
Finding 2F1 Type Solutions of Differential Equations with 5 Singularities
Mark van Hoeij and Vijay Jung Kunwar
Department of Mathematics, Florida State University

Introduction

Differential equations with 2F1 type solutions are very common in Mathematics and they occur quite
frequently in Combinatorics and Physics. We are interested in solving differential equations with
n = 5 non removable regular singularities. (n = 3 is easy, and n = 4 is done by M. van Hoeij and
R. Vidunas (paper in progress)).

An Example

Consider the following differential equation:
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This equation has 5 regular singularities {−1,−1
3, 0,

1
3,∞}; among which the singularities {−1, 13}

are logarithmic. Current Computer Algebra systems do not solve it. y = 2F1(
1
12,

1
12;

2
3| f ), with

f =
(x−1)3(3x+1)
(3x−1)(x+1)3

is a solution of (1).

Our goal is to build a complete table of all rational functions f that can occur in this context, and then
to develop a differential solver from it.

Gauss Hypergeometric Equation

Gauss hypergeometric differential equation (GHE) has the form:

x(1− x)
d2y

dx2
+ (c− (a + b + 1)x)

dy

dx
− aby = 0. (2)

It has regular singularities at 0, 1 and∞ with local exponents {0, 1 − c} at x = 0, {0, c − a − b} at
x = 1 and {a, b} at x = ∞. y = 2F1(a, b; c|x) is one of its two independent solutions at x = 0.
Computing a 2F1 type solution of (1) is the same as computing transformations from (2) to (1).

Problem Statement

If a second order differential equation Linp has:

(i) 5 non removable regular singularities.

(ii) At least one of the singularities is logarithmic.

Then we want to find its solution if it can be expressed in terms of 2F1 Hypergeometric function.
More precisely, we want to find a solution of Linp in the form:

y = e
∫
r(r0y1 + r1y

′
1) (3)

where y1 = 2F1(a, b; c|f ) and f ,r,r0,r1 ∈ C(x).

Why logarithmic singularities ?

In the above example, the degree of f was 4. For arbitrary a, b and c (without restriction (ii) above),
the degree bound for f is 60 when n = 4, and 96 when n = 5. For n = 4, there are 926 Belyi maps
(up to Möbius equivalence) and a small number of near Belyi maps that can occur as f . For n = 5,
we decided to restrict to differential equations Linp that have at least one logarithmic singularity, for
two reasons:

1. That lowers the degree bound for f from 96 to a more manageable 18.

2. Logarithmic singularities are very common in practice.

Among the differential equations with 5 non removable regular singularities, most of those which are
2F1 solvable, arise from (2) with exponent differences (1− c, c− a− b, b− a) = (1/k, 1/2, 0) where
k ∈ {3, 4, 6}. We want to treat (1/3, 1/2, 0) first, as that covers the majority of such cases. Denote the
GHE with exponent differences (1/3, 1/2, 0) at (0, 1,∞) as L320.

Idea

We define the following transformations [1] on any second order differential equation:

1. y(x)→ y(f ), f ∈ C(x) \ C (Change of variable)

2. y → r0y + r1y
′, r0, r1 ∈ C(x) (Gauge transformation)

3. y → e
∫
ry, r ∈ C(x) (Exponential product)

These transformations preserve the order of differential equations, and are denoted as: −→C , −→G
and −→E respectively. To solve Linp in terms of 2F1 Hypergeometric function is equivalent to find if
there exists any sequence of above transformations that transforms L320 to Linp. More precisely, this
problem reduces (see [5]) to the following:

L320 −→C Lf −→EG Linp.

If such transformations exist, then we get a solution of Linp in the same fashion as:

y320 = 2F1(
1
12,

1
12;

2
3|x) −→C yf = 2F1(

1
12,

1
12;

2
3|f ) −→EG yinp = e

∫
r(r0yf + r1y

′
f ).

Once we find such f , then [3] takes care of the second part. Hence the crucial part is to compute f .
We computed a table of all such f ’s.

The Correspondence

Given a Belyi map f , the corresponding dessin is the graph of f−1([0, 1]). There is a correspondence
[4] between dessins with n/2 edges (or n half-edges) and Belyi maps of degree n (up to Möbius
equivalence).
A dessin can be represented by an ordered triple (g0, g1, g∞) of permutations in Sn such that:

a) the group generated by g0 and g1 acts transitively on {1, 2, .., n}.

b) g0g1g∞ = 1.

Any two conjugated triples represent the same dessin. Here is an example of a dessin from (1/3,1/2,0):

Figure 1: A clean planar dessin

This dessin has 6 vertices (points above 0), 9 edges (correspond to the points above 1) and 5 faces
(correspond to the points above ∞). This is a clean (each point above 1 has ramification order 2)
and planar (genus 0) dessin. In terms of permutations g0, g1, g∞ ∈ S18 (up to conjugation), it can be
expressed as:

g0 = (1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15) (16 17 18).

g1 = (1 3) (2 4) (5 7) (6 10) (8 13) (9 15) (11 16) (12 18) (14 17).

Recall: g∞ = (g0g1)
−1.

Each planar dessin determines a Belyi map f : P1→ P1 up to Möbius equivalence. The above dessin
corresponds to the following degree 18 Belyi map (up to Möbius equivalence) from our table:

f :=
4

27
·
(
x6 − 4x5 + 5 x2 + 4 x + 4

)3
(x− 4)

(
5x2 + 4x + 4

)2
x5
· (4)

2F1(1/12, 1/12; 2/3|f ) satisfies a differential equation with 5 regular singularities. Our goal is to
tabulate all such f ’s.

Our Results

For a rational function f : P1→ P1 of degree n, total amount of ramification is given by:∑
p∈P1

(ep − 1) = 2n− 2 (Riemann-Hurwitz) (5)

where ep is the ramification order of f at p. Let the amount of ramification of f be R01∞ (above
{0, 1,∞}) and Rout (above P1 \ {0, 1,∞}). As in [2], using (5), we can find the bound on the degree
of f and Rout. For (1/3, 1/2, 0), we find:

deg(f ) ≤ 18 and Rout ≤ 2.

We computed all rational functions (up to Möbius equivalence) that can occur as f in the solution (3)
of Linp. For (1/3, 1/2, 0), we computed a table with the following numbers of entries:

Rout Name Degrees Number of f ’s (up to Möbius equivalence) Remarks
0 Belyi 3− 16, 18 260 0 dimensional families
1 Belyi−1 2− 10, 12 68 1 dimensional families
2 Belyi−2 4, 6 2 2 dimensional families

Our solver for Linp will be complete if our table is complete. To prove the completeness, we do a
combinatorial search to find all dessins and near dessins that are compatible with conditions (i) and
(ii). If every dessin and near dessin in this search corresponds to a member of our table of Belyi maps
and near Belyi maps, then the table is complete.

Main Algorithm

Step 1: Compute the singularity structure and a 5 point invariant (a function for sets of 5 points that
is invariant under Möbius transformation) of Linp.

Step 2.a: Compare the 5 point invariant of Linp with the ones in our table of Belyi maps. If they
match, then compute Möbius transformation from singularities of the Belyi map to the singularities of
Linp. The Belyi map composed with the Möbius transformation gives Candidate(s) for f .

Step 2.b: For Belyi−1 maps f (x, t), compare 5 point invariants between singularity structures with
matching exponent differences. That gives the value of t and thus, gives Candidate(s) for f .

Step 2.c: For Belyi−2 maps, we have programs that compute Candidate(s) for f from the singularity
structure of Linp.

Step 3: For each Candidate f , we compute Lf (apply x 7→ f on L320) and finally, use [3] to compute
r, r0, r1 in (3) if they exist.

What Comes Next ?

Our next task is to build similar tables for the remaining logarithmic cases (those tables have fewer
entries with lower degree bounds for f ) and to implement the above algorithm.
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