

Second Order Differential Equations with Hypergeometric Solutions of Degree Three

Vijay Jung Kunwar & Mark van Hoeij

Department of Mathematics
Florida State University

ISSAC 2013, Boston
June 29, 2013

Introduction

- We consider the irreducible, linear differential operators $L \in \mathbb{C}(x)[\partial]$ of order 2 which have no Liouvillian solutions.

Introduction

- We consider the irreducible, linear differential operators $L \in \mathbb{C}(x)[\partial]$ of order 2 which have no Liouvillian solutions.
- We will focus on differential operators with regular singularities only. Such operators are also called ‘Fuchsian’ operators.

Introduction

- We consider the irreducible, linear differential operators $L \in \mathbb{C}(x)[\partial]$ of order 2 which have no Liouvillian solutions.
- We will focus on differential operators with regular singularities only. Such operators are also called ‘Fuchsian’ operators.
- $\partial = \frac{d}{dx}$.

Introduction

- We consider the irreducible, linear differential operators $L \in \mathbb{C}(x)[\partial]$ of order 2 which have no Liouvillian solutions.
- We will focus on differential operators with regular singularities only. Such operators are also called ‘Fuchsian’ operators.
- $\partial = \frac{d}{dx}$.
- We want the solutions in terms of ${}_2F_1(a, b; c | f)$ where f is a rational function of degree 3.

An Example

- Consider the following differential operator:

$$L := \partial^2 + \frac{(27x^7 - 39x^5 + 17x^3 - 5x - 9x^4 - 3)}{3x(x^2-1)(x^3-x-1)(3x^2-1)}\partial - \frac{5(3x^2-1)^2}{36x(x^3-x-1)(x^2-1)}.$$

An Example

- Consider the following differential operator:

$$L := \partial^2 + \frac{(27x^7 - 39x^5 + 17x^3 - 5x - 9x^4 - 3)}{3x(x^2-1)(x^3-x-1)(3x^2-1)} \partial - \frac{5(3x^2-1)^2}{36x(x^3-x-1)(x^2-1)}.$$

- Our algorithm finds the following solution of L :

$$Sol(L) = -\frac{{}_2F_1\left(\frac{5}{6}, \frac{7}{6}; 1 \mid \frac{-1}{x^3-x-1}\right)}{(x^3-x-1)^{5/6}} + \frac{35}{36} \frac{x(x^2-1) \cdot {}_2F_1\left(\frac{11}{6}, \frac{13}{6}; 2 \mid \frac{-1}{x^3-x-1}\right)}{(x^3-x-1)^{11/6}}.$$

Motivation

- Differential equations with ${}_2F_1$ -type solutions are very common; they occur frequently in Combinatorics and Physics.

Motivation

- Differential equations with ${}_2F_1$ -type solutions are very common; they occur frequently in Combinatorics and Physics.
- We examined the integer sequences from oeis.org whose generating function is convergent and holonomic. Such second order differential equations have ${}_2F_1$ -type solutions.

Motivation

- Differential equations with ${}_2F_1$ -type solutions are very common; they occur frequently in Combinatorics and Physics.
- We examined the integer sequences from oeis.org whose generating function is convergent and holonomic. Such second order differential equations have ${}_2F_1$ -type solutions.
- Solving differential equations with $n \geq 4$ regular singularities requires large tabulation work. Such tables can be greatly reduced by developing the algorithms like '2-descent' (Mark van Hoeij and Tingting Fang) and our algorithm.

Motivation

- Differential equations with ${}_2F_1$ -type solutions are very common; they occur frequently in Combinatorics and Physics.
- We examined the integer sequences from oeis.org whose generating function is convergent and holonomic. Such second order differential equations have ${}_2F_1$ -type solutions.
- Solving differential equations with $n \geq 4$ regular singularities requires large tabulation work. Such tables can be greatly reduced by developing the algorithms like '2-descent' (Mark van Hoeij and Tingting Fang) and our algorithm.
- This algorithm solves many equations, and helps reduce the tabulation work for other algorithms as well.

Notation

We use the following notation:

- $H_{c,x}^{a,b}$: Gauss hypergeometric differential operator.
$$H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab.$$

Notation

We use the following notation:

- $H_{c,x}^{a,b}$: Gauss hypergeometric differential operator.
$$H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab.$$
- $S(x)$: ${}_2F_1(a, b; c \mid x)$, which is a solution of $H_{c,x}^{a,b}$.

Notation

We use the following notation:

- $H_{c,x}^{a,b}$: Gauss hypergeometric differential operator.
$$H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab.$$
- $S(x)$: ${}_2F_1(a, b; c \mid x)$, which is a solution of $H_{c,x}^{a,b}$.
- e_0, e_1, e_∞ : exponent differences of $H_{c,x}^{a,b}$ at $0, 1, \infty$.

Notation

We use the following notation:

- $H_{c,x}^{a,b}$: Gauss hypergeometric differential operator.
$$H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab.$$
- $S(x)$: ${}_2F_1(a, b; c \mid x)$, which is a solution of $H_{c,x}^{a,b}$.
- e_0, e_1, e_∞ : exponent differences of $H_{c,x}^{a,b}$ at $0, 1, \infty$.
- $(e_0, e_1, e_\infty) = (1 - c, c - a - b, b - a)$.

Notation

We use the following notation:

- $H_{c,x}^{a,b}$: Gauss hypergeometric differential operator.
$$H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab.$$
- $S(x)$: ${}_2F_1(a, b; c \mid x)$, which is a solution of $H_{c,x}^{a,b}$.
- e_0, e_1, e_∞ : exponent differences of $H_{c,x}^{a,b}$ at $0, 1, \infty$.
- $(e_0, e_1, e_\infty) = (1 - c, c - a - b, b - a)$.
- $f \in \mathbb{C}(x)$: a rational function of degree 3.

Singularities

Theorem (Wang, Guo)

If $x = p$ is a regular singularity or a regular point of L , then there exist the following independent solutions of L at $x = p$:

$$y_1 = (x - p)^{e_1} \sum_{i=0}^{\infty} a_i (x - p)^i, \quad a_0 \neq 0 \text{ and}$$

$$y_2 = (x - p)^{e_2} \sum_{i=0}^{\infty} b_i (x - p)^i + c y_1 \log(x - p), \quad b_0 \neq 0$$

where $e_1, e_2, a_i, b_i, c \in \mathbb{C}$ and $c = 0$ if $e_1 - e_2 \notin \mathbb{Z}$.

Singularities

Theorem (Wang, Guo)

If $x = p$ is a regular singularity or a regular point of L , then there exist the following independent solutions of L at $x = p$:

$$y_1 = (x - p)^{e_1} \sum_{i=0}^{\infty} a_i (x - p)^i, \quad a_0 \neq 0 \text{ and}$$

$$y_2 = (x - p)^{e_2} \sum_{i=0}^{\infty} b_i (x - p)^i + c y_1 \log(x - p), \quad b_0 \neq 0$$

where $e_1, e_2, a_i, b_i, c \in \mathbb{C}$ and $c = 0$ if $e_1 - e_2 \notin \mathbb{Z}$.

- e_1, e_2 are called the exponents of L at $x = p$.

Singularities

Theorem (Wang, Guo)

If $x = p$ is a regular singularity or a regular point of L , then there exist the following independent solutions of L at $x = p$:

$$y_1 = (x - p)^{e_1} \sum_{i=0}^{\infty} a_i (x - p)^i, \quad a_0 \neq 0 \text{ and}$$

$$y_2 = (x - p)^{e_2} \sum_{i=0}^{\infty} b_i (x - p)^i + c y_1 \log(x - p), \quad b_0 \neq 0$$

where $e_1, e_2, a_i, b_i, c \in \mathbb{C}$ and $c = 0$ if $e_1 - e_2 \notin \mathbb{Z}$.

- e_1, e_2 are called the exponents of L at $x = p$.
- Exponent difference of L at $x = p$ is defined as $\Delta_p(L) := \pm(e_1 - e_2)$.

Transformations

- We define the following transformations on a second order differential operator:
 - (i) Change of variables: $y(x) \mapsto y(f)$
 - (ii) Gauge transformation: $y \mapsto r_0 y + r_1 y'$
 - (iii) Exponential product: $y \mapsto \exp(\int r \, dx) y$

Transformations

- We define the following transformations on a second order differential operator:
 - (i) Change of variables: $y(x) \mapsto y(f)$
 - (ii) Gauge transformation: $y \mapsto r_0 y + r_1 y'$
 - (iii) Exponential product: $y \mapsto \exp(\int r \, dx) y$

The function f in (i) above is called the *pullback* function.

Transformations

- We define the following transformations on a second order differential operator:
 - (i) Change of variables: $y(x) \mapsto y(f)$
 - (ii) Gauge transformation: $y \mapsto r_0 y + r_1 y'$
 - (iii) Exponential product: $y \mapsto \exp(\int r \, dx) y$

The function f in (i) above is called the *pullback* function.

- These transformations are denoted as \xrightarrow{f}_C , $\xrightarrow{r_0, r_1}_G$ and \xrightarrow{r}_E respectively.

Transformations

- We define the following transformations on a second order differential operator:
 - (i) Change of variables: $y(x) \mapsto y(f)$
 - (ii) Gauge transformation: $y \mapsto r_0 y + r_1 y'$
 - (iii) Exponential product: $y \mapsto \exp(\int r \, dx) y$

The function f in (i) above is called the *pullback* function.

- These transformations are denoted as \xrightarrow{f}_C , $\xrightarrow{r_0, r_1}_G$ and \xrightarrow{r}_E respectively.
- We use the notation $L_1 \longrightarrow L_2$ if L_1 can be transformed to L_2 with any combination of these transformations.

Problem Statement

- INPUT: A second order, irreducible, linear differential operator $L_{inp} \in \mathbb{C}(x)[\partial]$ which has no Liouvillian solutions.

Problem Statement

- INPUT: A second order, irreducible, linear differential operator $L_{inp} \in \mathbb{C}(x)[\partial]$ which has no Liouvillian solutions.
- OUTPUT: A non zero expression (if that exists);

$$y = \exp\left(\int r \, dx\right) \cdot \left(r_0 S(f) + r_1 S(f)'\right) \quad (1)$$

such that $L_{inp}(y) = 0$,

where (i) $S(f) = {}_2F_1(a, b; c | f)$, (ii) r, r_0, r_1, f are rational functions, and (iii) f has degree three.

Problem Statement

- INPUT: A second order, irreducible, linear differential operator $L_{inp} \in \mathbb{C}(x)[\partial]$ which has no Liouvillian solutions.
- OUTPUT: A non zero expression (if that exists);

$$y = \exp\left(\int r \, dx\right) \cdot \left(r_0 S(f) + r_1 S(f)'\right) \quad (1)$$

such that $L_{inp}(y) = 0$,

where (i) $S(f) = {}_2F_1(a, b; c | f)$, (ii) r, r_0, r_1, f are rational functions, and (iii) f has degree three.

- The expression (1) is called a ${}_2F_1$ -type solution.

Problem Discussion

Lemma (Debeerst)

Let $L_1, L_2 \in \mathbb{C}(x)[\partial]$ such that $L_1 \longrightarrow L_2$. Then there exists an operator $M \in \mathbb{C}(x)[\partial]$ such that:

$$L_1 \xrightarrow{f}_C M \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_2.$$

Problem Discussion

Lemma (Debeerst)

Let $L_1, L_2 \in \mathbb{C}(x)[\partial]$ such that $L_1 \longrightarrow L_2$. Then there exists an operator $M \in \mathbb{C}(x)[\partial]$ such that:

$$L_1 \xrightarrow{f}_C M \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_2.$$

- If we find the transformations such that :

$$H_{c,x}^{a,b} \xrightarrow{f}_C H_{c,f}^{a,b} \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_{inp},$$

Problem Discussion

Lemma (Debeerst)

Let $L_1, L_2 \in \mathbb{C}(x)[\partial]$ such that $L_1 \longrightarrow L_2$. Then there exists an operator $M \in \mathbb{C}(x)[\partial]$ such that:

$$L_1 \xrightarrow{f}_C M \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_2.$$

- If we find the transformations such that :

$$H_{c,x}^{a,b} \xrightarrow{f}_C H_{c,f}^{a,b} \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_{inp},$$

then we get a solution of L_{inp} in the same fashion as:

$$S(x) \xrightarrow{f}_C S(f) \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E \exp(\int r \, dx) \cdot \left(r_0 S(f) + r_1 S(f)' \right).$$

Problem Discussion

Lemma (Debeerst)

Let $L_1, L_2 \in \mathbb{C}(x)[\partial]$ such that $L_1 \longrightarrow L_2$. Then there exists an operator $M \in \mathbb{C}(x)[\partial]$ such that:

$$L_1 \xrightarrow{f}_C M \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_2.$$

- If we find the transformations such that :

$$H_{c,x}^{a,b} \xrightarrow{f}_C H_{c,f}^{a,b} \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E L_{inp},$$

then we get a solution of L_{inp} in the same fashion as:

$$S(x) \xrightarrow{f}_C S(f) \xrightarrow{r_0, r_1}_G \xrightarrow{r}_E \exp(\int r \, dx) \cdot \left(r_0 S(f) + r_1 S(f)' \right).$$

- There are algorithms to compute $\xrightarrow{r_0, r_1}_G \xrightarrow{r}_E$. Hence the crucial part is to compute f and a, b, c .

Properties of Transformations

- A singularity is called **non-removable** if it stays singular under
$$\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}.$$

Properties of Transformations

- A singularity is called **non-removable** if it stays singular under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$.
- The *singularity structure* of L is given by:
 $\text{Sing}(L) = \{(p, \Delta_p(L) \bmod \mathbb{Z}) : p \text{ is non-removable}\}.$

Properties of Transformations

- A singularity is called **non-removable** if it stays singular under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$.
- The *singularity structure* of L is given by:
 $\text{Sing}(L) = \{(p, \Delta_p(L) \bmod \mathbb{Z}) : p \text{ is non-removable}\}.$
- Singularity structure is preserved under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$;

$$\text{Sing}(H_{c,f}^{a,b}) = \text{Sing}(L_{inp}).$$

Properties of Transformations

- A singularity is called **non-removable** if it stays singular under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$.
- The *singularity structure* of L is given by:
 $\text{Sing}(L) = \{(p, \Delta_p(L) \bmod \mathbb{Z}) : p \text{ is non-removable}\}.$
- Singularity structure is preserved under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$;
 $\text{Sing}(H_{c,f}^{a,b}) = \text{Sing}(L_{inp}).$
- We reconstruct f and a, b, c from $\text{Sing}(L_{inp})$ and the fact that
 $H_{c,x}^{a,b} \xrightarrow[C]{f} H_{c,f}^{a,b}.$

Properties of Transformations

- A singularity is called **non-removable** if it stays singular under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$.
- The *singularity structure* of L is given by:
 $\text{Sing}(L) = \{(p, \Delta_p(L) \bmod \mathbb{Z}) : p \text{ is non-removable}\}.$
- Singularity structure is preserved under $\xrightarrow[G]{r_0, r_1} \xrightarrow[E]{r}$;
 $\text{Sing}(H_{c,f}^{a,b}) = \text{Sing}(L_{inp}).$
- We reconstruct f and a, b, c from $\text{Sing}(L_{inp})$ and the fact that
 $H_{c,x}^{a,b} \xrightarrow[f]{c} H_{c,f}^{a,b}.$
- Singularities are generated under $\xrightarrow[f]{c}$ from the roots of f , $1 - f$ and poles of f .

Effect of \rightarrow_c on Singularity Structure

$$H_{1,f}^{\frac{1}{12}, \frac{5}{12}} :$$

p	37	$\sqrt{-3}$	$-\sqrt{-3}$	∞
Δ_p	0	0	0	$\frac{1}{2}$

$$f = \frac{27(x-37)(x^2+3)}{(3x-13)^3}$$

$$1-f = \frac{8(9x+10)^2}{(3x-13)^3}$$

$$H_{1,x}^{\frac{1}{12}, \frac{5}{12}} :$$

p	0	1	∞
Δ_p	0	$\frac{1}{2}$	$\frac{1}{3}$

Singularity bound for L_{inp}

- Let d be the number of non-removable singularities in L_{inp} .

Singularity bound for L_{inp}

- Let d be the number of non-removable singularities in L_{inp} .
 - (i) $\max(d) = 9$ when f has the branching pattern(list of multiplicities) $[1, 1, 1], [1, 1, 1], [1, 1, 1]$.

Singularity bound for L_{inp}

- Let d be the number of non-removable singularities in L_{inp} .
 - (i) $\max(d) = 9$ when f has the branching pattern(list of multiplicities) $[1, 1, 1], [1, 1, 1], [1, 1, 1]$.
 - (ii) $\min(d) = 2$ when branching pattern is $[1, 2], [1, 2], [3]$ and $(e_0, e_1, e_\infty) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{3})$ (**that has Liouvillian solutions!**).

Singularity bound for L_{inp}

- Let d be the number of non-removable singularities in L_{inp} .
 - (i) $\max(d) = 9$ when f has the branching pattern(list of multiplicities) $[1, 1, 1], [1, 1, 1], [1, 1, 1]$.
 - (ii) $\min(d) = 2$ when branching pattern is $[1, 2], [1, 2], [3]$ and $(e_0, e_1, e_\infty) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{3})$ (**that has Liouvillian solutions!**).
- If $d = 3$ then $f = \frac{Ax+B}{Cx+D}$ works!

Singularity bound for L_{inp}

- Let d be the number of non-removable singularities in L_{inp} .
 - (i) $\max(d) = 9$ when f has the branching pattern(list of multiplicities) $[1, 1, 1], [1, 1, 1], [1, 1, 1]$.
 - (ii) $\min(d) = 2$ when branching pattern is $[1, 2], [1, 2], [3]$ and $(e_0, e_1, e_\infty) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{3})$ (that has Liouvillian solutions!).
- If $d = 3$ then $f = \frac{Ax+B}{Cx+D}$ works!
- Hence $4 \leq d \leq 9$.

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).
We give a list for $d = 5$:

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).

We give a list for $d = 5$:

Notation:

d : number of non-removable singularities in L_{inp} .

$*$, E : elements of \mathbb{C} .

$\frac{*}{2}$: an element of $\frac{1}{2} + \mathbb{Z}$.

$\frac{*}{3}$: an element of $(\frac{1}{3} + \mathbb{Z}) \cup (\frac{2}{3} + \mathbb{Z})$.

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).

We give a list for $d = 5$:

Notation:

d : number of non-removable singularities in L_{inp} .

$*$, E : elements of \mathbb{C} .

$\frac{*}{2}$: an element of $\frac{1}{2} + \mathbb{Z}$.

$\frac{*}{3}$: an element of $(\frac{1}{3} + \mathbb{Z}) \cup (\frac{2}{3} + \mathbb{Z})$.

d	Case	Exponent difference at 0, 1, ∞ resp.	Branching pattern above 0, 1, ∞ resp.
5	case5.1	$\neq \frac{*}{3}, \neq \frac{*}{3}, E$	[3], [3], [1,1,1]
	Liouv	$\frac{*}{2}, \frac{*}{2}, E$	[1,2], [1,2], [1,1,1]
	case5.2	$\neq \frac{*}{2}, \frac{*}{3}, E$	[1,2], [3], [1,1,1]
	case5.3	$\frac{*}{2}, E, \neq \frac{*}{3}$	[1,2], [1,1,1], [3]
	case5.4	$\neq \frac{*}{2}, \neq \frac{*}{2}, \frac{*}{2}$	[1,2], [1,2], [1,2]
	case5.5	$\neq \frac{*}{3}, \neq \frac{*}{2}, \neq \frac{*}{2}$	[3], [1,2], [1,2]

One Case

$(e_0, e_1, e_\infty) = (*_{\frac{1}{2}}, E, \neq *_{\frac{1}{3}})$, Branching pattern: [1,2], [1,1,1], [3]

Let $L_{inp} \in C(x)[\partial]$ where $C \subseteq \mathbb{C}$.

One Case

$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right)$, Branching pattern: [1,2], [1,1,1], [3]

Let $L_{inp} \in C(x)[\partial]$ where $C \subseteq \mathbb{C}$.

Algorithm[5.3]: Compute $f \in C(x)$ of degree 3 and exponent differences (e_0, e_1, e_∞) for $H_{c,x}^{a,b}$ corresponding to 'case5.3'.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

Let $L_{inp} \in C(x)[\partial]$ where $C \subseteq \mathbb{C}$.

Algorithm[5.3]: Compute $f \in C(x)$ of degree 3 and exponent differences (e_0, e_1, e_∞) for $H_{c,x}^{a,b}$ corresponding to 'case5.3'.

Input: Field C and $Sing(L_{inp})$ in terms of monic irreducible polynomials in $C[x]$.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

Let $L_{inp} \in C(x)[\partial]$ where $C \subseteq \mathbb{C}$.

Algorithm[5.3]: Compute $f \in C(x)$ of degree 3 and exponent differences (e_0, e_1, e_∞) for $H_{c,x}^{a,b}$ corresponding to 'case5.3'.

Input: Field C and $Sing(L_{inp})$ in terms of monic irreducible polynomials in $C[x]$.

Output: A set of lists $[f, (e_0, e_1, e_\infty)]$ compatible to 'case5.3'.

One Case

$(e_0, e_1, e_\infty) = (\frac{*}{2}, E, \neq \frac{*}{3})$, Branching pattern: [1,2], [1,1,1], [3]

- **STEP 1:** Check if $Sing(L_{inp})$ is consistent with 'case5.3'.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $Sing(L_{inp})$ is consistent with 'case5.3'.
 $Sing(L_{inp})$ must have:

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $\text{Sing}(L_{inp})$ is consistent with 'case5.3'.
 $\text{Sing}(L_{inp})$ must have:
 - (i) One singularity with exponent difference: $e_0 \in \frac{1}{2} + \mathbb{Z}$.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $\text{Sing}(L_{inp})$ is consistent with 'case5.3'.
 $\text{Sing}(L_{inp})$ must have:
 - (i) One singularity with exponent difference: $e_0 \in \frac{1}{2} + \mathbb{Z}$.
 - (ii) Three singularities whose exponent differences match mod \mathbb{Z} .

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $\text{Sing}(L_{inp})$ is consistent with 'case5.3'.
 $\text{Sing}(L_{inp})$ must have:
 - (i) One singularity with exponent difference: $e_0 \in \frac{1}{2} + \mathbb{Z}$.
 - (ii) Three singularities whose exponent differences match mod \mathbb{Z} .
 - (iii) One singularity with arbitrary exponent difference.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $\text{Sing}(L_{inp})$ is consistent with 'case5.3'.
 $\text{Sing}(L_{inp})$ must have:
 - (i) One singularity with exponent difference: $e_0 \in \frac{1}{2} + \mathbb{Z}$.
 - (ii) Three singularities whose exponent differences match mod \mathbb{Z} .
 - (iii) One singularity with arbitrary exponent difference.
- **STEP 2:** Write $f = k_1 \frac{(x-a_1)(x-a_2)^2}{(x-b)^3}$ where $a_1, a_2, b \in C \cup \{\infty\}$ and $k_1 \in C$.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 1:** Check if $\text{Sing}(L_{inp})$ is consistent with 'case5.3'.
 $\text{Sing}(L_{inp})$ must have:
 - (i) One singularity with exponent difference: $e_0 \in \frac{1}{2} + \mathbb{Z}$.
 - (ii) Three singularities whose exponent differences match mod \mathbb{Z} .
 - (iii) One singularity with arbitrary exponent difference.
- **STEP 2:** Write $f = k_1 \frac{(x-a_1)(x-a_2)^2}{(x-b)^3}$ where $a_1, a_2, b \in C \cup \{\infty\}$ and $k_1 \in C$.
- **STEP 3:** Find the elements of degree 1 in $\text{Sing}(L_{inp})$ with exponent-difference in $\frac{1}{2} + \mathbb{Z}$. $(x - a_1)$ loops over these, and e_0 is the exponent-difference at $x = a_1$.

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 4:**

- (i) Loop $(x - b)$ over the elements of degree 1 in $Sing(L_{inp})$, skipping $(x - a_1)$, such that the remaining three singularities have matching exponent-difference mod \mathbb{Z} .

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 4:**

- (i) Loop $(x - b)$ over the elements of degree 1 in $Sing(L_{inp})$, skipping $(x - a_1)$, such that the remaining three singularities have matching exponent-difference mod \mathbb{Z} .
- (ii) Let e be the exponent-difference at $x = b$. Now loop e_∞ over $\frac{e}{3}, \frac{(e-1)}{3}, \frac{(e+1)}{3}$. (This fixes exponent difference mod \mathbb{Z})

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 4:**

- (i) Loop $(x - b)$ over the elements of degree 1 in $Sing(L_{inp})$, skipping $(x - a_1)$, such that the remaining three singularities have matching exponent-difference mod \mathbb{Z} .
- (ii) Let e be the exponent-difference at $x = b$. Now loop e_∞ over $\frac{e}{3}, \frac{(e-1)}{3}, \frac{(e+1)}{3}$. (This fixes exponent difference mod \mathbb{Z})

- **STEP 5:**

- (i) Let P be the product of the remaining three elements in $Sing(L_{inp})$ whose exponent differences match mod \mathbb{Z} .

One Case

$$(e_0, e_1, e_\infty) = \left(\frac{*}{2}, E, \neq \frac{*}{3}\right), \text{ Branching pattern: } [1,2], [1,1,1], [3]$$

- **STEP 4:**

- (i) Loop $(x - b)$ over the elements of degree 1 in $Sing(L_{inp})$, skipping $(x - a_1)$, such that the remaining three singularities have matching exponent-difference mod \mathbb{Z} .
- (ii) Let e be the exponent-difference at $x = b$. Now loop e_∞ over $\frac{e}{3}, \frac{(e-1)}{3}, \frac{(e+1)}{3}$. (This fixes exponent difference mod \mathbb{Z})

- **STEP 5:**

- (i) Let P be the product of the remaining three elements in $Sing(L_{inp})$ whose exponent differences match mod \mathbb{Z} .
- (ii) We could choose any of these exponent differences for e_1 .

One Case

- **STEP 6:** Take the numerator of $1 - f$ and compute its remainder mod P . That produces equations in k_1, a_2 . Compute the solutions $k_1 \in C$ and $a_2 \in C \cup \{\infty\}$. If any solution exists, then $[f, (e_0, e_1, e_\infty)]$ is one of the candidates.

One Case

- **STEP 6:** Take the numerator of $1 - f$ and compute its remainder mod P . That produces equations in k_1, a_2 . Compute the solutions $k_1 \in C$ and $a_2 \in C \cup \{\infty\}$. If any solution exists, then $[f, (e_0, e_1, e_\infty)]$ is one of the candidates.
- **STEP 7:** Repeating the procedure with all other possibilities returns the complete list of candidates.

Main Algorithm

Algorithm: Solve an irreducible second order linear differential operator $L_{inp} \in C(x)[\partial]$ in terms of ${}_2F_1(a, b; c | f)$, with $f \in C(x)$ of degree 3.

Main Algorithm

Algorithm: Solve an irreducible second order linear differential operator $L_{inp} \in C(x)[\partial]$ in terms of ${}_2F_1(a, b; c | f)$, with $f \in C(x)$ of degree 3.

Input: Field C , $L_{inp} \in C(x)[\partial]$ of order 2 which has no Liouvillian solutions, and a variable x .

Main Algorithm

Algorithm: Solve an irreducible second order linear differential operator $L_{inp} \in C(x)[\partial]$ in terms of ${}_2F_1(a, b; c | f)$, with $f \in C(x)$ of degree 3.

Input: Field C , $L_{inp} \in C(x)[\partial]$ of order 2 which has no Liouvillian solutions, and a variable x .

Output: A non zero solution $y = e^{\int r} (r_0 S(f) + r_1 S(f)')$, if it exists, such that $L_{inp}(y) = 0$, where $S(f) = {}_2F_1(a, b; c | f)$, $f, r, r_0, r_1 \in C(x)$ and f has degree 3.

Main Algorithm

- **STEP 1:** Find the singularity structure of L_{inp} in terms of monic irreducible polynomials in $C[x]$. Let d be the total number of non-removable singularities.

Main Algorithm

- **STEP 1:** Find the singularity structure of L_{inp} in terms of monic irreducible polynomials in $C[x]$. Let d be the total number of non-removable singularities.
- **STEP 2:** Let k be the total number of cases (in our table) for d . For example; if $d = 5$ then $k = 5$.
Let $Candidates = \bigcup Algorithm[d.a]$, where $a = \{1 \dots k\}$.
That produces a set of lists $[f, (e_0, e_1, e_\infty)]$.

Main Algorithm

- **STEP 1:** Find the singularity structure of L_{inp} in terms of monic irreducible polynomials in $C[x]$. Let d be the total number of non-removable singularities.
- **STEP 2:** Let k be the total number of cases (in our table) for d . For example; if $d = 5$ then $k = 5$.
Let $Candidates = \bigcup Algorithm[d.a]$, where $a = \{1 \dots k\}$.
That produces a set of lists $[f, (e_0, e_1, e_\infty)]$.
- **STEP 3 :** $H_{c,x}^{a,b} = x(1-x)\partial^2 + (c - (a+b+1)x)\partial - ab$.
From each element in 'Candidates' above (a) compute a, b, c (b) substitute the values of a, b, c in $H_{c,x}^{a,b}$ and (c) apply the change of variable $x \mapsto f$ on $H_{c,x}^{a,b}$. That produces a list of operators $H_{c,f}^{a,b}$.

Main Algorithm

- **STEP 4** : Compute the transformations $\xrightarrow{r_0, r_1}_G \xrightarrow{r}_E$ between each operator $H_{c,f}^{a,b}$ in **STEP 3** and L_{inp} . We get a map of the form:
$$G = e^{\int r(r_0 + r_1 \partial)}, \quad \text{where } r, r_0, r_1 \in C(x) \text{ and } \partial = \frac{d}{dx}.$$

Main Algorithm

- **STEP 4 :** Compute the transformations $\xrightarrow{r_0, r_1}_G \xrightarrow{r}_E$ between each operator $H_{c,f}^{a,b}$ in **STEP 3** and L_{inp} . We get a map of the form:
$$G = e^{\int r(r_0 + r_1 \partial)}, \quad \text{where } r, r_0, r_1 \in C(x) \text{ and } \partial = \frac{d}{dx}.$$
- **STEP 5:** $S(f) = {}_2F_1(a, b; c \mid f)$ is a solution of $H_{c,f}^{a,b}$. Now compute $G(S(f))$. That gives a solution of L_{inp} .

Main Algorithm

- **STEP 4 :** Compute the transformations $\xrightarrow{r_0, r_1}_G \xrightarrow{r}_E$ between each operator $H_{c,f}^{a,b}$ in **STEP 3** and L_{inp} . We get a map of the form:
$$G = e^{\int r(r_0 + r_1 \partial)}, \quad \text{where } r, r_0, r_1 \in C(x) \text{ and } \partial = \frac{d}{dx}.$$
- **STEP 5:** $S(f) = {}_2F_1(a, b; c \mid f)$ is a solution of $H_{c,f}^{a,b}$. Now compute $G(S(f))$. That gives a solution of L_{inp} .
- **STEP 6:** Repeat the procedure to get a list of solutions of L_{inp} . Choose the best solution (with shortest length) from the list.

THANK YOU!