

Finding ${}_2F_1$ Type Solutions of Differential Equations with 5 Singularities

Mark van Hoeij and Vijay Jung Kunwar
Department of Mathematics, Florida State University

Introduction

Differential equations with ${}_2F_1$ type solutions are very common in Mathematics and they occur quite frequently in Combinatorics and Physics. We are interested in solving differential equations with $n = 5$ non removable regular singularities. ($n = 3$ is easy, and $n = 4$ is done by *M. van Hoeij* and *R. Vidunas* (paper in progress)).

An Example

Consider the following differential equation:

$$-\frac{x(x-1)y}{(x+1)^2(3x-1)^2(3x+1)} + \frac{(27x^3+19x^2+x+1)}{2x(x+1)(3x-1)(3x+1)} \frac{dy}{dx} + \frac{d^2y}{dx^2} = 0. \quad (1)$$

This equation has 5 regular singularities $\{-1, -\frac{1}{3}, 0, \frac{1}{3}, \infty\}$; among which the singularities $\{-1, \frac{1}{3}\}$ are logarithmic. Current Computer Algebra systems do not solve it. $y = {}_2F_1(\frac{1}{12}, \frac{1}{12}; \frac{2}{3} | f)$, with $f = \frac{(x-1)^3(3x+1)}{(3x-1)(x+1)^3}$ is a solution of (1).

Our goal is to build a complete table of all rational functions f that can occur in this context, and then to develop a differential solver from it.

Gauss Hypergeometric Equation

Gauss hypergeometric differential equation (GHE) has the form:

$$x(1-x) \frac{d^2y}{dx^2} + (c - (a+b+1)x) \frac{dy}{dx} - aby = 0. \quad (2)$$

It has regular singularities at 0, 1 and ∞ with local exponents $\{0, 1-c\}$ at $x=0$, $\{0, c-a-b\}$ at $x=1$ and $\{a, b\}$ at $x=\infty$. $y = {}_2F_1(a, b; c | x)$ is one of its two independent solutions at $x=0$. Computing a ${}_2F_1$ type solution of (1) is the same as computing transformations from (2) to (1).

Problem Statement

If a second order differential equation L_{inp} has:

- (i) 5 non removable regular singularities.
- (ii) At least one of the singularities is logarithmic.

Then we want to find its solution if it can be expressed in terms of ${}_2F_1$ Hypergeometric function. More precisely, we want to find a solution of L_{inp} in the form:

$$y = e^{\int r} (r_0 y_1 + r_1 y'_1) \quad (3)$$

where $y_1 = {}_2F_1(a, b; c | f)$ and $f, r, r_0, r_1 \in \mathbb{C}(x)$.

Why logarithmic singularities ?

In the above example, the degree of f was 4. For arbitrary a, b and c (without restriction (ii) above), the degree bound for f is 60 when $n = 4$, and 96 when $n = 5$. For $n = 4$, there are 926 Belyi maps (up to Möbius equivalence) and a small number of near Belyi maps that can occur as f . For $n = 5$, we decided to restrict to differential equations L_{inp} that have at least one logarithmic singularity, for two reasons:

1. That lowers the degree bound for f from 96 to a more manageable 18.
2. Logarithmic singularities are very common in practice.

Among the differential equations with 5 non removable regular singularities, most of those which are ${}_2F_1$ solvable, arise from (2) with exponent differences $(1-c, c-a-b, b-a) = (1/k, 1/2, 0)$ where $k \in \{3, 4, 6\}$. We want to treat $(1/3, 1/2, 0)$ first, as that covers the majority of such cases. Denote the GHE with exponent differences $(1/3, 1/2, 0)$ at $(0, 1, \infty)$ as L_{320} .

Idea

We define the following transformations [1] on any second order differential equation:

1. $y(x) \rightarrow y(f)$, $f \in \mathbb{C}(x) \setminus \mathbb{C}$ (Change of variable)
2. $y \rightarrow r_0 y + r_1 y'$, $r_0, r_1 \in \mathbb{C}(x)$ (Gauge transformation)
3. $y \rightarrow e^{\int r} y$, $r \in \mathbb{C}(x)$ (Exponential product)

These transformations preserve the order of differential equations, and are denoted as: \rightarrow_C , \rightarrow_G and \rightarrow_E respectively. To solve L_{inp} in terms of ${}_2F_1$ Hypergeometric function is equivalent to find if there exists any sequence of above transformations that transforms L_{320} to L_{inp} . More precisely, this problem reduces (see [5]) to the following:

$$L_{320} \rightarrow_C L_f \rightarrow_E L_{inp}.$$

If such transformations exist, then we get a solution of L_{inp} in the same fashion as:

$$y_{320} = {}_2F_1(\frac{1}{12}, \frac{1}{12}; \frac{2}{3} | x) \rightarrow_C y_f = {}_2F_1(\frac{1}{12}, \frac{1}{12}; \frac{2}{3} | f) \rightarrow_E y_{inp} = e^{\int r} (r_0 y_f + r_1 y'_f).$$

Once we find such f , then [3] takes care of the second part. Hence the crucial part is to compute f . We computed a table of all such f 's.

The Correspondence

Given a Belyi map f , the corresponding dessin is the graph of $f^{-1}([0, 1])$. There is a correspondence [4] between dessins with $n/2$ edges (or n half-edges) and Belyi maps of degree n (up to Möbius equivalence).

A dessin can be represented by an ordered triple (g_0, g_1, g_∞) of permutations in S_n such that:

- a) the group generated by g_0 and g_1 acts transitively on $\{1, 2, \dots, n\}$.
- b) $g_0 g_1 g_\infty = 1$.

Any two conjugated triples represent the same dessin. Here is an example of a dessin from $(1/3, 1/2, 0)$:

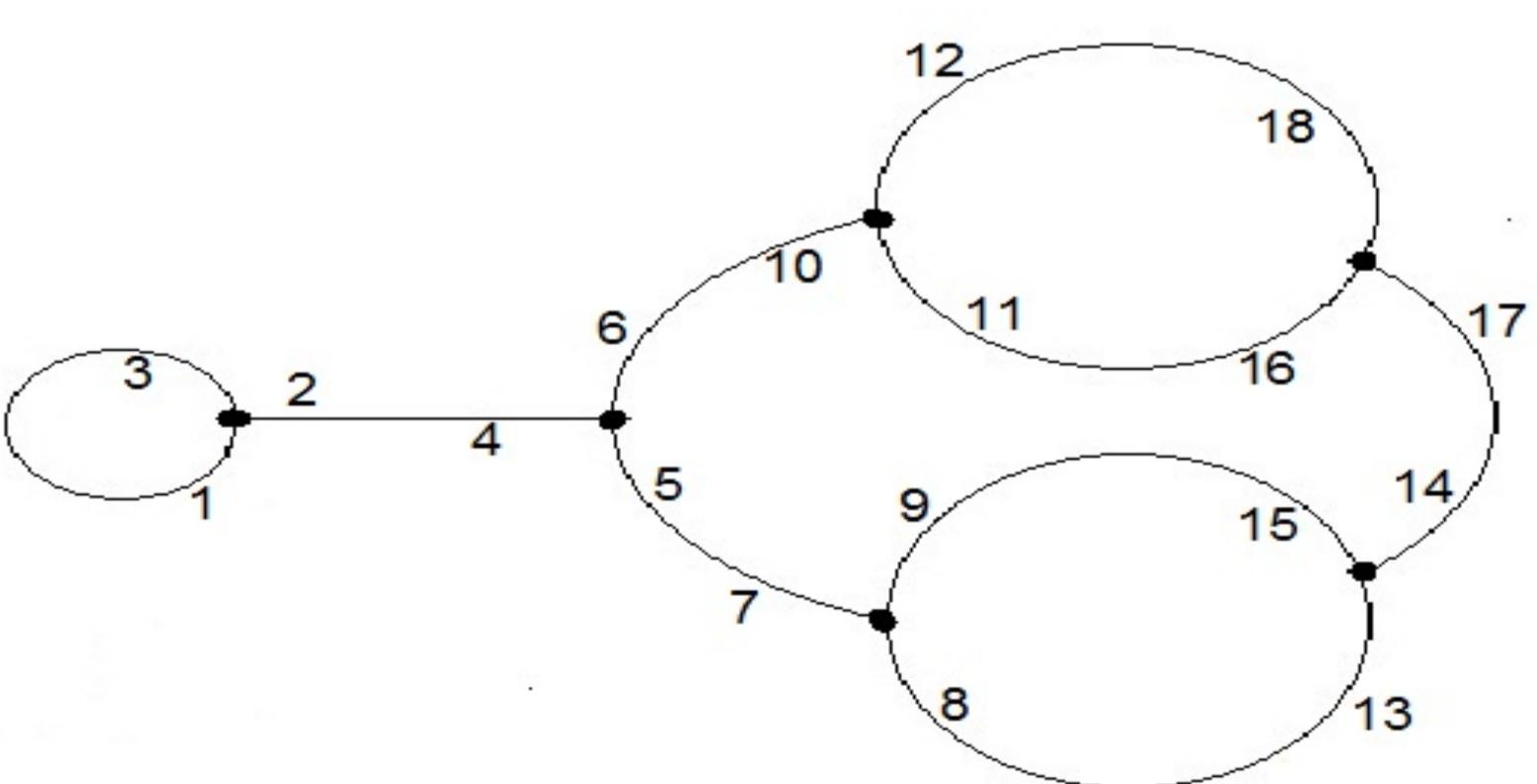


Figure 1: A clean planar dessin

This dessin has 6 vertices (points above 0), 9 edges (correspond to the points above 1) and 5 faces (correspond to the points above ∞). This is a clean (each point above 1 has ramification order 2) and planar (genus 0) dessin. In terms of permutations $g_0, g_1, g_\infty \in S_{18}$ (up to conjugation), it can be expressed as:

$$g_0 = (1 \ 2 \ 3) (4 \ 5 \ 6) (7 \ 8 \ 9) (10 \ 11 \ 12) (13 \ 14 \ 15) (16 \ 17 \ 18).$$

$$g_1 = (1 \ 3) (2 \ 4) (5 \ 7) (6 \ 10) (8 \ 13) (9 \ 15) (11 \ 16) (12 \ 18) (14 \ 17).$$

$$\text{Recall: } g_\infty = (g_0 g_1)^{-1}.$$

Each planar dessin determines a Belyi map $f : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ up to Möbius equivalence. The above dessin corresponds to the following degree 18 Belyi map (up to Möbius equivalence) from our table:

$$f := \frac{4}{27} \cdot \frac{(x^6 - 4x^5 + 5x^2 + 4x + 4)^3}{(x-4)(5x^2 + 4x + 4)^2 x^5}. \quad (4)$$

${}_2F_1(1/12, 1/12; 2/3 | f)$ satisfies a differential equation with 5 regular singularities. Our goal is to tabulate all such f 's.

Our Results

For a rational function $f : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ of degree n , total amount of ramification is given by:

$$\sum_{p \in \mathbb{P}^1} (e_p - 1) = 2n - 2 \quad (\text{Riemann-Hurwitz}) \quad (5)$$

where e_p is the ramification order of f at p . Let the amount of ramification of f be $R_{01\infty}$ (above $\{0, 1, \infty\}$) and R_{out} (above $\mathbb{P}^1 \setminus \{0, 1, \infty\}$). As in [2], using (5), we can find the bound on the degree of f and R_{out} . For $(1/3, 1/2, 0)$, we find:

$$\deg(f) \leq 18 \quad \text{and} \quad R_{out} \leq 2.$$

We computed all rational functions (up to Möbius equivalence) that can occur as f in the solution (3) of L_{inp} . For $(1/3, 1/2, 0)$, we computed a table with the following numbers of entries:

R_{out}	Name	Degrees	Number of f 's (up to Möbius equivalence)	Remarks
0	Belyi	$3 - 16, 18$	260	0 dimensional families
1	$Belyi_{-1}$	$2 - 10, 12$	68	1 dimensional families
2	$Belyi_{-2}$	4, 6	2	2 dimensional families

Our solver for L_{inp} will be complete if our table is complete. To prove the completeness, we do a combinatorial search to find all dessins and near dessins that are compatible with conditions (i) and (ii). If every dessin and near dessin in this search corresponds to a member of our table of Belyi maps and near Belyi maps, then the table is complete.

Main Algorithm

Step 1: Compute the singularity structure and a 5 point invariant (a function for sets of 5 points that is invariant under Möbius transformation) of L_{inp} .

Step 2.a: Compare the 5 point invariant of L_{inp} with the ones in our table of Belyi maps. If they match, then compute Möbius transformation from singularities of the Belyi map to the singularities of L_{inp} . The Belyi map composed with the Möbius transformation gives Candidate(s) for f .

Step 2.b: For $Belyi_{-1}$ maps $f(x, t)$, compare 5 point invariants between singularity structures with matching exponent differences. That gives the value of t and thus, gives Candidate(s) for f .

Step 2.c: For $Belyi_{-2}$ maps, we have programs that compute Candidate(s) for f from the singularity structure of L_{inp} .

Step 3: For each Candidate f , we compute L_f (apply $x \mapsto f$ on L_{320}) and finally, use [3] to compute r, r_0, r_1 in (3) if they exist.

What Comes Next ?

Our next task is to build similar tables for the remaining logarithmic cases (those tables have fewer entries with lower degree bounds for f) and to implement the above algorithm.

References

- [1] R. Debeerst, M. van Hoeij, W. Koepf: *Solving Differential Equations in Terms of Bessel Functions*, ISSAC'08 Proceedings, 39-46, (2008).
- [2] R. S. Maier, R. Vidunas, G. Filipuk: *A Classification of Covering yielding Heun to Hypergeometric Reductions* (paper in progress).
- [3] M. van Hoeij: *An implementation for finding equivalence map*, www.math.fsu.edu/~hoeij/files/equiv.
- [4] F. Beukers, H. Montanus: *Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps*, Cambridge Univ. Press, Cambridge, 2008.
- [5] M. van Hoeij, Q. Yuan: *Finding all Bessel type solutions for Linear Differential Equations with Rational Function Coefficients*, ISSAC'2010 Proceedings, 37-44, (2010).