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@ We want the solutions in terms of pFi(a, b; c|f) where f is a
rational function of degree 3.
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@ Consider the following differential operator:

5(3x2-1)°
T 36x (x3—x—1)(x2-1)"

(27 x7—39x5417 x*~5 x—9 x*—3)

L=+ 5 e nean 0

@ Our algorithm finds the following solution of L:

sol(1) — 2P ELET) | g (1) 0h (3 B2 52)
o ( ) - (X3—X—1)5/6 36 (X3—X—1)11/6 .
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Motivation

Motivation

o Differential equations with »Fi-type solutions are very
common; they occur frequently in Combinatorics and Physics.

@ We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2 Fi-type solutions.

@ Solving differential equations with n > 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’'(Mark
van Hoeij and Tingting Fang) and our algorithm.

@ This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.
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Basic Background and Notation

Notation

We use the following notation:

° H?;f: Gauss hypergeometric differential operator.
HZE = x(1 = )82 + (¢ — (a+ b+ 1)x)d — ab.

S(x): 2Fi(a, b; c|x), which is a solution of H?jf.

e, e_: exponent differences of H?jf at 0,1, oc.

1?7 Yoo

° ¢,

o (e,e,e. )=(1—c,c—a—b,b—a).

f € C(x): a rational function of degree 3.
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Singularities

Theorem (Wang, Guo)

If x = p is a regular singularity or a regular point of L, then there
exist the following independent solutions of L at x = p:
(e 9]

yi=(x=p)% > ailx = p)i, a0 # 0 and

IO
y2=(x-p 62217 x = p)’ + cy1log(x — p), bo # 0

where e, e,, aj, bj, c € (C and c=0ife —¢, ¢ Z.

@ ¢, e, are called the exponents of L at x = p.

@ Exponent difference of L at x = p is defined as
Dp(L) = £(e, — e,).



Basic Background and Notation

Transformations

@ We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) — y(f)
(i) Gauge transformation: y +— roy + ry’
(i) Exponential product: y — exp([rdx)y



Basic Background and Notation

Transformations

@ We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) — y(f)
(i) Gauge transformation: y +— roy + ry’
(i) Exponential product: y — exp([rdx)y

The function f in (i) above is called the pullback function.



Basic Background and Notation

Transformations

@ We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) — y(f)
(i) Gauge transformation: y +— roy + ry’
(i) Exponential product: y — exp([rdx)y

The function f in (i) above is called the pullback function.

. f ro,r r
@ These transformations are denoted as —, L>G and —,
respectively.



Basic Background and Notation

Transformations

@ We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) — y(f)
(i) Gauge transformation: y +— roy + ry’
(i) Exponential product: y — exp([rdx)y
The function f in (i) above is called the pullback function.

. f ro,r r
@ These transformations are denoted as —, L>G and —,
respectively.

@ We use the notation L; — L if L1 can be transformed to L»
with any combination of these transformations.
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@ INPUT: A second order, irreducible, linear differential operator
Linp € C(x)[0] which has no Liouvillian solutions.

@ OUTPUT: A non zero expression (if that exists);

Y= eXp(/ ra) - (r0S() + nS(F)) (1)

such that Ljp,(y) =0,
where (i) S(f) = 2F1(a, b;c|f), (ii) r,ro, n,f are rational
functions, and (iii) f has degree three.

@ The expression (1) is called a 2 Fi-type solution.
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Problem Discussion

Lemma (Debeerst)

Let L, Ly € C(x)[0] such that Ly — L. Then there exists an
operator M € C(x)[J] such that:

f ro,r
Ly - M —_.—

o If we find the transformations such that :

ab f ab rn_ r
Hex — Hc,f *¢ —¢ Linp,

then we get a solution of L;,, in the same fashion as:

S() Do S(F) 2 Dy exp([rdx) - (oS(F) + nS(F)).

@ There are algorithms to compute %G .. Hence the
crucial part is to compute f and a, b, c.
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Properties of Transformations

@ A singularity is called non-removable if it stays singular under
ro,n r
G E*

@ The singularity structure of L is given by:
Sing(L) = {(p, Ap(L) mod Z) : pis non-removable}.

@ Singularity structure is preserved under ﬂ)c L>E;
. b .
S/ng(Hj’f) = Sing(Linp).

@ We reconstruct f and a, b, ¢ from Sing(L;n,) and the fact that

f

HZY 5o H2P.
. .. f

@ Singularities are generated under —_ from the roots of

f, 1 —f and poles of f.
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Effect of i>c on Singularity Structure

15 p 37 | V-3 |—vV-3]

M A, 0 | 0] o] 1
_27(x=37)(x*+3) £ _ 8(9x+10)°
f="G1p 1-f ="

1 5
, 0
H:iﬁ: p
Ay 0

NI =
W= 8
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Singularity bound for L,

@ Let d be the number of non-removable singularities in Lj,,.
(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1,1,1],[1,1,1],[1,1,1].

(i) min(d) = 2 when branching pattern is [1,2],[1,2],[3] and
(s €,€.) = (5,5, 3) (that has Liouvillian solutions!).

9

o If d =3 then f = 28 works!

@ Hence .
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Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).

We give a list for d = 5:

Notation:

Computing f

d: number of non-removable singularities in L;p,.

*

, E: elements of C.

5. an element of % +7Z.
%: an element of (3 +Z) U (3 + Z).
d | Case | Exponent difference | Branching pattern
at 0, 1, oo resp. above 0, 1, co resp.
caseb.l | #3, #3, E (3], [3], [1,1,1]
Liouv | 5, 5, E [1,2], [1,2], [1,1,1]
5|caseb2 | #5, 3, E (1,2], [3], [1.1,1]
caseb.3 | 5, E, # 3 [1,2], [1,1,1], [3]
casebd | # 35, # 5, 5 [1,2], [1,2], [1,2]
caseb.b | £ 3, £ 5, # 5 [3], [1.,2], [1.2]
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One Case

(e,€,e.) = (5,E,# 3), Branching pattern: [1,2], [1,1,1], [3]

Let Lin, € C(x)[0] where C C C.

Algorithm[5.3]: Compute f € C(x) of degree 3 and exponent
differences (e,, e, €, ) for H‘C;jf corresponding to ‘case5.3".

17 Yoo
Input: Field C and Sing(Linp) in terms of monic irreducible

polynomials in C[x].

Output: A set of lists [f, (g, e, e, )] compatible to ‘case5.3".

17 Yoo
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One Case

(& €€e.) = (5, E,# 3), Branching pattern: [1,2], [1,1,1], [3]

@ STEP 1: Check if Sing(Ljnp) is consistent with ‘case5.3".
Sing(Linp) must have:
(i) One singularity with exponent difference: e, € 5 + Z.
(ii) Three singularities whose exponent differences match mod
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(iii) One singularity with arbitrary exponent difference.

o STEP 2: Write f = k1% where
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Computing f

One Case

(& €€e.) = (5, E,# 3), Branching pattern: [1,2], [1,1,1], [3]

@ STEP 1: Check if Sing(Ljnp) is consistent with ‘case5.3".
Sing(Linp) must have:
(i) One singularity with exponent difference: e, € 5 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

o STEP 2: Write f = k1% where

ai,az, b e CY{oo} and k; € C.

o STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in % + Z. (x — a1) loops over these, and
e, is the exponent-difference at x = aj.
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17 Yoo

o STEP 4:
(i) Loop (x — b) over the elements of degree 1 in Sing(Ljnp),
skipping (x — a1), such that the remaining three singularities
have matching exponent-difference mod Z.
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One Case

(e,€,e.) = (5,E,# 3), Branching pattern: [1,2], [1,1,1], [3]
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o STEP 4:
(i) Loop (x — b) over the elements of degree 1 in Sing(Ljnp),
skipping (x — a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e_

over £, (631) (e;rl). (This fixes exponent difference mod Z)
e STEP 5:

(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.



Computing f

One Case

(e,€,e.) = (5,E,# 3), Branching pattern: [1,2], [1,1,1], [3]

17 Yoo

o STEP 4:
(i) Loop (x — b) over the elements of degree 1 in Sing(Ljnp),
skipping (x — a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e_

over £, (631) (e;rl). (This fixes exponent difference mod Z)
e STEP 5:

(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(i) We could choose any of these exponent differences for e,.
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One Case

@ STEP 6: Take the numerator of 1 — f and compute its
remainder mod P. That produces equations in ki, ap.
Compute the solutions k; € C and ay € C|J{oo}. If any
solution exists, then [f,(e,, e, e )] is one of the candidates.

17 Yoo



Computing f

One Case

@ STEP 6: Take the numerator of 1 — f and compute its
remainder mod P. That produces equations in ki, ap.
Compute the solutions k; € C and ay € C|J{oo}. If any
solution exists, then [f,(e,, e, e )] is one of the candidates.

17 Yoo

@ STEP 7: Repeating the procedure with all other possibilities
returns the complete list of candidates.
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Main Algorithm
Main Algorithm

Algorithm: Solve an irreducible second order linear differential
operator Lj,, € C(x)[d] in terms of 2F1(a, b; c| f), with f € C(x)
of degree 3.

Input: Field C, Lj,, € C(x)[0] of order 2 which has no Liouvillian
solutions, and a variable x.

Output: A non zero solution y = e/ "(rnS(f) + nS(f)), if it
exists, such that Lj,,(y) = 0, where S(f) = 2F1(a, b; c | f),
f,r.ro,n € C(x) and f has degree 3.
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number of non-removable singularities.
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number of non-removable singularities.

@ STEP 2: Let k be the total number of cases (in our table)
for d. For example; if d =5 then k = 5.
Let Candidates = | Algorithm[d.a], where a = {1...k}.
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e STEP 1: Find the singularity structure of Lj,, in terms of
monic irreducible polynomials in C[x]. Let d be the total
number of non-removable singularities.

@ STEP 2: Let k be the total number of cases (in our table)
for d. For example; if d =5 then k = 5.
Let Candidates = | Algorithm[d.a], where a = {1...k}.
That produces a set of lists [f, (e, €, e..)].

17 ~oo

o STEP 3 : H2Y = x(1 — x)9? + (c — (a+ b+ 1)x)d — ab.
From each element in ‘Candidates’ above (a) compute a, b, c
(b) substitute the values of a, b, ¢ in HZY and (c) apply the
change of variable x — f on HZ:2. That produces a list of
operators Hca?
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o STEP 4 : Compute the transformations =% _5_ between
each operator H;"’f: in STEP 3 and L;,,. We get a map of the
form:

_ _d
G = ef’(ro +nd), wherer,rg,n e C(x)and 0= 7.
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o STEP 4 : Compute the transformations =% _5_ between
each operator H;"’f: in STEP 3 and L;,,. We get a map of the
form:

— _d
G=el"(rp+ nd), wherer rg,n e C(x)andd= =.

o STEP 5: S(f) = »Fi(a,b;c|f) is a solution of HZ'¢. Now
compute G(5(f)). That gives a solution of Lj,p.



Main Algorithm
Main Algorithm

o STEP 4 : Compute the transformations =% _5_ between

each operator H;"’f: in STEP 3 and L;,,. We get a map of the
form:

G =elr(rp+nd), wherer,rp,n € C(x)andd =2

o STEP 5: S(f) = »Fi(a,b;c|f) is a solution of HZ'¢. Now
compute G(5(f)). That gives a solution of Lj,p.

STEP 6: Repeat the procedure to get a list of solutions of
Linp. Choose the best solution (with shortest length) from the
list.
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