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Introduction

We consider the irreducible, linear differential operators
L ∈ C(x)[∂] of order 2 which have no Liouvillian solutions.

We will focus on differential operators with regular
singularities only. Such operators are also called ‘Fuchsian’
operators.

∂ = d
dx .

We want the solutions in terms of 2F1(a, b; c | f ) where f is a
rational function of degree 3.
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An Example

Consider the following differential operator:

L := ∂2 +
(27 x7−39 x5+17 x3−5 x−9 x4−3)

3x (x2−1)(x3−x−1)(3 x2−1) ∂ − 5 (3 x2−1)
2

36x (x3−x−1)(x2−1) .

Our algorithm finds the following solution of L:

Sol(L) = − 2F1

(
5
6
, 7
6
; 1 | −1

x3−x−1

)
(x3−x−1)5/6

+ 35
36

x(x2−1) · 2F1

(
11
6
, 13
6
; 2 | −1

x3−x−1

)
(x3−x−1)11/6

.
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Motivation

Differential equations with 2F1-type solutions are very
common; they occur frequently in Combinatorics and Physics.

We examined the integer sequences from oeis.org whose
generating function is convergent and holonomic. Such
second order differential equations have 2F1-type solutions.

Solving differential equations with n ≥ 4 regular singularities
requires large tabulation work. Such tables can be greatly
reduced by developing the algorithms like ‘2-descent’(Mark
van Hoeij and Tingting Fang) and our algorithm.

This algorithm solves many equations, and helps reduce the
tabulation work for other algorithms as well.

oeis.org
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Notation

We use the following notation:

Ha,b
c,x : Gauss hypergeometric differential operator.

Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

S(x): 2F1(a, b; c | x), which is a solution of Ha,b
c,x .

e0 , e1 , e∞ : exponent differences of Ha,b
c,x at 0, 1,∞.

(e0 , e1 , e∞) = (1− c, c − a− b, b − a).

f ∈ C(x): a rational function of degree 3.
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Singularities

Theorem (Wang, Guo)

If x = p is a regular singularity or a regular point of L, then there
exist the following independent solutions of L at x = p:

y1 = (x − p)e1
∞∑
i=0

ai (x − p)i , a0 6= 0 and

y2 = (x − p)e2
∞∑
i=0

bi (x − p)i + cy1 log(x − p), b0 6= 0

where e1 , e2 , ai , bi , c ∈ C and c = 0 if e1 − e2 /∈ Z.

e1 , e2 are called the exponents of L at x = p.

Exponent difference of L at x = p is defined as
∆p(L) := ±(e1 − e2).
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Transformations

We define the following transformations on a second order
differential operator:

(i) Change of variables: y(x) 7→ y(f )
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) y

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→

C
,

r0,r1−−→
G

and
r−→

E

respectively.

We use the notation L1 −→ L2 if L1 can be transformed to L2
with any combination of these transformations.
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Problem Statement

INPUT: A second order, irreducible, linear differential operator
Linp ∈ C(x)[∂] which has no Liouvillian solutions.

OUTPUT: A non zero expression (if that exists);

y = exp(

∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
(1)

such that Linp(y) = 0,
where (i) S(f ) = 2F1(a, b; c |f ), (ii) r , r0, r1, f are rational
functions, and (iii) f has degree three.

The expression (1) is called a 2F1-type solution.
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Problem Discussion

Lemma (Debeerst)

Let L1, L2 ∈ C(x)[∂] such that L1 −→ L2. Then there exists an
operator M ∈ C(x)[∂] such that:

L1
f−→

C
M

r0,r1−−→
G

r−→
E

L2.

If we find the transformations such that :
Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−→
G

r−→
E
Linp,

then we get a solution of Linp in the same fashion as:

S(x)
f−→

C
S(f )

r0,r1−−→
G

r−→
E

exp(
∫
r dx) ·

(
r0S(f ) + r1S(f )′

)
.

There are algorithms to compute
r0,r1−−→

G

r−→
E

. Hence the
crucial part is to compute f and a, b, c .
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Properties of Transformations

A singularity is called non-removable if it stays singular under
r0,r1−−→

G

r−→
E

.

The singularity structure of L is given by:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

Singularity structure is preserved under
r0,r1−−→

G

r−→
E

;

Sing(Ha,b
c,f ) = Sing(Linp).

We reconstruct f and a, b, c from Sing(Linp) and the fact that

Ha,b
c,x

f−→
C

Ha,b
c,f .

Singularities are generated under
f−→

C
from the roots of

f , 1− f and poles of f .
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Effect of
f−→

C
on Singularity Structure

H
1
12 ,

5
12

1,f
:

p 37
√
−3 −

√
−3 ∞

∆p 0 0 0 1
2

6

f = 27(x−37)(x2+3)
(3x−13)3 1− f = 8 (9 x+10)2

(3 x−13)3

H
1
12 ,

5
12

1,x
: p 0 1 ∞

∆p 0 1
2

1
3
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Singularity bound for Linp

Let d be the number of non-removable singularities in Linp.

(i) max(d) = 9 when f has the branching pattern(list of
multiplicities) [1, 1, 1], [1, 1, 1], [1, 1, 1].

(ii) min(d) = 2 when branching pattern is [1, 2], [1, 2], [3] and
(e0 , e1 , e∞) = (12 ,

1
2 ,

1
3) (that has Liouvillian solutions!).

If d = 3 then f = Ax+B
Cx+D works!

Hence 4 ≤ d ≤ 9 .
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Hence 4 ≤ d ≤ 9 .
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Enumerating the Cases

There are 18 cases (excluding the ones with Liouvillian solutions).
We give a list for d = 5:

Notation:
d : number of non-removable singularities in Linp.
∗, E : elements of C.
∗
2 : an element of 1

2 + Z.
∗
3 : an element of (13 + Z) ∪ (23 + Z).

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case5.1 6= ∗
3 , 6= ∗

3 , E [3], [3], [1,1,1]
Liouv ∗

2 , ∗2 , E [1,2], [1,2], [1,1,1]
5 case5.2 6= ∗

2 , ∗3 , E [1,2], [3], [1,1,1]
case5.3 ∗

2 , E , 6= ∗
3 [1,2], [1,1,1], [3]

case5.4 6= ∗
2 , 6= ∗

2 , ∗2 [1,2], [1,2], [1,2]
case5.5 6= ∗

3 , 6= ∗
2 , 6= ∗

2 [3], [1,2], [1,2]
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One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

Let Linp ∈ C (x)[∂] where C ⊆ C.

Algorithm[5.3]: Compute f ∈ C (x) of degree 3 and exponent

differences (e0 , e1 , e∞) for Ha,b
c,x corresponding to ‘case5.3’.

Input: Field C and Sing(Linp) in terms of monic irreducible
polynomials in C [x ].

Output: A set of lists [f , (e0 , e1 , e∞)] compatible to ‘case5.3’.
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One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 1: Check if Sing(Linp) is consistent with ‘case5.3’.

Sing(Linp) must have:
(i) One singularity with exponent difference: e0 ∈ 1

2 + Z.
(ii) Three singularities whose exponent differences match mod
Z.
(iii) One singularity with arbitrary exponent difference.

STEP 2: Write f = k1
(x−a1)(x−a2)2

(x−b)3 where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C .

STEP 3: Find the elements of degree 1 in Sing(Linp) with
exponent-difference in 1

2 + Z. (x − a1) loops over these, and
e0 is the exponent-difference at x = a1.
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One Case

(e0 , e1 , e∞) = (∗2 ,E , 6=
∗
3), Branching pattern: [1,2], [1,1,1], [3]

STEP 4:
(i) Loop (x − b) over the elements of degree 1 in Sing(Linp),
skipping (x − a1), such that the remaining three singularities
have matching exponent-difference mod Z.

(ii) Let e be the exponent-difference at x = b. Now loop e∞
over e

3 ,
(e−1)

3 , (e+1)
3 . (This fixes exponent difference mod Z)

STEP 5:
(i) Let P be the product of the remaining three elements in
Sing(Linp) whose exponent differences match mod Z.

(ii) We could choose any of these exponent differences for e1 .
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One Case

STEP 6: Take the numerator of 1− f and compute its
remainder mod P. That produces equations in k1, a2.
Compute the solutions k1 ∈ C and a2 ∈ C

⋃
{∞}. If any

solution exists, then [f , (e0 , e1 , e∞)] is one of the candidates.

STEP 7: Repeating the procedure with all other possibilities
returns the complete list of candidates.
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Main Algorithm

Algorithm: Solve an irreducible second order linear differential
operator Linp ∈ C (x)[∂] in terms of 2F1(a, b; c | f ), with f ∈ C (x)
of degree 3.

Input: Field C , Linp ∈ C (x)[∂] of order 2 which has no Liouvillian
solutions, and a variable x .

Output: A non zero solution y = e
∫
r (r0S(f ) + r1S(f )′), if it

exists, such that Linp(y) = 0, where S(f ) = 2F1(a, b; c | f ),
f , r ,r0,r1 ∈ C (x) and f has degree 3.
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Main Algorithm

STEP 1: Find the singularity structure of Linp in terms of
monic irreducible polynomials in C [x ]. Let d be the total
number of non-removable singularities.

STEP 2: Let k be the total number of cases (in our table)
for d . For example; if d = 5 then k = 5.
Let Candidates =

⋃
Algorithm[d.a], where a = {1 . . . k}.

That produces a set of lists [f , (e0 , e1 , e∞)].

STEP 3 : Ha,b
c,x = x(1− x)∂2 + (c − (a + b + 1)x)∂ − ab.

From each element in ‘Candidates’ above (a) compute a, b, c

(b) substitute the values of a, b, c in Ha,b
c,x and (c) apply the

change of variable x 7→ f on Ha,b
c,x . That produces a list of

operators Ha,b
c,f .
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Main Algorithm

STEP 4 : Compute the transformations
r0,r1−−→

G

r−→
E

between

each operator Ha,b
c,f in STEP 3 and Linp. We get a map of the

form:
G = e

∫
r (r0 + r1∂), where r , r0, r1 ∈ C (x) and ∂ = d

dx .

STEP 5: S(f ) = 2F1(a, b; c | f ) is a solution of Ha,b
c,f . Now

compute G (S(f )). That gives a solution of Linp.

STEP 6: Repeat the procedure to get a list of solutions of
Linp. Choose the best solution (with shortest length) from the
list.
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THANK YOU!
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