \(q \).

11. **Proving** \(p \iff q \)
 Write two proofs. To prove: \(p \implies q \) To prove: \(q \implies p \).

12. **Proving** \(p \lor q \)
 Method (1): Assume \(\neg p \). To prove: \(q \).
 Method (2): Assume \(\neg q \). To prove: \(p \).
 Method (3): Assume \(\neg p \) and \(\neg q \). To prove: a contradiction.

13. **Using** \(p \lor q \) **to prove another statement** \(r \).
 Write two proofs:
 Assume \(p \). To prove \(r \).
 Assume \(q \). To prove \(r \).

14. **How to use a for-all statement** \(\forall x \in A \) \(P(x) \).
 You need to produce an element of \(A \), then use \(P \) for that element.