
Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Second Order Differential Equations with
Hypergeometric Solutions of Degree Three

Vijay Jung Kunwar & Mark van Hoeij

Department of Mathematics
Florida State University

ISSAC 2013, Boston
June 29, 2013



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Introduction

We consider the irreducible, linear differential operators
L ∈ C(x)[∂] of order 2 which have no Liouvillian solutions.

We will focus on differential operators with regular
singularities only. Such operators are also called ‘Fuchsian’
operators.

∂ = d
dx .

We want the solutions in terms of 2F1(a, b; c | f ) where f is a
rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Introduction

We consider the irreducible, linear differential operators
L ∈ C(x)[∂] of order 2 which have no Liouvillian solutions.

We will focus on differential operators with regular
singularities only. Such operators are also called ‘Fuchsian’
operators.

∂ = d
dx .

We want the solutions in terms of 2F1(a, b; c | f ) where f is a
rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Introduction

We consider the irreducible, linear differential operators
L ∈ C(x)[∂] of order 2 which have no Liouvillian solutions.

We will focus on differential operators with regular
singularities only. Such operators are also called ‘Fuchsian’
operators.

∂ = d
dx .

We want the solutions in terms of 2F1(a, b; c | f ) where f is a
rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Introduction

We consider the irreducible, linear differential operators
L ∈ C(x)[∂] of order 2 which have no Liouvillian solutions.

We will focus on differential operators with regular
singularities only. Such operators are also called ‘Fuchsian’
operators.

∂ = d
dx .

We want the solutions in terms of 2F1(a, b; c | f ) where f is a
rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

An Example

Consider the following differential operator:

L := ∂2 +
(27 x7−39 x5+17 x3−5 x−9 x4−3)

3x (x2−1)(x3−x−1)(3 x2−1) ∂ − 5 (3 x2−1)
2

36x (x3−x−1)(x2−1) .

Our algorithm finds the following solution of L:

Sol(L) = − 2F1

(
5
6
, 7
6
; 1 | −1

x3−x−1

)
(x3−x−1)5/6

+ 35
36

x(x2−1) · 2F1

(
11
6
, 13
6
; 2 | −1

x3−x−1

)
(x3−x−1)11/6

.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

An Example

Consider the following differential operator:

L := ∂2 +
(27 x7−39 x5+17 x3−5 x−9 x4−3)

3x (x2−1)(x3−x−1)(3 x2−1) ∂ − 5 (3 x2−1)
2

36x (x3−x−1)(x2−1) .

Our algorithm finds the following solution of L:

Sol(L) = − 2F1

(
5
6
, 7
6
; 1 | −1

x3−x−1

)
(x3−x−1)5/6

+ 35
36

x(x2−1) · 2F1

(
11
6
, 13
6
; 2 | −1

x3−x−1

)
(x3−x−1)11/6

.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Motivation

Differential equations with 2F1-type solutions are very
common; they occur frequently in Combinatorics and Physics.

We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2F1-type solutions.

Solving differential equations with n ≥ 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’(Mark
van Hoeij and Tingting Fang) and our algorithm.

This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.

oeis.org


Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Motivation

Differential equations with 2F1-type solutions are very
common; they occur frequently in Combinatorics and Physics.

We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2F1-type solutions.

Solving differential equations with n ≥ 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’(Mark
van Hoeij and Tingting Fang) and our algorithm.

This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.

oeis.org


Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Motivation

Differential equations with 2F1-type solutions are very
common; they occur frequently in Combinatorics and Physics.

We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2F1-type solutions.

Solving differential equations with n ≥ 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’(Mark
van Hoeij and Tingting Fang) and our algorithm.

This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.

oeis.org


Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Motivation

Differential equations with 2F1-type solutions are very
common; they occur frequently in Combinatorics and Physics.

We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2F1-type solutions.

Solving differential equations with n ≥ 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’(Mark
van Hoeij and Tingting Fang) and our algorithm.

This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.

oeis.org


Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularities

Theorem (Wang, Guo)

If x = p is a regular singularity or a regular point of L, then there
exist the following independent solutions of L at x = p:

y1 = (x − p)e1
∞∑
i=0

ai (x − p)i , a0 6= 0 and

y2 = (x − p)e2
∞∑
i=0

bi (x − p)i + cy1 log(x − p), b0 6= 0

where e1 , e2 , ai , bi , c ∈ C and c = 0 if e1 − e2 /∈ Z.

e1 , e2 are called the exponents of L at x = p.

Exponent difference of L at x = p is defined as
∆p(L) := ±(e1 − e2).



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularities

Theorem (Wang, Guo)

If x = p is a regular singularity or a regular point of L, then there
exist the following independent solutions of L at x = p:

y1 = (x − p)e1
∞∑
i=0

ai (x − p)i , a0 6= 0 and

y2 = (x − p)e2
∞∑
i=0

bi (x − p)i + cy1 log(x − p), b0 6= 0

where e1 , e2 , ai , bi , c ∈ C and c = 0 if e1 − e2 /∈ Z.

e1 , e2 are called the exponents of L at x = p.

Exponent difference of L at x = p is defined as
∆p(L) := ±(e1 − e2).



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularities

Theorem (Wang, Guo)

If x = p is a regular singularity or a regular point of L, then there
exist the following independent solutions of L at x = p:

y1 = (x − p)e1
∞∑
i=0

ai (x − p)i , a0 6= 0 and

y2 = (x − p)e2
∞∑
i=0

bi (x − p)i + cy1 log(x − p), b0 6= 0

where e1 , e2 , ai , bi , c ∈ C and c = 0 if e1 − e2 /∈ Z.

e1 , e2 are called the exponents of L at x = p.

Exponent difference of L at x = p is defined as
∆p(L) := ±(e1 − e2).



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Transformations

We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) 7→ y(f )
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) y

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→

C
,

r0,r1−−→
G

and
r−→

E

respectively.

We use the notation L1 −→ L2 if L1 can be transformed to L2
with any combination of these transformations.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Transformations

We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) 7→ y(f )
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) y

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→

C
,

r0,r1−−→
G

and
r−→

E

respectively.

We use the notation L1 −→ L2 if L1 can be transformed to L2
with any combination of these transformations.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Transformations

We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) 7→ y(f )
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) y

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→

C
,

r0,r1−−→
G

and
r−→

E

respectively.

We use the notation L1 −→ L2 if L1 can be transformed to L2
with any combination of these transformations.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Transformations

We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) 7→ y(f )
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) y

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→

C
,

r0,r1−−→
G

and
r−→

E

respectively.

We use the notation L1 −→ L2 if L1 can be transformed to L2
with any combination of these transformations.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Statement

INPUT: A second order, irreducible, linear differential operator
Linp ∈ C(x)[∂] which has no Liouvillian solutions.

OUTPUT: A non zero expression (if that exists);

y = exp(

∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
(1)

such that Linp(y) = 0,
where (i) S(f ) = 2F1(a, b; c |f ), (ii) r , r0, r1, f are rational
functions, and (iii) f has degree three.

The expression (1) is called a 2F1-type solution.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Statement

INPUT: A second order, irreducible, linear differential operator
Linp ∈ C(x)[∂] which has no Liouvillian solutions.

OUTPUT: A non zero expression (if that exists);

y = exp(

∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
(1)

such that Linp(y) = 0,
where (i) S(f ) = 2F1(a, b; c |f ), (ii) r , r0, r1, f are rational
functions, and (iii) f has degree three.

The expression (1) is called a 2F1-type solution.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Statement

INPUT: A second order, irreducible, linear differential operator
Linp ∈ C(x)[∂] which has no Liouvillian solutions.

OUTPUT: A non zero expression (if that exists);

y = exp(

∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
(1)

such that Linp(y) = 0,
where (i) S(f ) = 2F1(a, b; c |f ), (ii) r , r0, r1, f are rational
functions, and (iii) f has degree three.

The expression (1) is called a 2F1-type solution.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Discussion

Lemma (Debeerst)

Let L1, L2 ∈ C(x)[∂] such that L1 −→ L2. Then there exists an
operator M ∈ C(x)[∂] such that:

L1
f−→

C
M

r0,r1−−→
G

r−→
E

L2.

If we find the transformations such that :
Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−→
G

r−→
E
Linp,

then we get a solution of Linp in the same fashion as:

S(x)
f−→

C
S(f )

r0,r1−−→
G

r−→
E

exp(
∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
.

There are algorithms to compute
r0,r1−−→

G

r−→
E

. Hence the
crucial part is to compute f and a, b, c .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Discussion

Lemma (Debeerst)

Let L1, L2 ∈ C(x)[∂] such that L1 −→ L2. Then there exists an
operator M ∈ C(x)[∂] such that:

L1
f−→

C
M

r0,r1−−→
G

r−→
E

L2.

If we find the transformations such that :
Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−→
G

r−→
E
Linp,

then we get a solution of Linp in the same fashion as:

S(x)
f−→

C
S(f )

r0,r1−−→
G

r−→
E

exp(
∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
.

There are algorithms to compute
r0,r1−−→

G

r−→
E

. Hence the
crucial part is to compute f and a, b, c .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Discussion

Lemma (Debeerst)

Let L1, L2 ∈ C(x)[∂] such that L1 −→ L2. Then there exists an
operator M ∈ C(x)[∂] such that:

L1
f−→

C
M

r0,r1−−→
G

r−→
E

L2.

If we find the transformations such that :
Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−→
G

r−→
E
Linp,

then we get a solution of Linp in the same fashion as:

S(x)
f−→

C
S(f )

r0,r1−−→
G

r−→
E

exp(
∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
.

There are algorithms to compute
r0,r1−−→

G

r−→
E

. Hence the
crucial part is to compute f and a, b, c .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Problem Discussion

Lemma (Debeerst)

Let L1, L2 ∈ C(x)[∂] such that L1 −→ L2. Then there exists an
operator M ∈ C(x)[∂] such that:

L1
f−→

C
M

r0,r1−−→
G

r−→
E

L2.

If we find the transformations such that :
Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−→
G

r−→
E
Linp,

then we get a solution of Linp in the same fashion as:

S(x)
f−→

C
S(f )

r0,r1−−→
G

r−→
E

exp(
∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
.

There are algorithms to compute
r0,r1−−→

G

r−→
E

. Hence the
crucial part is to compute f and a, b, c .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Effect of
f−→

C
on Singularity Structure

H
1
12 ,

5
12

1,f
:

p 37
√
−3 −

√
−3 ∞

∆p 0 0 0 1
2

6

f = 27(x−37)(x2+3)
(3x−13)3 1− f = 8 (9 x+10)2

(3 x−13)3

H
1
12 ,

5
12

1,x
: p 0 1 ∞

∆p 0 1
2

1
3



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).
We give a list for d = 5:

Notation:
d : number of non-removable singularities in Linp.
∗, E : elements of C.
∗
2 : an element of 1

2 + Z.
∗
3 : an element of (13 + Z) ∪ (23 + Z).

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case5.1 6= ∗
3 , 6= ∗

3 , E [3], [3], [1,1,1]
Liouv ∗

2 , ∗2 , E [1,2], [1,2], [1,1,1]
5 case5.2 6= ∗

2 , ∗3 , E [1,2], [3], [1,1,1]
case5.3 ∗

2 , E , 6= ∗
3 [1,2], [1,1,1], [3]

case5.4 6= ∗
2 , 6= ∗

2 , ∗2 [1,2], [1,2], [1,2]
case5.5 6= ∗

3 , 6= ∗
2 , 6= ∗

2 [3], [1,2], [1,2]



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).
We give a list for d = 5:

Notation:
d : number of non-removable singularities in Linp.
∗, E : elements of C.
∗
2 : an element of 1

2 + Z.
∗
3 : an element of (13 + Z) ∪ (23 + Z).

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case5.1 6= ∗
3 , 6= ∗

3 , E [3], [3], [1,1,1]
Liouv ∗

2 , ∗2 , E [1,2], [1,2], [1,1,1]
5 case5.2 6= ∗

2 , ∗3 , E [1,2], [3], [1,1,1]
case5.3 ∗

2 , E , 6= ∗
3 [1,2], [1,1,1], [3]

case5.4 6= ∗
2 , 6= ∗

2 , ∗2 [1,2], [1,2], [1,2]
case5.5 6= ∗

3 , 6= ∗
2 , 6= ∗

2 [3], [1,2], [1,2]



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).
We give a list for d = 5:

Notation:
d : number of non-removable singularities in Linp.
∗, E : elements of C.
∗
2 : an element of 1

2 + Z.
∗
3 : an element of (13 + Z) ∪ (23 + Z).

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case5.1 6= ∗
3 , 6= ∗

3 , E [3], [3], [1,1,1]
Liouv ∗

2 , ∗2 , E [1,2], [1,2], [1,1,1]
5 case5.2 6= ∗

2 , ∗3 , E [1,2], [3], [1,1,1]
case5.3 ∗

2 , E , 6= ∗
3 [1,2], [1,1,1], [3]

case5.4 6= ∗
2 , 6= ∗

2 , ∗2 [1,2], [1,2], [1,2]
case5.5 6= ∗

3 , 6= ∗
2 , 6= ∗

2 [3], [1,2], [1,2]



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

Let Linp ∈ C (x)[∂] where C ⊆ C.

Algorithm[5.3]: Compute f ∈ C (x) of degree 3 and exponent

differences (e0 , e1 , e∞) for Ha,b
c,x corresponding to ‘case5.3’.

Input: Field C and Sing(Linp) in terms of monic irreducible
polynomials in C [x ].

Output: A set of lists [f , (e0 , e1 , e∞)] compatible to ‘case5.3’.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

Let Linp ∈ C (x)[∂] where C ⊆ C.

Algorithm[5.3]: Compute f ∈ C (x) of degree 3 and exponent

differences (e0 , e1 , e∞) for Ha,b
c,x corresponding to ‘case5.3’.

Input: Field C and Sing(Linp) in terms of monic irreducible
polynomials in C [x ].

Output: A set of lists [f , (e0 , e1 , e∞)] compatible to ‘case5.3’.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

Let Linp ∈ C (x)[∂] where C ⊆ C.

Algorithm[5.3]: Compute f ∈ C (x) of degree 3 and exponent

differences (e0 , e1 , e∞) for Ha,b
c,x corresponding to ‘case5.3’.

Input: Field C and Sing(Linp) in terms of monic irreducible
polynomials in C [x ].

Output: A set of lists [f , (e0 , e1 , e∞)] compatible to ‘case5.3’.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

Let Linp ∈ C (x)[∂] where C ⊆ C.

Algorithm[5.3]: Compute f ∈ C (x) of degree 3 and exponent

differences (e0 , e1 , e∞) for Ha,b
c,x corresponding to ‘case5.3’.

Input: Field C and Sing(Linp) in terms of monic irreducible
polynomials in C [x ].

Output: A set of lists [f , (e0 , e1 , e∞)] compatible to ‘case5.3’.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.

Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:

(i) One singularity with exponent difference: e0 ∈ 1
2 + Z.

(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.

(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.

(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.
Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 4:
(i) Loop (x − b) over the elements of degree 1 in Sing(Linp),
skipping (x − a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e∞
over e

3 ,
(e−1)

3 , (e+1)
3 . (This fixes exponent difference mod Z)

STEP 5:
(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(ii) We could choose any of these exponent differences for e1 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 4:
(i) Loop (x − b) over the elements of degree 1 in Sing(Linp),
skipping (x − a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e∞
over e

3 ,
(e−1)

3 , (e+1)
3 . (This fixes exponent difference mod Z)

STEP 5:
(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(ii) We could choose any of these exponent differences for e1 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 4:
(i) Loop (x − b) over the elements of degree 1 in Sing(Linp),
skipping (x − a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e∞
over e

3 ,
(e−1)

3 , (e+1)
3 . (This fixes exponent difference mod Z)

STEP 5:
(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(ii) We could choose any of these exponent differences for e1 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 4:
(i) Loop (x − b) over the elements of degree 1 in Sing(Linp),
skipping (x − a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e∞
over e

3 ,
(e−1)

3 , (e+1)
3 . (This fixes exponent difference mod Z)

STEP 5:
(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(ii) We could choose any of these exponent differences for e1 .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

STEP 6: Take the numerator of 1− f and compute its
remainder mod P. That produces equations in k1, a2.
Compute the solutions k1 ∈ C and a2 ∈ C

⋃
{∞}. If any

solution exists, then [f , (e0 , e1 , e∞)] is one of the candidates.

STEP 7: Repeating the procedure with all other possibilities
returns the complete list of candidates.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

One Case

STEP 6: Take the numerator of 1− f and compute its
remainder mod P. That produces equations in k1, a2.
Compute the solutions k1 ∈ C and a2 ∈ C

⋃
{∞}. If any

solution exists, then [f , (e0 , e1 , e∞)] is one of the candidates.

STEP 7: Repeating the procedure with all other possibilities
returns the complete list of candidates.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

Algorithm: Solve an irreducible second order linear differential
operator Linp ∈ C (x)[∂] in terms of 2F1(a, b; c | f ), with f ∈ C (x)
of degree 3.

Input: Field C , Linp ∈ C (x)[∂] of order 2 which has no Liouvillian
solutions, and a variable x .

Output: A non zero solution y = e
∫
r (r0S(f ) + r1S(f )′), if it

exists, such that Linp(y) = 0, where S(f ) = 2F1(a, b; c | f ),
f , r ,r0,r1 ∈ C (x) and f has degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

Algorithm: Solve an irreducible second order linear differential
operator Linp ∈ C (x)[∂] in terms of 2F1(a, b; c | f ), with f ∈ C (x)
of degree 3.

Input: Field C , Linp ∈ C (x)[∂] of order 2 which has no Liouvillian
solutions, and a variable x .

Output: A non zero solution y = e
∫
r (r0S(f ) + r1S(f )′), if it

exists, such that Linp(y) = 0, where S(f ) = 2F1(a, b; c | f ),
f , r ,r0,r1 ∈ C (x) and f has degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

Algorithm: Solve an irreducible second order linear differential
operator Linp ∈ C (x)[∂] in terms of 2F1(a, b; c | f ), with f ∈ C (x)
of degree 3.

Input: Field C , Linp ∈ C (x)[∂] of order 2 which has no Liouvillian
solutions, and a variable x .

Output: A non zero solution y = e
∫
r (r0S(f ) + r1S(f )′), if it

exists, such that Linp(y) = 0, where S(f ) = 2F1(a, b; c | f ),
f , r ,r0,r1 ∈ C (x) and f has degree 3.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 1: Find the singularity structure of Linp in terms of
monic irreducible polynomials in C [x ]. Let d be the total
number of non-removable singularities.

STEP 2: Let k be the total number of cases (in our table)
for d . For example; if d = 5 then k = 5.
Let Candidates =

⋃
Algorithm[d.a], where a = {1 . . . k}.

That produces a set of lists [f , (e0 , e1 , e∞)].

STEP 3 : Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

From each element in ‘Candidates’ above (a) compute a, b, c

(b) substitute the values of a, b, c in Ha,b
c,x and (c) apply the

change of variable x 7→ f on Ha,b
c,x . That produces a list of

operators Ha,b
c,f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 1: Find the singularity structure of Linp in terms of
monic irreducible polynomials in C [x ]. Let d be the total
number of non-removable singularities.

STEP 2: Let k be the total number of cases (in our table)
for d . For example; if d = 5 then k = 5.
Let Candidates =

⋃
Algorithm[d.a], where a = {1 . . . k}.

That produces a set of lists [f , (e0 , e1 , e∞)].

STEP 3 : Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

From each element in ‘Candidates’ above (a) compute a, b, c

(b) substitute the values of a, b, c in Ha,b
c,x and (c) apply the

change of variable x 7→ f on Ha,b
c,x . That produces a list of

operators Ha,b
c,f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 1: Find the singularity structure of Linp in terms of
monic irreducible polynomials in C [x ]. Let d be the total
number of non-removable singularities.

STEP 2: Let k be the total number of cases (in our table)
for d . For example; if d = 5 then k = 5.
Let Candidates =

⋃
Algorithm[d.a], where a = {1 . . . k}.

That produces a set of lists [f , (e0 , e1 , e∞)].

STEP 3 : Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

From each element in ‘Candidates’ above (a) compute a, b, c

(b) substitute the values of a, b, c in Ha,b
c,x and (c) apply the

change of variable x 7→ f on Ha,b
c,x . That produces a list of

operators Ha,b
c,f .



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 4 : Compute the transformations
r0,r1−−→

G

r−→
E

between

each operator Ha,b
c,f in STEP 3 and Linp. We get a map of the

form:
G = e

∫
r (r0 + r1∂), where r , r0, r1 ∈ C (x) and ∂ = d

dx .

STEP 5: S(f ) = 2F1(a, b; c | f ) is a solution of Ha,b
c,f . Now

compute G (S(f )). That gives a solution of Linp.

STEP 6: Repeat the procedure to get a list of solutions of
Linp. Choose the best solution (with shortest length) from the
list.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 4 : Compute the transformations
r0,r1−−→

G

r−→
E

between

each operator Ha,b
c,f in STEP 3 and Linp. We get a map of the

form:
G = e

∫
r (r0 + r1∂), where r , r0, r1 ∈ C (x) and ∂ = d

dx .

STEP 5: S(f ) = 2F1(a, b; c | f ) is a solution of Ha,b
c,f . Now

compute G (S(f )). That gives a solution of Linp.

STEP 6: Repeat the procedure to get a list of solutions of
Linp. Choose the best solution (with shortest length) from the
list.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

Main Algorithm

STEP 4 : Compute the transformations
r0,r1−−→

G

r−→
E

between

each operator Ha,b
c,f in STEP 3 and Linp. We get a map of the

form:
G = e

∫
r (r0 + r1∂), where r , r0, r1 ∈ C (x) and ∂ = d

dx .

STEP 5: S(f ) = 2F1(a, b; c | f ) is a solution of Ha,b
c,f . Now

compute G (S(f )). That gives a solution of Linp.

STEP 6: Repeat the procedure to get a list of solutions of
Linp. Choose the best solution (with shortest length) from the
list.



Introduction An Example Motivation Basic Background and Notation Problem Statement Computing f Main Algorithm

THANK YOU!


	Introduction
	An Example
	Motivation
	Basic Background and Notation
	Problem Statement
	Computing f
	Main Algorithm

