Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

Hypergeometric Solutions of Linear Differential
Equations with Rational Function Coefficients

Vijay Jung Kunwar

Department of Mathematics
Florida State University

June 11, 2014



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

L Introduction

Introduction

e We consider linear differential operators L € C(z)[0] of
order 2 such that:



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

L Introduction

Introduction

e We consider linear differential operators L € C(z)[0] of
order 2 such that:
® L is irreducible,
® L has no Liouvillian solutions
® L has only regular singularities, i.e, L is Fuchsian.

_d
Qo= .



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

L Intro

Introduction

e We consider linear differential operators L € C(z)[0] of
order 2 such that:
® L is irreducible,
® L has no Liouvillian solutions
® L has only regular singularities, i.e, L is Fuchsian.

_d
Qo= .

e We want to find 9 F3-type solutions (if they exist), i.e,
solutions of the form:
y = exp([rdx) <7“OS(f) + rlS(f)’> # 0 such that L(y) =0,
where S(x) = 2F1(a,b;c|x), r,ro,71, f € C(x).
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Introduction

e We consider linear differential operators L € C(z)[0] of
order 2 such that:
® L is irreducible,
® L has no Liouvillian solutions
® L has only regular singularities, i.e, L is Fuchsian.
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e We want to find 9 F3-type solutions (if they exist), i.e,
solutions of the form:
y = exp([rdx) <7“OS(f) + rlS(f)’> # 0 such that L(y) =0,
where S(x) = 2F1(a,b;c|x), r,ro,71, f € C(x).

e Why this format?

Conjecture: if L has a convergent solution in Z[[z]] then it
has a solution of this format.
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An Example

e Consider the differential operator:

(16 23+16 22423 2—5) 5_ 875 22

_ 2
L=+ 3z(2z—1)(@2+2x+5) 9(22—1)%(22+22+5)

e L has singularities at the roots of z,2x — 1,22 +2x 45
and at oo (singularities of L come from roots of the leading
coefficient or poles of other coefficients).
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An Example

e Consider the differential operator:

(16 23+16 22423 2—5) P 875 22
3z(2z—1)(z2+22+5) 9 (22—1)%(22+22+5)

L=08"+

e L has singularities at the roots of z,2x — 1,22 +2x 45
and at oo (singularities of L come from roots of the leading
coefficient or poles of other coefficients).

e Our algorithm on ‘five singularities’ solves L:

20 (22—1)
9 (22+422+5)6273

4(2x—1
(2% + 2% + 22 - 2)? 2F1<%v%; 2|x4(av(2+2w-)1-5)>]

I~ o=

SOll(L) =
o [(x2—|—2 r+5)2t o Fy (é, %; 1] 7x4?3§22$2_;l5)> -
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Why Second Order?

e First order differential operators are easy to solve.

e For higher order, the most natural way is to find if the
differential operator can be reduced to lower order using
factors, symmetric products, symmetric powers etc.

e Mark van Hoeij and Michael F. Singer have developed
algorithms to solve higher order differential operators (up
to order 4) using order reduction.

e Complete algorithms for second order differential operators
are very useful to solve higher order differential operators.
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L Introduction

Related Works

e J. Kovacic developed algorithm to find Liouvillian
solutions.

e Q. Yuan, R. Debeerst, M. van Hoeij and W. Koepf
developed algorithms to solve differential operators with
irregular singularities.

e Fuchsian differential operators correspond to
hypergeometric solutions.

e M. van Hoeij and R. Vidunas developed the tables of
rational functions for 4 singularities (Heun equation).

e T. Fang and M. van Hoeij developed algorithm for
2-descent, which finds o F;-type solutions whenever f has
degree 2, and also reduces a differential operator to another
with fewer singularities.
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Let Lin, € C(x)[0] be a second order linear differential operator
with rational function coefficients. Let L;y, be irreducible and
has no Liouvillian solutions.
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in the following cases:

® Liy, has five regular singularities where at least one of
them is logarithmic. This is the topic of today!
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L Intro

Our Contribution

Let Lin, € C(x)[0] be a second order linear differential operator
with rational function coefficients. Let L;y, be irreducible and
has no Liouvillian solutions.

We have developed algorithms to find o F3-type solutions of L;y,
in the following cases:

® Liy, has five regular singularities where at least one of
them is logarithmic. This is the topic of today!

® L;,, has hypergeometric solution of degree three, i.e, Lj,,
is solvable in terms of o F(a, b; c| f) where f is a rational
function of degree three.
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Formal Solutions, Example

L(y) = 144z(x — 1)y" + (2162 — 72)y' + 5y =0

Formal solutions at = 0 (dots = higher powers of x);
Yy = (L‘? + ...

Yo = T2 + ...

Only the dominant term is listed.

Exponents at x = 0 are: 0 and %

Formal solutions at = 1 (dots = higher powers of x — 1);
y1=(x—1)"+ ...

yo = log(z — )yy + ...

Exponents at x = 1 are: 0, 0. The point x =1 is a
logarithmic singularity.

Regular points have exponents 0, 1.

A change of variables z — z? turns = = 0 into a regular
point. It turns = = 1 into two logarithmic singularities
r = +£1.
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Gauss Hypergeometric Differential Operator

Gauss hypergeometric differential operator has the
following form;

HEY = 2(1—2)82 + (¢ — (a + b+ 1)2)d — ab

He b has 3 regular singularities at 0, 1, co with exponent
differences (eg, e1,€5) = (1 —c¢,c —a — b, b — a) up to sign.
The Gauss hypergeometric function o Fi(a,b;c|z) is a
solution of Hy, Y where:

2F1(a,b;c|x)zzw.ﬁ

n=0
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Gauss Hypergeometric Differential Operator

e Gauss hypergeometric differential operator has the
following form;

HEY = 2(1—2)82 + (¢ — (a + b+ 1)2)d — ab
o H¢ b has 3 regular singularities at 0, 1, co with exponent
differences (eg, e1,€5) = (1 —c¢,c —a — b, b — a) up to sign.
e The Gauss hypergeometric function 9 Fj(a,b;c|x) is a
. a,b
solution of H.:7 where:

2F1(a,b;c|x)zzw.ﬁ

n=0

e The Pochhammer symbol (a),, is defined as:

(a)n:{l ifn =0

a(a+1)...(a+n—1) otherwise
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(i) Change of variables: y(z) — y(f)
(ii) Gauge transformation: y — 7oy + 1y’
(iii) Exponential product: y — exp([rdz)y
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Transformations

e We define the following transformations on a second order
differential operator:
(i) Change of variables: y(z) — y(f)
(ii) Gauge transformation: y — 7oy + 1y’
(iii) Exponential product: y — exp([rdz)y

The function f in (i) above is called the pullback function.

e These transformations are denoted LC, %G and 5.
. MG and »,, are equivalence relations. They do not
affect the true singularities of a differential operator.

i>C can change everything.
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p: singularity, A,: exponent difference
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Effect of 2> o

f _ (1-=z)(dz+1) 1— f _ z2(z+7)

(z+1)3 (z+1)3

00|

p| O
Ayl 0

= ool

B

NI =
N

p: singularity, A,: exponent difference
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Effect of i>0
ghi 2 Lol L 1oy -7 [l
5 A, |0 o0 [ o [ T3
_ (1—=z)(4z+1) _ 22(x47)
F="Grp - | 1-1=T%np
s, | p | 0|1 |oc
2 1 1
Bp| 0|5 | 3

p: singularity, A,: exponent difference
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Computing o Fi-type Solutions

Let L;np be the input differential operator of order 2, and
S(xz) = 2Fi(a,b;c|x).

e If we find the transformations such that :
gé‘) i>c HZ}IC) 7"077"1>G L>E Linp,

then we get a solution of L;p;, in the same fashion as:

@) Lo 8(f) 26 By exp([rda) (roS(f) + 1S (FY).



Computing o Fi-type Solutions

Let L;np be the input differential operator of order 2, and
S(xz) = 2Fi(a,b;c|x).

e If we find the transformations such that :
HeE Ly HEY T T L,

then we get a solution of L;p;, in the same fashion as:

@) Do S() g 5y exp([rde) (roS(f) +riS(f)').
e There are algorithms to compute %G 5 - The crucial

part is to compute f and a,b, c.
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e Differential equations with o F1-type solutions are very
common in Combinatorics, Physics and Engineering.
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Motivation

e Differential equations with o F1-type solutions are very
common in Combinatorics, Physics and Engineering.

e To find ‘closed form solutions’ (solutions in terms of very
well studied special functions; Airy, Bessel, Kummer,
Whittaker, Liouvillian, Hypergeometric) we need a
complete algorithm that treats the hypergeometric case.

e There are many integer sequences in oeis.org whose
generating functions are convergent and holonomic. Such
generating functions satisfy linear differential operators.
Such differential operators of order 2 and 3 tested so far
have logarithmic singularities and have o F}- type solutions.
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Motivation Contd.

e Moreover, such differential operators lie in the same class
(minimal network of differential operators in terms of

solvability), namely, Class(HlQ’l2 ),

(607617600) (Oa%a};) <~ (a,b,c):(%,%ﬂ)
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Motivation Contd.

e Moreover, such differential operators lie in the same class
(minimal network of differential operators in terms of
1 s
12:12 ).
1,z ’

(€0, €1, €00) = (0, %’ %) < (a,b,c) = (%’ 1%7 1)
e K. Takeuchi classified commensurable classes of arithmetic
triangle groups. The first class gives (e, €1, ex) of Gauss

solvability), namely, Class(H

1 5

hypergeometric differential operators that lie in Class(H 1z

¥
Nl
N——
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e For a rational function f : P — P! of degree n, total
amount of ramification is given by:

Z (ep—1)=2n-—2 (Riemann-Hurwitz)
peP!
where e, is the ramification order of f at p.
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Degree Bounds and Types of f

e For a rational function f : P — P! of degree n, total
amount of ramification is given by:

Z (ep—1)=2n-—2 (Riemann-Hurwitz)

peP!
where e, is the ramification order of f at p.

e Riemann-Hurwitz’s formula gives the following for our
project:

@ Belyi maps: zero-dimensional families f(xz), ramify only
above {0, 1,00}, degree bound 18.

® Belyi-1 maps: one-dimensional families f(x,t), ramify above
one point outside {0, 1, o0}, degree bound 12.

® Belyi-2 maps: two-dimensional families f(z, s, t), ramify
above two points outside {0, 1,00}, degree bound 6.
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e We can compute Belyi and near Belyi (Belyi-1, Belyi-2)
maps in Maple solving polynomial equations and using
other techniques.

e Smaller cases are easy to find. For larger cases we use
Elimination, Resultants, Parametrization etc. There are no
maps of degree 17 for our project. We use special
techniques given by F. Beukers and H. Montanus to
compute degree 18 Belyi maps.
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Computing f

e We can compute Belyi and near Belyi (Belyi-1, Belyi-2)
maps in Maple solving polynomial equations and using
other techniques.

e Smaller cases are easy to find. For larger cases we use
Elimination, Resultants, Parametrization etc. There are no
maps of degree 17 for our project. We use special
techniques given by F. Beukers and H. Montanus to
compute degree 18 Belyi maps.

e The major task is to prove that we have computed ALL
Belyi and near Belyi maps relevant to our project.
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Let L;np be a second order linear differential operator with five
regular singularities where at least one singularity is
logarithmic. Suppose Liy, has 2 Fi-type solution with the choice
of exponent differences given in Takeuchi’s diagram.
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able

The Major Task

Let L;np be a second order linear differential operator with five
regular singularities where at least one singularity is
logarithmic. Suppose Liy, has 2 Fi-type solution with the choice
of exponent differences given in Takeuchi’s diagram.

e We have to develop a complete table T of relevant
rational functions f(x), f(z,t) and f(z,s,t) such that
there exists at least one f € T" and a suitable
Moébius transformation m for which

a,b (m) a,b 70,71 r )
HC,(L‘ C Hc_f(m) G %E L’an
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of the Table

Completeness of the Table

¢ Question: How do we prove that our table is
complete?

e Proof:
We use the following correspondence (more details later);

Belyi maps +— dessins
Belyi-1 maps <— near dessins
Belyi-2 maps <— algorithms

e Once we have a complete table, we can develop a
differential solver from it.



al Function Coefficients

The Differential Solver

Table

. (z+7)(z—39)
L= + (z—16)(xz2+18 31:—15)a

25231006 225523 £ —894
36(224+18 2—15)(x—16)(22—3)

Sol = el d= (roS(f) +riS(f)'),
r,ro,71 € C(z) and S(f) =

154 4(2*+182-15)%(22-3)°
217 (ﬁ’ 13 1] 9(4 x3—29 22 +422—21)° )

Im = ffis such that

Fi(z) o m or
J=19Gj(z,8)|s=2 c m or

Belyi-2 map

Belyi maps:

_ 4(2x-5)(7x+20)*
Fi(z) = 25 (52128)2(52+12)

Fggg(.%‘) =...

Belyi-1 maps:

—64(272—&-337—5)3.%2

G, (557 3) = s3(z—1)3(8x24+9sx—9s)

Gioo(z,s) = ...

Belyi-2 maps:
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The Correspondence

e A dessin is a connected, oriented and bi-colored graph where any
two vertices of different color are joined by an edge.

e Dessin of a Belyi map f is the graph of f=1([0,1]).
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e A sequence [g1, g2, ,gk] of permutations in S, is called a
constellation (or a k-constellation) of degree n if:

@ the group (g1,92, - ,gx) is transitive,
D g192---gr = 1.
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conjugation).
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able

The Correspondence

e A dessin is a connected, oriented and bi-colored graph where any
two vertices of different color are joined by an edge.

e Dessin of a Belyi map f is the graph of f=1([0,1]).
e A sequence [g1, g2, ,gk] of permutations in S, is called a
constellation (or a k-constellation) of degree n if:

@ the group (g1,92, - ,gx) is transitive,
D g192---gr = 1.

e There is a correspondence between dessins, Belyi maps (up
to Mobius transformation) and 3-constellations (up to
conjugation).

e The braid group By generated by the braids o1,...,05_1
acts on a k-constellation in the following way:
;i : [917 s Gis ity - 7gk] = [glv s 7gi+1vg7j_4»119igi+17 s agk]



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

mpleten: f the Table

The Correspondence Contd.

e Here is an example of a dessin of degree 9:



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

mpleten: f the Table

The Correspondence Contd.

e Here is an example of a dessin of degree 9:




utio of Line
f the Table

The Correspondence Contd.

e Here is an example of a dessin of degree 9:

e This dessin has 3 black vertices (points above 0), 6 white
vertices (points above 1) and 2 faces (correspond to poles).



The Correspondence Contd.

e Here is an example of a dessin of degree 9:

e Dessins do not have labels. The above ‘labelled dessin’ is
useful to read the correspondence.



The Correspondence Contd.

e Here is an example of a dessin of degree 9:

e This dessin corresponds to the following 3-constellation of
degree 9 (unique up to conjugation):
go = (123)(456) (789)
g1 = (1)(6) (8) (27) (34) (59)
oo = (90g1) ' = (13658 7) (294).
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The Correspondence Contd.

e Here is an example of a dessin of degree 9:

e and the following Belyi map (up to Mobius

transformation):
3
4 :Eg—l-l
F=A 5

#34+4)(223-1)?
Lo ey
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e Here is an example of a dessin of degree 9:

e A dessin is the equivalence class of 3-constellations mod
conjugation. Conjugated 3-constellations give the same
dessin (with different labelling).
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Computing Relevant Dessins

We have developed the table of Belyi maps. To prove the
completeness we first enumerate all ‘5 singularity’ dessins using
combinatorial search including various techniques to prevent
computational explosion. Then we compare the table of dessins
with our table of Belyi maps. Steps:
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Computing Relevant Dessins

We have developed the table of Belyi maps. To prove the
completeness we first enumerate all ‘5 singularity’ dessins using
combinatorial search including various techniques to prevent
computational explosion. Then we compare the table of dessins
with our table of Belyi maps. Steps:

@® Computing 3-constellations
® Computing dessins, i.e, discarding conjugates

® Discarding non-planar dessins, as well as dessins whose
Weighted Singularity Count is too high

® Choosing only relevant dessins
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Computing ‘Labelled Dessins’ or 3-constellations

oo Y0=

L=
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Computing ‘Labelled Dessins’ or 3-constellations

oo Y0=

L=

OLQTO
g0 = (12)
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Computing ‘Labelled Dessins’ or 3-constellations

oo Y0=

L g =(1)
oloio 0—0—02
1 1
g0 = (12) go = (1)(2)
g1 =(1)(2) g1 =(12)
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go=(12) g0 =(1)(2) 1
g1 =(1)(2) g1 =(12)
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Computing ‘Labelled Dessins’ or 3-constellations

oo Y0=

g =()
o2 o 5 o« o024 go = (12)
1 1 g1 = (1 9
go=(12) g0 =(1)(2) 1
g1 =(1)(2) g1 =(12)
e 020 0 iiiinn..
3 1
g0 = (12)(3)
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oo Y0=

L g =(1)
oloio o—oio g0 = (12)
! ! g1 =(12
g0 = (12) go = (1)(2) 1
g1 = (1)(2) g1 =(12)
6 026 0 ceeiiinn. 03e 02 ...
3 1
go = (12)(3) go = (1)(23)
g1 =(1)(23) g1=(12)(3)



Computing ‘Labelled Dessins’ or 3-constellations

oo Y0=

g =()
oloio o—oio g0 = (12)
L ! g1=(12
go=(12) g0 =(1)(2) 1
g1 =(1)(2) g1 =(12)
3
e 020 0 ciiani.. 056 02 ... go=(123)
371 g1 = (123)
g0 = (12)(3) go = (1)(23) 1
g1 =(1)(23) g1 =(12)(3)
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e A ‘labelled dessin’ of degree n — 1 produces n? — 1 ‘labelled
dessins’ of degree n.



Computing ‘Labelled Dessins’ or 3-constellations Contd.

e A ‘labelled dessin’ of degree n — 1 produces n? — 1 ‘labelled
dessins’ of degree n.

e The number of ‘labelled dessins’ grows very rapidly:
(n—1D!(n+1)!

2
1.e, T, =1,3,24, 360, 8640, 302400, 14515200, 914457600, . . .

T, =
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f the Table

Computing ‘Labelled Dessins’ or 3-constellations Contd.

e A ‘labelled dessin’ of degree n — 1 produces n? — 1 ‘labelled
dessins’ of degree n.
e The number of ‘labelled dessins’ grows very rapidly:
(n—1D!(n+1)!
2

te, T, =1,3,24, 360, 8640, 302400, 14515200, 914457600, . . .

T, =

e Problem: The program computes every 3-constellation. A
dessin is a conjugacy class of 3-constellations. To prevent
computing the same dessin many times, we should compute only
one element from each conjugacy class (otherwise the output will
be“error, out of memory” long before we reach n = 18).

The next step is to identify conjugated 3-constellations and
discard all but one of them.
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Computing Dessins

e Any two 3-constellations [go, 91, goo] and [go, §1, Goo]
represent the same dessin iff 3o € S, such that
gi - Ugi0_17 (S {07 17 OO}



Solutions of Linear Differential Equations with Rational Function Coefficients

of the Table

Computing Dessins

e Any two 3-constellations [go, 91, goo] and [go, §1, Goo]
represent the same dessin iff 3o € S, such that
gi - Ugi0_17 (S {07 17 OO}

e Conjugation is a reordering of the numbers in gg, g1, goo-
We detect that reordering using the action of gg and g;.
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Computing Dessins

e Any two 3-constellations [go, 91, goo] and [go, §1, Goo]
represent the same dessin iff 3o € S, such that
gi - Ugi0_17 (S {07 17 OO}

e Conjugation is a reordering of the numbers in gg, g1, goo-

We detect that reordering using the action of gg and g;.

e Take a base point b € {1,...,n} and apply the repeated
action of gy and g1 on b. That produces an ordering
™ = [al,ag, cee ,an].
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f the Table

Computing Dessins

e Any two 3-constellations [go, 91, goo] and [go, §1, Goo]
represent the same dessin iff 3o € S, such that
gi - Ugi0_17 (S {07 17 OO}

e Conjugation is a reordering of the numbers in gg, g1, goo-
We detect that reordering using the action of gg and g;.

e Take a base point b € {1,...,n} and apply the repeated
action of gy and g1 on b. That produces an ordering
™ = [al,ag, cee ,an].

e We will obtain o = [0(a1),0(a2),...,0(ay,)] after applying
the repeated action of gy and g; on o(b). Moreover,

(om) L gi(om) =7 o togio o = n 7 gy, i € {0,1}
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mpleten: f the Table

Computing Dessins Contd.

e Conjugation in g; by 7 is the same as conjugation in g; by
om.
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the Table

Computing Dessins Contd.

e Conjugation in g; by 7 is the same as conjugation in g; by
om.

e Computing the permutations from all b € {1,2,...,n} and
conjugating gives two equal sets. We sort these sets with
suitable ordering and check the first elements to detect
conjugated 3-constellations.
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Computing Dessins Contd.

e Conjugation in g; by 7 is the same as conjugation in g; by
om.

e Computing the permutations from all b € {1,2,...,n} and
conjugating gives two equal sets. We sort these sets with
suitable ordering and check the first elements to detect
conjugated 3-constellations.

e Including this procedure discards conjugated
3-constellations and gives the following growth:

T, = 1,3,7,26,97, 624, 4163, 34470, 314493, 3202839, . ..



Discarding Non-planar Dessins

e o 90—

g1 = (1)
oloio o—oio g0 =(12)
L ! g1=(12
go=(12) 90 = (1) (2) 1
g1 =(1)(2) g1 =(12)
3
e 020 0 cieani.. 0% 02 ... go=(123)
371 g1 = (123)
g0 = (12)(3) go = (1)(23) 1
g1 = (1)(23) g1 =(12)(3)
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e The genus of a dessin of degree n is given by:

2g — 2 = n — # black vertices - # white vertices - # faces.
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Discarding Non-planar Dessins
e The genus of a dessin of degree n is given by:

2g — 2 = n — # black vertices - # white vertices - # faces.

e Our dessins are planar (drawn in P'). So their genus must
be zero.
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f the Table

Discarding Non-planar Dessins
e The genus of a dessin of degree n is given by:
2g — 2 = n — # black vertices - # white vertices - # faces.

e Our dessins are planar (drawn in P'). So their genus must

be zero.
e We compute the genus of each dessin and discard the

non-planar dessins (genus > 0).
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Discarding Non-planar Dessins
e The genus of a dessin of degree n is given by:

2g — 2 = n — # black vertices - # white vertices - # faces.

e Our dessins are planar (drawn in P'). So their genus must
be zero.

e We compute the genus of each dessin and discard the
non-planar dessins (genus > 0).

e Including this feature produces the following growth:

T, =1,3,6,20,60,291,1310,6975, 37746, 215602, 1262874, . ..
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Discarding Non-planar Dessins
e The genus of a dessin of degree n is given by:
2g — 2 = n — # black vertices - # white vertices - # faces.

e Our dessins are planar (drawn in P'). So their genus must
be zero.

e We compute the genus of each dessin and discard the
non-planar dessins (genus > 0).

e Including this feature produces the following growth:
T, =1,3,6,20,60,291,1310,6975, 37746, 215602, 1262874, . ..

e The growth is much smaller, but still too large to reach
n = 18 (we still get “error! out of memory”).
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mpleten: f the Table

Weighted Singularity Count

e This tool plays a significant role on controlling the growth.
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Weighted Singularity Count

e This tool plays a significant role on controlling the growth.

e It is a real valued function, say W, on 3-constellations with
the following properties:

@ W never decreases when we add an edge,
® W(D) < Singularity-Count(D) for every dessin D.
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Weighted Singularity Count

e This tool plays a significant role on controlling the growth.

e It is a real valued function, say W, on 3-constellations with

the following properties:
@ W never decreases when we add an edge,
® W(D) < Singularity-Count(D) for every dessin D.

e We can discard a 3-constellation D as soon as W (D)
exceeds the desired number of singularities. This tool is
very useful as each 3-constellation contributes n? — 1 new
3-constellations in the next level.
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Putting it All Together

By discarding

@ all but one member from each conjugacy class

® non-planar dessins

® dessins whose Weighted Singularity Count is too high
the table grows much more slowly. Not only are we able to

compute all relevant dessins for d =5 (n < 18) we can also do
the same for d = 6 (n < 24).
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Choosing Relevant Dessins

e Finally, we consider only those dessins which produce 5
non removable singularities from 0, 1, oo with

(e, €1,€00) = (0,3, 1) where k € {3,4,6}.
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Choosing Relevant Dessins

e Finally, we consider only those dessins which produce 5
non removable singularities from 0, 1, co with
(e, €1,€00) = (0,3, 1) where k € {3,4,6}.

e We computed all such dessins which produce up to 6
singularities (degree < 24). The details for (0, 3, 3) up to 5
singularities are as follows:

n | dessin count for (0,5, 5)

<6 1,2, 1,1,0,2

<12]0,1,3,4,3,6,4,6 4,4,0,06

<18 0,0,2,6,12,19,22,26,32,39,36,50,40,42,32.32,0,26

O > W




Choosing Relevant Dessins

e Finally, we consider only those dessins which produce 5
non removable singularities from 0, 1, co with
(e, €1,€00) = (0,3, 1) where k € {3,4,6}.

e We computed all such dessins which produce up to 6
singularities (degree < 24). The details for (0, 3, 3) up to 5
singularities are as follows:

n | dessin count for (0,5, 5)

<6 |1,2110,2
<1210,1,3,4,3,6,4,6, 4,4, 0, 6
<18 | 0,0,2,6,12,19,22,26,32,39,36,50,40,42,32,32,0,26

O > W

e COMPLETENESS: Once each member from our table of
Belyi maps corresponds to a member from the table of
dessins and vice versa, the table of Belyi maps is complete.
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Computing Relevant Near Dessins

e There is a correspondence between Belyi-1 maps (up to
Mbobius transformation) and 4-constellations [go, g1, G¢, Goo)
(up to conjugation and braid action) where g¢; is a 2-cycle.
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the Table

Computing Relevant Near Dessins

e There is a correspondence between Belyi-1 maps (up to
Mbobius transformation) and 4-constellations [go, g1, G¢, Goo)
(up to conjugation and braid action) where g¢; is a 2-cycle.

e Computing relevant near dessins involves the following
steps:

@ Listing all branching patterns (up to degree 12) which
produce 5 non removable singularities from {0, 1, 00}.

® Computing near dessins (4-constellations mod conjugation)
for each branching pattern.

® Grouping near dessins together by braid orbits.
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the Table

Computing Relevant Near Dessins

e There is a correspondence between Belyi-1 maps (up to
Mbobius transformation) and 4-constellations [go, g1, G¢, Goo)
(up to conjugation and braid action) where g¢; is a 2-cycle.

e Computing relevant near dessins involves the following
steps:
@ Listing all branching patterns (up to degree 12) which
produce 5 non removable singularities from {0, 1, 00}.
® Computing near dessins (4-constellations mod conjugation)
for each branching pattern.
® Grouping near dessins together by braid orbits.

e The next slides will explain the procedure of computing

relevant near dessins of degree 9 for (e, e1, ex) = (3, 3,0).
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Listing Branching Patterns

e Branching patterns above 0,1 are [3,3,3],[1,2,2,2,2]
respectively. Following is the list of branching patterns

above oo:
1,1,1,6],[1,1,2,5],[1,1,3,4],[1,2,2,4],[1,2,3,3],[2,2,2, 3]

e 4 poles and a root above 1 produce 5 non removable
singularities.
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Computing Near Dessins

e go has three 3-cycles. We can fix go = (123) (456) (789).

(We are working mod conjugation)
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Computing Near Dessins

e go has three 3-cycles. We can fix go = (123) (456) (789).

(We are working mod conjugation)

e g1 has one 1-cycle and four 2-cycles. For g; we have
9.7-5-3-1 =945 choices.
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Computing Near Dessins

e go has three 3-cycles. We can fix go = (123) (456) (789).
(We are working mod conjugation)

e g1 has one 1-cycle and four 2-cycles. For g; we have
9.7-5-3-1=945 choices.

e g; is a 2-cycle. For g; we have (9) = 36 choices.

2
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the Table

Computing Near Dessins

e go has three 3-cycles. We can fix go = (123) (456) (789).

(We are working mod conjugation)

e g1 has one 1-cycle and four 2-cycles. For g; we have
9.7-5-3-1 =945 choices.

e g; is a 2-cycle. For g; we have (9) = 36 choices.

2
e For each of the 945 - 36 = 34020 triples (go, g1, 9¢) we check
the following:
® Is (9o, 91, gi) transitive?
® Does the product ggg1g: have 4 disjoint cycles?
(90919t = 932")
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Computing Near Dessins

e go has three 3-cycles. We can fix go = (123) (456) (789).
(We are working mod conjugation)

e g1 has one 1-cycle and four 2-cycles. For g; we have
9.7-5-3-1=945 choices.

e g; is a 2-cycle. For g; we have (g) = 36 choices.

e For each of the 945 - 36 = 34020 triples (go, g1, 9¢) we check
the following:

® Is (9o, 91, gi) transitive?
® Does the product ggg1g: have 4 disjoint cycles?
(90919t = 95")
e Computing near dessins (4-constellations mod conjugation)
is similar to the procedure of computing dessins. Here we
use the action of gg, g1 and g;.
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Braid Orbits

e Applying braid group action on each near dessin produces
braid orbits.



Braid Orbits

e Applying braid group action on each near dessin produces
braid orbits.

e Analytic continuation of the fourth branch point ¢ around
0,1, 00 permutes the near dessins on the same braid orbits.
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Braid Orbits

e Applying braid group action on each near dessin produces
braid orbits.

e Analytic continuation of the fourth branch point ¢ around
0,1, 00 permutes the near dessins on the same braid orbits.

e Our computation produces braid orbits with the following
branching patterns above oco:
[1,1,1,6],[1,1,1,6],[1,1,2,5],[1,1,3,4],[1,2,2,4],[1,2,3,3],[2,2,2, 3]
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f the Table

Braid Orbits

e Applying braid group action on each near dessin produces
braid orbits.

e Analytic continuation of the fourth branch point ¢ around
0,1, 00 permutes the near dessins on the same braid orbits.

e Our computation produces braid orbits with the following
branching patterns above oco:
[1,1,1,6],[1,1,1,6],[1,1,2,5],[1,1,3,4],[1,2,2,4],[1,2,3,3],[2,2,2, 3]

e Following are the Belyi-1 maps with branching pattern [1,1,1,6]:

B 4 (sx3—2sm2+sx—3)3
27 sad —2sx2 4 sx—4

f1($,8)

_ (sx3—2sm2—9x2+18x+sx—3)3
©27(szd —2s22 — 922 + 182 + s — 1)

fa(z,s)



Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients

mpleten: f the Table

Braid Orbits Contd.

(45—81)3

e For f; the fourth branch point t = ﬁ e
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Braid Orbits Contd.

(45—81)3
s—27

e For each fixed value of t ¢ {0, 1,00}, we get 3 distinct
values of s which produce 3 distinct near dessins.

e For f; the fourth branch point ¢ = @
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Braid Orbits Contd.

(45—81)3
s—27

e For each fixed value of t ¢ {0, 1,00}, we get 3 distinct
values of s which produce 3 distinct near dessins.

e For f; the fourth branch point ¢ = ﬁ

e Analytic continuation of ¢ around 0, 1, co permutes the
values of s, i.e, the corresponding near dessins.
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Braid Orbits Contd.

(45—81)3
s—27

e For each fixed value of t ¢ {0, 1,00}, we get 3 distinct
values of s which produce 3 distinct near dessins.

e For f; the fourth branch point ¢ = ﬁ

e Analytic continuation of ¢ around 0, 1, co permutes the
values of s, i.e, the corresponding near dessins.

3 2 3
9 (25°+275%4+4865—1458)
o For fy we get t = 5553 sA(s3+27 524243 5—729)




Braid Orbits Contd.

(45—81)3
s—27

For each fixed value of ¢t ¢ {0,1, 00}, we get 3 distinct
values of s which produce 3 distinct near dessins.

For f; the fourth branch point ¢t = ﬁ

Analytic continuation of ¢ around 0, 1, co permutes the
values of s, i.e, the corresponding near dessins.

o (2534275244865—1458)°
19683 s4(s3427 524243 5—729) °
COMPLETENESS: We choose a value of s with
t ¢ {0,1,00} for each Belyi-1 map f(x,s). Then we
compute monodromy go, g1, g¢, oo Using Maple. The table
of Belyi-1 maps is complete if V braid orbit 3 a Belyi-1 map
f in our table with [go, g1, gt, goo] On that orbit.

For fo we get t =



Braid Orbits Contd.

(45—81)3
s—27

For each fixed value of ¢t ¢ {0,1, 00}, we get 3 distinct
values of s which produce 3 distinct near dessins.

For f; the fourth branch point ¢t = ﬁ

Analytic continuation of ¢t around 0, 1, co permutes the
values of s, i.e, the corresponding near dessins.

o (2534275244865—1458)°
19683 s4(s3427 524243 5—729) °
COMPLETENESS: We choose a value of s with
t ¢ {0,1,00} for each Belyi-1 map f(x,s). Then we
compute monodromy go, g1, g¢, oo Using Maple. The table
of Belyi-1 maps is complete if V braid orbit 3 a Belyi-1 map
f in our table with [go, g1, gt, goo] On that orbit.

For fo we get t =

Monodromy groups of f; and fo have different order. Hence
{f1, f2} completely cover the branching pattern [1,1, 1, 6].
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e Our program gives two branching patterns for Belyi-2 maps
which occur only for (0, %, %),
1,1,1,1],[2,2],[1,3] and [1,1,1,1,2],[2,2,2], [3, 3]
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Completeness of Belyi-2 maps

e Our program gives two branching patterns for Belyi-2 maps
which occur only for (0, %, %),
1,1,1,1],[2,2],[1,3] and [1,1,1,1,2],[2,2,2], [3, 3]

e Five singularities up to Mobius transformation have two
degrees of freedom, which is just enough to extract the
parameters of a 2-dimensional family.
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the Table

Completeness of Belyi-2 maps

e Our program gives two branching patterns for Belyi-2 maps
which occur only for (0, %, %),
1,1,1,1],[2,2],[1,3] and [1,1,1,1,2],[2,2,2], [3, 3]

e Five singularities up to Mobius transformation have two
degrees of freedom, which is just enough to extract the
parameters of a 2-dimensional family.

e The generic Belyi-2 map with branching pattern
[1,1,1,1],[2,2],[1,3] is the following:

(2% + c1x + ¢9)?
({E — bl)(l' — b2)3

(x* + azx® + agx? + a1z + ag)

(z — by)(z — bs)? y 1=f = ke

f=h
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f the Table

Completeness of Belyi-2 maps

e Our program gives two branching patterns for Belyi-2 maps
which occur only for (0, %, %),
1,1,1,1],[2,2],[1,3] and [1,1,1,1,2],[2,2,2], [3, 3]

e Five singularities up to Mobius transformation have two

degrees of freedom, which is just enough to extract the
parameters of a 2-dimensional family.

e The generic Belyi-2 map with branching pattern
[1,1,1,1],[2,2],[1,3] is the following:

(2% + c1x + ¢9)?
({E — bl)(l' — b2)3

(x* + azx® + agx? + a1z + ag)
((L’ — bl)(l' — b2)3

f=h

’ 1_f:k2'

o (2% + azx® + ar® + ayw + ag) and (x — by) are obtained from the
singularities of L;y,. Then we have 5 equations with 5 unknowns.
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