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Chapter 1

Introduction

1.1 What is the use of Factorization Algorithms?

Suppose one is asked to solve the following equation
7 —122% — 302° + 11502* — 744923 + 219902 — 30294z + 14796 = 0.  (1.1)

One way to start with this problem is to try to factor the polynomial z7 — 12z% —
30z° + 1150z — 744922 + 2199022 — 30294z + 14796 in Q[z]. This polynomial turns
out to be reducible. When given a factorization of this polynomial, the problem of
solving the corresponding equation is reduced to smaller problems, namely to solve
equations of a lower degree. So the problem of solving this equation becomes easier
when a factorization is known. It is particularly useful if the factorization contains
factors of degree 1, because these immediately give a solution. Note that it may not
be so easy to compute a factorization by hand, it is more convenient to use a computer
for such problems.

What is observed here for polynomial equations holds for linear differential op-
erators as well, namely that computing a factorization of a differential operator is
useful for the problem of solving differential equations. Factorization does not solve
this problem in general, but reduces it to smaller problems. Consider for example the
following differential operator

f= 2(15z* — 422 + 3) (28 — 122° + 22* — 62° — 122 + 1)0*+
(4802 — 1442° — 3060x° + 48027 + 1008z° — 30825 — 360z*+
1442° + 482 — 164z — 180)9° + (198020 — 7562° — 540027+ (1.2)

102425 + 29522 + 93z — 290423 + 52022 + T2z — 171)02+
(18002° — 96027 — 1080z° + 80025 + 900z* — 199222+
562 + 180)0 — 18025 — 33222 + 150z + 30 € Q(z)[0]

where 0 stands for %. This operator corresponds to the following differential equation

fly) =0.
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4 Chapter 1

We can try to search for exact symbolic solutions of this equation. Or we can use
numerical methods to find approximate solutions. Both are generally easier for equa-
tions of smaller order. So if one can reduce this equation to other equations of lower
order, then the problem of finding symbolic or numerical solutions becomes easier.
To reduce the order of the differential equation f(y) = 0, we try to compute one
or several factorizations of the differential operator f in the non-commutative ring
Q(z)[0]. In 1894 Beke gave a method for factorization in this ring. Several people
have given improved variations on this method.

Factorization by hand is not very pleasant for operators like (1.2) so we prefer to
use a computer. However, even on a computer Beke’s method (and the variations on
it) will most likely not result in a factorization of (1.2) but only in an “out of memory”
message. To find a factor of (1.2) via Beke’s method, one must first compute another
operator g (the second exterior power) and then compute a first order right-hand
factor of g. However, in this example g is about 15 times larger than f (measured in
the amount of paper it takes to print it). To find the first order factors of g, Beke’s
algorithm will compute in the splitting field of the polynomial z® — 122° + 2z* —
622 — 12z + 1. According to the computer algebra system GAP this field has degree
1152 over . Computations over such complicated fields are not feasible in practise.
To find a factorization a different approach is needed, which is not (like all previous
implementations) based on Beke’s method. Two of such approaches are given in this
thesis.

In chapter 3 we will give a new factorization method that has several advantages
over Beke’s method. One advantage is that it needs not work with splitting fields.
It will compute in a field extension of degree 8 instead of degree 1152 in the exam-
ple (1.2); it needs to work with only one root of 28 — 12z% + 2z* — 622 — 12z + 1
instead of all roots. Furthermore, in most cases (including this example) it does not
need to compute with exterior powers of f, but only with f itself which is a much
smaller expression.

In [47] Singer shows how in a number of cases (the example (1.2) is one of these
cases) factorization can be reduced to solving an equation that will be called the
mixed equation. In chapter 5 an efficient method is given to compute the solutions of
this equation. The algorithms in chapters 3 and 5 are implemented. Both algorithms
are efficient enough to produce a factorization of (1.2), even on a relatively small
computer.

Implementation of these methods costs a lot of time, often even more time than
finding the method and writing a paper on it. However, to be sure that the method
really works on large complicated examples, one can not avoid implementing the
algorithm on a computer. So the implementation is an important part of the work.
This thesis discusses the mathematical aspects of the methods. To get an idea of
the rest of the work it is recommended to down-load the most recent version of the
implementation from the following URL’s and to try it on some examples.
http://www-math.sci.kun.nl/math/compalg/diffop/
or
http://daisy.uwaterloo.ca/~mvanhoei
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1.2 Outline of the thesis

Chapter 2, 3, 4 and 5 of this thesis each consist of one paper [26, 27, 28, 29]. These
chapters are organized as follows: The title of this thesis refers to chapter 3. The
topic of that chapter is of factorization of differential operators with rational functions
coefficients. The approach is first to study differential operators locally, because then
the problems tend to be mathematically easier (but at the same time more technical
and harder to implement!) and have already been solved in large part.

The purpose of chapter 2 is to provide all ingredients that are needed in chapter 3.
It contains a precise study of local differential operators. This is done in a general way;
the field of constants is not necessarily algebraically closed. The concepts that are
introduced in chapter 2 are the following: semi-regular parts (section 2.6.1), exponen-
tial parts (section 2.6), their relation with the Newton polynomials (section 2.6), with
factorization (lemma 4 and 5, theorem 1 and 2) and with formal solutions (theorem 3).
These concepts form the basis of this thesis, all other chapters use this terminology.
The topics treated in chapter 2 are quite technical. They are easier to understand
when one already knows what their purpose is, and so it can be advisable first to
read parts of chapter 3. In particular, reading chapter 2 may be easier after having
read section 3.3, although the proofs of the statements in section 3.3 are found in
chapter 2. Furthermore chapter 2 becomes much easier if one is already familiar with
computing Puiseux expansions (cf. [11, 18]), because the main ingredients for local
factorization (the Newton polygon and Newton polynomial) are used for computing
Puiseux expansions as well.

The topic of chapter 4 is computing invariants of differential operators. Chapter 4
is joint work with Jacques-Arthur Weil. Results in his thesis combined with the
terminology introduced in chapter 2 and section 3.3 turn out to be very useful for
computing invariants.

In chapter 5 the topic is to compute solutions of a certain differential equation
called the mixed equation. This can be applied to factor differential operators in a
number of cases. A nice application of chapter 5 for the factorization algorithm is
found in lemma 24. This tells us that the method in chapter 5 is applicable when-
ever algebraic extensions are needed to factor the differential operator. Hence we can
apply the method in chapter 3 with the extra assumption (which speeds up the com-
putation significantly) that no algebraic extensions are needed, and afterwards apply
the method in chapter 5 to handle the remaining cases. By combining chapter 3 and
chapter 5 in this way we obtain a more efficient factorization algorithm. Another
advantage of this combination is that the factorizations from chapter 5 often only use
a minimal algebraic extension of the constants.

1.3 What is new?

What is, besides algorithmic improvements that make factorization of (1.2) possible,
mathematically new in this thesis? A notion like exponential parts is not new, see for
example the normalized eigenvalues in [52]. However, what is new is that they can be
defined without using differential modules and the Jordan-Ho6lder theorem, without
using formal solutions, using only a substitution map S, and the Newton polynomial
Ny. This makes exponential parts easier to compute and hence more convenient for
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algorithmic purposes.

We use exponential parts to express various properties of local factorizations
(lemma 4 and 5, theorem 1 and 2). For this purpose it is convenient that the mul-
tiplicity pe(f) of the exponential part e in f is defined in terms of the tools S, and
Ny of local factorization. In section 2.8 these properties are related to properties of
formal solutions, in particular in theorem 3. This way we can use local factorizations
in the algorithms, but think of these in terms of formal solutions. The former are
more convenient to compute with and the latter are easier to understand. It makes
the algorithm in chapter 3 much easier to explain. The first two paragraphs of sec-
tion 3.5 would not be clear when written in the way that the implementation works,
which is using local factorizations and no formal solutions. Making the argument in
these two paragraphs clear was the reason for introducing exponential parts the way
it is done in chapter 2. Even though chapter 2 treats a topic that in itself is not new,
the way that this topic is treated is new and leads more conveniently to new results,
like chapters 3, 4 and 5.

Another thing which is new in chapter 2 is the definition of the semi-reqular parts
of differential operators. And the definition of the coprime index of factorizations in
filtered rings, and corresponding to that a generalization of the Hensel lifting algo-
rithm.

In chapter 3, sections 3.5 and 3.6 we give a new eflicient factorization algorithm
for differential operators with rational functions coefficients. For operators with many
singularities and for operators with factors of order > 1 this algorithm is much more
efficient than the previous algorithms that are based on Beke’s algorithm. Our algo-
rithm is not complete, however. In section 3.7 we show how it can be completed to
the case of factors of order 1. Using results from the literature the algorithm can then
be completed for higher order factors as well. The terminology of exponential parts,
in the way it is treated in chapter 2, is needed to describe the algorithm.

Our approach of exponential parts has more applications as well, it is also used
in chapter 4 and chapter 5. In chapter 4 one of the problems that is treated is to
determine bounds on the integer exponents of a certain operator M (a symmetric
power of a given operator L), without actually computing M. Good bounds have
the following properties: they can be computed quickly and are as sharp as possible.
There is not a suitable relation between the exponents of L and the exponents of M.
There is, however, a relation between the solution spaces of L and M. The relation
between the solutions and generalized exponents (which, like the exponential parts,
are defined in terms of Ny and S.) gives a good way to compute these bounds. Fur-
thermore this approach restricts the number of monomials that need to be considered
in the algorithm in chapter 4 (see the lemma in section 4.4.1), which is beneficial for
the efficiency as well.

Chapter 5 deals with the problem of computing the eigenring of a differential
operator, by solving the so-called mized equation. The elements of this eigenring
are differential operators with rational function coefficients. The main mathematical
difficulty for determining these rational functions in an efficient way is to find a bound
on their valuations at every place on P!. One can quickly derive a bound, expressed
in terms of the Newton polynomial, for the regular singular case. However, we want
to have a bound for the general case. As we have seen in the previous chapters, the
regular singular case can often be generalized by using the terminology of exponential
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parts and generalized exponents. We want to do this in chapter 5 as well. The key
result that we need in chapter 5 is equation (3.3) on page 48, which says that the sum
of the multiplicities of the generalized exponents of f equals order(f).

In previous chapters one of the ideas was to relate the multiplicity (which was
defined in terms of Ny and S,) of exponential parts to a property of formal solutions;
the multiplicity of an exponential part is the dimension of the corresponding compo-
nent of the solution space. So in chapter 5 the idea is to do the same for generalized
exponents, to relate their multiplicities (which are easiest defined in terms of Ny and
Se) to a property of formal solutions. For this purpose the property degl of a formal
solution is introduced. This notion is used for the computation of the bound (the re-
sult of this computation is proposition 5). This bound is the mathematical ingredient
that is needed to find an efficient algorithm.

A few remarks on formal solutions and exponential parts: Traditionally, a basis
of formal solutions is given where each element is represented in the following form

exp(p)z*s where s € k((z))[p,\log(z)], A€k, p€ Ux_l/"E[x_l/"].

We propose the following form instead

Exp(e)s where s € k((x))[e,log(z)], e€ UE[z’_l/”]. (1.3)

Here Exp(e) stands for exp( | £dz). In the expression Exp(e)s we call e the exponen-
tial part and s the semi-regular part. So (p, A) is grouped together in the exponential
part e. Consequently, the distinction between p = 0 and p # 0 (regular singular and
irregular singular) is no longer relevant, we only distinguish e € Z (= semi-regular
case = trivial exponential part) and e ¢ Z. We propose to drop the notion of regular
singular as much as possible, and introduce the notion of semi-regular operators. The
motivation is to generalize algorithms that are designed for the regular singular case to
the irregular singular case. Therefore, we want to treat regular singular and irregular
singular in exactly the same way. For the formal solutions that means representing
them as in (1.3). The benefits of this approach are found in chapters 3, 4 and 5. After
having treated the necessary technicalities in chapter 2, the irregular singular case is
no longer harder or easier than the regular singular case in chapters 3, 4 and 5.
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1.4 List of Notations

Chapter 2:

Ua(f)
Ua,s(f)

coprime index

regular

regular singular

A differential operator.
A left-hand factor of f.
A right-hand factor of f.
The field of constants (not necessarily algebraically
closed).
The field of formal Laurent series with finite pole order.
d
’dfwkle differential operator xd, cf. page 15.
Ring of differential operators with power series
coeflicients.
Same ring, but the elements are denoted in terms of §
instead of 9 cf. section 2.3.2.
A valuation on k((z))[d] defined in section 2.2.
For a fixed valuation v, D, = {a|v(a) > n}, cf. sec-
tion 2.2.
f up to accuracy a, which means f modulo D, )
04(f) where the underlying valuation is v,
For a factorization f = LR in a filtered ring D this
measures how “coprime” L and R are, cf. section 2.2.
The set |J, N klz~'/"] C k((z)), cf. page 16.
The ramification index, cf page 15.
el ~ey<>e —esy € ram(e )Z cf. page 27.
Maps 0 to 6 + e, cf. page 16.
Newton polygon, cf. section 2.3.3 and the references
therein.
f is regular if f = a - g for some a € k((x)) and monic
g € k((2))[0).
f is regular singular if N(f) has only one slope equal
to 0.
Newton polynomial for slope s, cf. section 2.3.4.
Variable used for expressing the Newton polynomial.
Universal extension (as a ring) of k((x)), cf. page 16.
In lemma 2.1.1 in [24] this is called R.
V(f) € V is the solution space of f, dim(V(f)) =
order(f).
Degree of f, as a non-commutative polynomial in 0 or
d.
For e € E defined as exp(f £dz) € V, cf. section 2.3.2.
Exp(e) - (k- k((x))[€])[log(z)], cf. section 2.8.3.

V(f)N Ve, where f € k((x))[0] and e in E or in E/ ~.
Exp(e) - k((=))[log(x)]-
Y Ve, where f € k((z))[0] and e in E or in E/Q.
(Ve(f)), cf. section 2.6 and theorem 3 on page 34.

V(f
dim
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B (f)

ea,n

exponents
exponential part
semi-regular

semi-regular part

pp(r)
Riccati solution

LCLM
Slog

Chapter 3:
k()[0]

ve(f)

generalized exponent!

lp
p (f)

~y

7 (f)
Sy
v

Vi

adjoint
type(f)
LCLM factorization
completely reducible

GCRD

Chapter 4 :

L
c

k

L®m
Li®L,
Sm(A)

dim(V.(f)), cf. section 2.6 and theorem 3.

See page 16.

The roots of Ny(f) in k.

An element e of E/ ~ for which p.(f) > 0.

f is semi-regular over k((z))[e] if f is regular singular
and the exponents are elements of ml.

The semi-regular part R, of f for e € E is the largest
factor of S, (f) which is semi-regular over k((z))[e], cf.
section 2.6.1.

Forr € k((z)), pp(r) is the e € E for which v(e—r) > 0.
r for which 0 — r (or § — r when using § syntax) is a
right-hand factor, cf. section 2.5.1.

Least Common Left Multiple, cf. page 16.

Maps log(z) to log(z) + 1, cf. section 2.9.

Differential with  rational functions
coefficients.

Multiplicity of the generalized exponent, defined as the
multiplicity of the root 0 in No(S.(f))-

e € E for v (f) > 0.

A map that moves the point p to 0, cf. section 3.3.4.
Collection of all p(I,(f)) data, cf. section 3.3.4.

a~, bif a —b=y'/y for some y € k(z), cf. page 53.
The set of p.(R) for all first order right factors R of f.
Maps 0 to 0 + r, cf. page 53.

A partially defined valuation from V to E, cf. sec-
tion 3.3.3.

The set of y € V for which the valuation v(y) € E is
defined.

k(z)-anti-automorphism of k(z)[8] given by 8 +— —8.
Isomorphism class of V(f), cf. section 3.3.5.

fiy--, fn for which f = LCLM(f1,..., fa).

f allows an LCLM factorization with fi,...,f,
irreducible.

Greatest Common Right Divisor.

operators

A differential operator.

The field of constants (not necessarily algebraically
closed).

C(z)

The m-th symmetric power of the operator L.
Symmetric product, cf. page 76.

Symmetric power of a matrix differential equation
AY =Y.
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Sym™ (W) For a vector space W this is the m-th symmetric power
of W.
Sym™(U) For a matrix U this denotes a matrix of which the

columns form a basis of Sym™ (W), where W is the
vector space spanned by the columns of U.

e1 <, e el—eQE%Zandel—eQSO.

min, (L) <,-minimal generalized exponents of L.

L® Monic operator for which 8¢(V (L)) = V (L{").
Chapter 5:

RRem Remainder after a right-hand division.

En(f, f) {r € k@)[0]lr(V(f)) C V(f), order(r) < order(f)},
the eigenring of V (f).

degl(y) Degree, as a polynomial in log(z), of the part of y € V,
with the lowest valuation.

In an older version of this text, [27], this was called canonical ezponential part (meaning: a
canonical choice of a representative in E for an exponential part in E/ ~) and the list of generalized
exponents was called canonical list.



Chapter 2

Formal Solutions and
Factorization of Differential
Operators with Power Series
Coefficients

The topic of this chapter is formal solutions of linear differential equations with for-
mal power series coefficients. The method proposed for computing these solutions is
based on factorization of differential operators. The notion of exponential parts is
introduced to give a description of factorization properties and to characterize the
formal solutions. The algorithms will be described and their implementation is avail-
able.

2.1 Introduction

Factorization of differential operators is a powerful computer algebra tool for handling
ordinary linear differential equations. It can be applied to compute formal solutions
and to study the structure of a differential equation. A differential equation

y™ + a1y 4+ ay +ay =0
corresponds to a differential operator
f=0"4+a, 10" +...4+ad°

acting on y. Here the coefficients a; are elements of the differential field k((z)) and 0
is the differentiation d/dz. The field k is the field of constants. It is assumed to have
characteristic 0. The differential operator f is an element of the non-commutative
ring k((z))[0]. This is an example of an Ore ring [40].

Sections 2.6 and 2.8 contain the main results of this chapter. These results are
expressed using the notion of exponential parts. The exponential parts will be studied

11
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in section 2.6 from the viewpoint of factorization, and in section 2.8 from the viewpoint
of formal solutions. They form the key ingredient for our factorization algorithm for
k(x)[0] in chapter 3. Another application is found in section 2.9. Here the question
is: when is a given vector space a solution space of a certain differential operator.
This question can easily be answered using the direct sum splitting in section 2.8.

The algorithms in this chapter are given in sections 2.4, 2.5 and 2.8.4. From an
algorithmic point of view the factorization in k((x))[0] is the central problem because
all other algorithms in this thesis require this tool. We will discuss it in the rest of
this section.

Note that in general elements of k((z)) consist of infinitely many terms. Only a
finite number of them can be computed. This means that a factorization can only
be determined up to some finite accuracy. The notion of accuracy will be formalized
later. Increasing the accuracy of a factorization will be called lifting a factorization.

From [35] we know that an element of k((z))[0] which has only 1 slope in the
Newton polygon (cf. section 2.3.3) and which has an irreducible Newton polynomial
(cf. section 2.3.4) is irreducible in k((z))[0]. In [35] Malgrange shows that in the
following two cases a differential operator f € k((z))[0] is reducible in this ring and
how a factorization can be computed:

1. An operator with a broken Newton polygon (i.e. more than 1 slope).

2. An operator with one slope > 0 where the Newton polynomial is reducible and
not a power of an irreducible polynomial.

In our method these two cases of factorization and the factorization of regular singular
operators are called coprime index 1 factorizations. Coprime index 1 means that the
factorization can be lifted by the usual Hensel lifting (cf. any book on computer
algebra) procedure. For a definition of the coprime index see section 2.2.

Example:

1

1 2 1
The Newton polynomial is T +7°+2T?+T +1. This polynomial can be factored over
Q as (T?+1)(T?*+T +1). Because T?+1 and T? +T +1 in Q[T are coprime (i.e. the
ged is 1) we can conclude from [35] that f is reducible in @((z))[0]. A factorization
of f = LR is obtained in two steps. The first step is to compute the factorization up
to accuracy 1 (definitions follow later, this integer 1 is related to the coprime index).
This accuracy is obtained when we have the Newton polynomials 7241 and T2 4T +1
of L and R (here T? + 1 and T2 + T + 1 can be interchanged to obtain a different
factorization). The next step is to lift the factorization up to the desired accuracy.
Because T2 +1 and T2 +T +1 are coprime this lifting can be done by the usual Hensel
lifting procedure. In each lift step the extended Euclidean algorithm is used. Note
that in this example the reducibility of f can be concluded from very few coefficients
of f in k; the coefficients which determine the Newton polynomial are sufficient.
Now there remains one hard case of factorization in k((z))[0]. Here f has one
slope s # 0 and the Newton polynomial is of the form P?, where P is an irreducible
polynomial over k and d is an integer > 1. In this case it is more difficult to decide
if f is reducible or not. A factorization of f will have coprime index > 1.
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Example:

+ z*

2 8 1+ 2022
f=ot s 28 L
X

0% — S0t 3

The Newton polynomial of f is T + 272 +1 = (T? + 1)(T? + 1). Because the
two factors T? + 1 and T2 + 1 are not coprime we can not apply Hensel lifting to
find a factorization over Q((z))[0]. Malgrange provides a factorization method in
Q((2))[9)] for this case. We want to find a factorization in Q((z))[d]. In this example
f is reducible in Q((z))[0]. However, f + 1/z° (replace the coefficient 20 by 21) is
irreducible in Q((z))[9]. In the previous example adding 1/z°® would have no influence
on the reducibility of f because the reducibility could already be decided from the
Newton polynomial. We see that this example is more complicated because more
coefficients of f are relevant for deciding reducibility. We shall proceed as follows:

e Compute a first order right-hand factor & — r of f where r € k((z)). We use a
variant on the method in [35] for this.

e Compute an operator R € k((z))[0] of minimal order such that § — r is a
right-hand factor of R.

e Perform a division to find a factorization f = LR.

For some applications, like factorization in k(z)[0], we need to compute the factors
L and R up to a high accuracy. The method sketched for computing L and R is not
very suitable for this because it is slow. We will use this slow method to compute L
and R up to a certain accuracy (up to the coprime index) and then use a different
method to lift the factorization. Coprime index > 1 means that the usual Hensel
lifting does not work because the Newton polynomials of L and R have ged # 1. For
this case we give a variant on the Hensel lifting method in section 2.4.

The factorization of a differential operator f is done recursively. If f can be
factored f = LR then the factorization algorithm is applied to the factors L and R
(or only to R when we are only interested in right-hand factors) until f is factored
in irreducible factors. This causes a difficulty; if a factorization is required with a
given accuracy it is not clear how accurate the intermediate factorizations should
be. To solve this problem we use lazy evaluation in our implementation. This is a
computer algebra trick which makes exact computation in k((x)) possible. It does
not use truncations of some finite accuracy. Instead, an expression a € k((z)) is
denoted as the name and arguments of a procedure that computes coefficients of a.
These coeflicients are automatically computed and stored when they are needed. This
method of computing in k((z)) is very efficient because coefficients which are not used
will not be computed.

2.2 Valuations and the coprime index

A discrete valuation on a ring D is a map v : D — Z|J{oo} such that for all a
and b in D we have: v(ab) = v(a) + v(b), v(a + b) > min(v(a),v (b)) and v(a + b) =
min(v(a),v(d)) if v(a) # v(b). v(0) = co. An example: D is the field of p-adic
numbers @, or D is a polynomial ring @,[z] over the p-adic numbers. Define the
valuation v(a) of a € @[] as the largest integer n such that a € p"Z,[z]. Another
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example: s € @ and D = k((z))[y] where k is a field. Write s = n/d where n and d
are integers, ged(n,d) = 1 and d > 0. Now the valuation v,(3_; ; a; ;z'y’) is defined
as the minimum ¢d — jn for which a; ; # 0.

A third example: k is a field, s € @, s > 0 and D = k((z))[0]. Here ¢ is defined
as 20 € k((z))[0], cf. section 2.3.2. Write s = n/d where n and d are integers,
ged(n,d) = 1 and d > 0. Now the valuation vs(3"; ;a;;2'67) is defined as the
minimum id — jn for which a; ; # 0.

A filtered ring is a ring D with a chain of additive subgroups --- D D_; D Dy D
D, ---such that: 1 € Dy, D = UnEZ D, and D, D,, C D,,, for all integers n and
m. The chain (Dn)neZ is called a filtration of D. The associated graded ring grR
is defined as ®, D, /Dpt1. The symbol map ¢ : D — grD is defined as: ¢(0) = 0,
o(f) =f+ Dpy1 if f € Dy \ Dpy1. For more information about filtrations see [10].
A valuation v defines a filtration on a ring D as follows

D, = {f € Dlu(f) = n}.

i,]

For positive integers a the set Do/D, has the structure of a ring.
For a ring D with a valuation v we can define a truncation o, with accuracy a for
non-zero elements f of D and positive integers a as follows

Ua(f) =f +Dv(f)+a € Dv(f)/DU(f)-‘ra'

The symbol map is oy.

Suppose f € D can be written as f = LR where L, R € D. For invertible elements
u € D we have f = LR = (Lu)(u~'R). We will call the ordered pair L, R equivalent
with the pair Lu,u !R. Let t be a positive integer. Then the ordered pair L, R is
called coprime with indez t if for all a > ¢ the pair 6441(L),0,41(R) is determined
up to the above equivalence by o, (L), 04(R) and o44+(f). Assume ¢ is minimal, then
t is called the coprime index of L, R. If L, R is not coprime for any integer ¢ then the
coprime index is oo.

For our examples @,[z], k((z))[y] and k((x))[d] the notion of equivalence for pairs
L, R can be avoided by restricting ourselves to monic elements f, L and R. Then
we can define the coprime index of the factorization f = LR as the smallest positive
integer ¢ for which the following holds: For all integers a > ¢ and monic elements L'
and R’ of D, if

0o(L') = 04(L) and o,(R') = 0,(R) and o, 4(L'R') = 04rs(f)

then
Oat1(L) = 001(L) and o411(R') = 0ot (R).

Example: Suppose we want to factor f = 22 + 7+ 3 € D = @s[z]. First we look
at the truncation o1(f) = 2? + ¢ € Dy/D; which factors as xz(x + 1) € Dy/D;.
Because z and z + 1 have ged 1in Dg/D; ~ Fs[z] we can apply Hensel lifting to find
a factorization f = LR in D. To determine L and R up to some accuracy a we only
need to know f up to accuracy a. So the coprime index is 1 in this example.

Example: f; = 2*—22-2= LRy = (22+1)(2®-2) € Q;[z] and fo = 2*—22—20 =
LyRy = (2? + 4)(2% — 5) € Q3[z]. Now fi and f, are the same up to accuracy 2 (i.e.
modulo 32) but the factorizations L,, R; and Ly, R, are different up to this accuracy.
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It follows that to determine the factorization of f; up to some accuracy a it is not
sufficient to know o,(f1). This means that the coprime index of Ly, R; is > 1. We
can not apply ordinary Hensel lifting to find a factorization of f; because o1(L;) and
o1(Ry) have ged # 1.

The name coprime index is explained from the case k((z))[y]. In this ring L, R
have finite coprime index if and only if L and R are coprime in the usual sense (i.e.
ged(L, R) = 1). It follows from proposition 5 in chapter 5 that the coprime index of
a factorization f = LR in k((x))[d] is always finite. The proof of this is postponed
till after proposition 5.

2.3 Preliminaries

This section summarizes the concepts and notations we will use in this chapter. Def-
initions will be brief; references to more detailed descriptions are given.

2.3.1 The field k((z))

k is a field of characteristic 0, k is its algebraic closure. k((z)) is the field of for-
mal Laurent series in x with finite pole order and coefficients in k. k((z)) is the
algebraic closure of k((z)). It is (cf. [11]) contained in the algebraically closed field
UneN k((x'/™)), the field of Puiseux series with coefficients in %.

A ramification of the field k((x)) is a field extension k((x)) C k((r)) where r is
algebraic over k((z)) with minimum polynomial ™ — azx for some non-zero a € k and
positive integer n (cf. [52]). If a = 1 this is called a pure ramification.

For r € k((z)) (not necessarily with minimum polynomial ™ — az) we call the
smallest integer n for which r € k((z'/™)) the ramification index ram(r) of r. If L is
a finite algebraic extension of k((x)) then the ramification index of L is the smallest
n for which L C k((z/™)).

k((z)) is a differential field with differentiation d/dz. If k((x)) C L is an algebraic
extension then d/dx can be extended in a unique way to L. All finite algebraic
extensions k((z)) C L are of the following form:

L=1((r))

where k C [ is a finite extension and I((x)) C I((r)) is a ramification (cf. [52], propo-
sition 3.1.5).

2.3.2 The ring k((x))[d]

Define 6 = z8 € k((x))[0]. We have dz = zd + z in k((z))[d]. Since k((z))[d] =
k((x))[6] we can represent differential operators in the form f = a,d" + ... + apd°.
This form has several advantages. The multiplication formula

(2PN 27Q;6) = Yo" 3 P +1)Q5(0)
i j n i+j=n

and the definition of the Newton polygon (cf. section 2.3.3) are easier for operators
with this syntax. The operators we consider are usually monic. This means a,, = 1.
The order of a differential operator f is the degree of f as a polynomial in 4.
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f is called the least common left multiple of a sequence of differential operators
fi,-.-, fr if all f; are right factors of f, the order of f is minimal with this property,
and f is monic. Notation: f = LCLM(fi,..., fr) (cf. [47]). The solution space of f
is spanned by the solutions of fi,..., f.. So V(f) = > V(f;) where V(f) stands for
the solution space of f. In order to speak about the solutions of differential operators
a differential extension of k((z)) is required that contains a fundamental system of
solutions of f;,..., fr. For this we can use the so-called universal extension that we
will denote as V. This V' is constructed as follows (this construction is obtained from
[24], our V is called R in lemma 2.1.1 in [24]). Define the set

E= | &z
nelN

First view Exp(e) and log(z) as variables and define the free k((z))-algebra W in
these variables W = k((z))[{Exp(e)le € E},log(z)]. Then define the derivatives
Exp(e)’ = ZExp(e) and define the derivative of log(x) as 1/x. This turns W into a
differential ring. We can think of Exp(e) as

Exp(e) = exp( [ ©)

because m% acts on Exp(e) as multiplication by e. Now define V' as the quotient ring
V = W/I where the ideal I is generated by the following relations:

Exp(e; + e2) = Exp(e;)Exp(ez) for ej,eq € E

and

Exp(q) = z? € k((z)) for g€ Q.

Note that this ideal is closed under differentiation. Hence V is a differential ring. It
is proven in [24] that V is an integral domain and that k is the set of constants of
V. We denote the set of solutions of f in V as V(f). This is a k-vector space. Since
every f € k((z))[0] has a fundamental system of solutions in V' (cf. [24]) it follows
that

dim(V'(f)) = order(f).

The substitution map Se : k((2))[6] = k((x))[0] is a k((x))-homomorphism defined
by S.(0) = § + e for e € k((x)). S. is a ring automorphism. The following is a
well-known relation between the solution spaces:

V(f) = Exp(e) - V(Se(/))-

The algorithm “Riccati solution” in section 2.5.1 introduces algebraic extensions
over k((z)). This requires computer code for algebraic extensions of the constants k¥ C
. But we can avoid writing code for ramifications. Given a field extension k((z)) C
k((r)) where r™ = ax for some a € k we will use the following ring isomorphism

Oan = k((r))[0] = k((2))[4]
defined by 8, »(r) = z and 6, ,(6) = =

1
n

in k((r))[d] to computations in k((x))]

. This map enables us to reduce computations

).

S O
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2.3.3 The Newton polygon

The Newton polygon of a monomial z'y’ in the commutative polynomial ring k((z))[y]
is defined as the set {(j,b) € R*|i < b}. The Newton polygon N(f) of a non-zero
polynomial f € k((z))[y] is defined as the convex hull of the union of the Newton
polygons of the monomials for which f has a non-zero coefficient (cf. [11], p. 36). The
main property is N(fg) = N(f) + N(g) for f and g in k((z))[y]. A rational number
s is called a slope of f if s is the slope of one of the edges of the polygon N(f). If s
is a slope of fg then s is a slope of f or s is a slope of g.

For the non-commutative case f € k((z))[0] definitions of the Newton polygon are
given in [35], [54] and [52], p. 48. N(z67) is defined as {(a,b) € R*|0 < a < j,i < b}
and N(f) is again defined as the convex hull of the union of the Newton polygons
of the monomials that appear in f. This definition is slightly different from the
commutative case. As a consequence all slopes are > 0. This is needed to ensure
N(fg) = N(f)+ N(g). If f has only one slope s = 0 then f is called regular singular.

2.3.4 The Newton polynomial

Let s > 0 be a rational number. We have defined a valuation v; and a truncation o,
for non-zero elements of k((z))[d] in section 2.2. ¢, depends on s and will from now
on be denoted as o,s.

If s > 0 then 0’1’5(L)0'1,5(R) = Ul’s(LR) = Ulys(R)Ul’s(L) for all L and R in
k((x))[0]. If s = O then oy s(L)o1,s(R) = 01,s(LR) = S_, (1)(01,5s(R))-Sy, (r)(01,5(L)).

So 01,5 is commutative (i.e. is the same for LR and RL) if s > 0. If s = 0 then
01,5 is commutative up to substitutions S_,, (ry and S, (g) which map § to § plus
some integer.

To o1,5(f) for f € k((x))[d] corresponds a certain polynomial, the so-called Newton
polynomial Ny(f) (the definition is given after the example) of f for slope s. The
Newton polynomial is useful for factorization in k((x))[d] because if f = LR then
01,s(L)o1,5(R) = 01,5(f). So afactorization of f induces a factorization of the Newton
polynomial.

Example: Consider the following differential operator

f=T27%+227%5 + 22735 + 327352 — 327348° + 52716% + 7165
+22728% + 227368 + 327267 4+ 227168 4+ 6°

In figure 1 we have drawn every monomial 267 which appears in f by placing the
coefficient of this monomial on the point (j,4). This gives a set of points (4,7). For all
points (4,) for which 67 has a non-zero coefficient in f we can draw the rectangle
with vertices (0,1), (j,1), (j,00) and (0, 00). The Newton polygon is the convex hull of
the union of all these rectangles. It is the part of the plane between the points (0, c0),
(0,-6), (1,-6), (5,—4), (9,0) and (9,00). In the commutative case (i.e. if we had
written y instead of § in f) the definition of the Newton polygon is slightly different
and the point (0, —6) would have been (0, —5) in this example. But for k((z))[d] the
Newton polygon is defined in such a way that there are no negative slopes.
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The slopes of f are 0, 1/2 and 1. The Newton polynomials are No(f) = 2T,
Nijo(f) =T? — 3T + 2 and Ni(f) = T* + 2T% + 3T% 4+ 2T + 1. Here T is used as a
variable. N, (f) will be defined for all non-negative s € @. However, we will only use
the Newton polynomial for those values s which are a slope in the Newton polygon
because for other values the Newton polynomial is trivial (i.e. degree 0).

Write s = n/d where n and d are integers, ged(n,d) = 1 and d > 0. The valuation
vs gives a filtration (D;), @ € Z. 01,5(f) is an element of D = |J, .z Di/Diy1- A
multiplication is defined for elements of D. An addition is only defined for a,b € D
which are element of the same D;/D; 1.

Dy and k[z"§%) are equal modulo D;. There is a k-linear bijection

which is also a ring isomorphism if i = 0. If i = 0 then N is defined by N!(z"6%) =T.

For every i € Z there is a unique pair of integers n;,d; such that the map ¢; :
Dy/D; — D;/D;y, defined by ¢(a) = z"é%a is a bijection. The integers n;,d; can
be determined from the conditions 0 < d; < d and vy(z™ %) = i. Now N!(a) for
a € D;/D;,; can be defined as N!(¢; '(a)). N! is also defined for non-zero elements
of f € k((2))[d] as Ny(01,5(f)). In our example Ng(f) = 2T, Ny ,,(f) =T? — 3T +2
and N!(f) = T° 4+ 2T® + 377 + 2T% + T°.

For slope s = 0 we define the Newton polynomial No(f) as N}(f). From the mul-
tiplication formula in section 2.3.2 the following property follows for L, R € k((x))[d]

No(LR) = St=1-4vo(r)(No(L)) No(R).
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Here St—1 4, (r) (No(L)) means No(L) with T replaced by T'+wvo(R). For our example
f weget No(f-f)=4(T -6)T.
For slope s > 0 we have the following property for L, R € k((z))[d]

N!(LR) = TP N!(L)N'(R).

Here p is either 0 or 1, depending on the slope s and the valuations vs(L) and vs(R).
Let i = v5(L) and j = vs(R). Then ¢;(1) - ¢,;(1) = 2™+ §%+% mod D;4j41. This
is either equal to ¢;4;(1) or 2"6%;,(1) mod D, j11, depending on whether d; + d;
is smaller than d or not. In the first case p = 0, in the second case p = 1. For our
example Nj ,(f - f) =T - (N] ,(f))* and N{(f - f) = (N{(f))*. Now define N,(f) as
N!(f) divided by T to the power the multiplicity of the factor T in N.(f). Then

N,(LR) = Ny(L)Ny(R)

for s > 0 and for all L, R € k((z))[d].

Note that our definition does not correspond to the usual definition of the Newton
polynomial. It corresponds to the definition of the reduced characteristic polynomial
in [3]. The roots of Ny(f) in k are called the ezponents of f. If f € k((z))[d] is regular
singular (i.e. f has only one slope s = 0, or equivalently degree(Ny(f)) = order(f))
and all exponents of f are integers then f is called semi-regular.

Property: If f = LR then the Newton polynomial of the right-hand factor Ns(R)
divides N¢(f). However, for a left-hand factor this need not hold. But if s > 0 or if
vo(R) = 0 (for example if R is regular singular and monic) then N, (f) = Ny(L)N4(R)
so0 in such cases N (L) divides N,(f).

2.4 The lift algorithm

Suppose f € k((z))[d] is monic and that f = LR is a non-trivial factorization, where
L and R are monic elements of k((x))[0]. Let s > 0 be a rational number. Recall that
there is a valuation v, on D = k((z))[d], a filtration (D, s), n € Z and a truncation
map o,,; depending on s. In this section we will assume that L and R have been
computed up to some accuracy a. How to compute this o, (L) and o, s(R) will be
the topic of the sections 2.5 and 2.7. In this section we deal with the question how
to compute o441,5(L) and oq41,5(R) from o4 5(L), 04,5(R) and f in an efficient way.
The goal is an algorithm with the following specification:

Lift Algorithm:

Assumption: f = LR where f, L, R are monic elements of k((x))[d].

Input: a > 1, s, 0,,5(L), 04,s(R) and f.

Output: Either o,41,5(L) and o441,5(R) or "failed”, where ”failed” can only occur
if t > a where t is the coprime index.

We use this algorithm to lift a factorization. If the output is ”failed” then we will
use the less efficient method in section 2.7 to lift the factorization. Note that since
a > 1 this can only happen if the coprime index is > 1.

Suppose t < a. We will use indeterminates for those coefficients of 0,4 s(L) and
Oa+t,s(R) which are not yet known. Then the equation oq4¢,s(LR) = 0qt1,5(f) gives
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a set of equations in these unknowns (more details on how to find these equations are
given below). t < a is needed to ensure that all these equations are linear. Coprime
index ¢t means that 0441,,(L) and o441,5(R) can be uniquely determined from these
linear equations.

Except if the coprime index is 1, our algorithm usually does not know the coprime
index in concrete situations. Then the lift algorithm will use a guess for the coprime
index. If the lift algorithm is called for the first time, it takes ¢ = 2. Otherwise
it takes the guess for ¢ that was used in the previous lift step. Then it will try, by
solving linear equations, if there is a unique solution for go11,,(L) and oq41,5(R) from
0q,5(L), 04,s(R) and o444,s(f). If so, t remains unchanged and the accuracy of the
factorization increases; the output of the lift algorithm is o,41,5(L) and o441 5(R). If
the solution for o441,s(L) and o441,5(R) is not unique (there is at least one solution
because of the assumption that the factorization f = LR exists) the number ¢ will be
increased by 1. If ¢ is still < a then we can use recursion with our increased guess ¢
for the coprime index. Otherwise, if ¢ > a, the output of the lift algorithm is ”failed”,
and we will have to use the less efficient method in section 2.7 to lift the factorization.
Note that the efficiency of our lift algorithm depends on the coprime index, if this
number is very high then it may not provide any speedup over the method from
section 2.7.

A truncation 04,5(R) = R+ D, (g)+q is stored as an element R’ € k[z,1/x,d] with
no terms in D, (g)4,. Now write

r= Z rija:’éf
2

where the sum is taken over all 4, j such that v,(R) + a < vy(2'6?) < v4(R) +a +t
and j < order(R). Here r;; are indeterminates. We set r;; = 0 for j = order(R),
i #0, and set r;; = 1 for j = order(R), i = 0. Similarly write L' and I. Now we look
for values for the l;; and r;; such that R’ +r and L' + [ approximate R and L up to
accuracy a—+ 1. If the coprime index is ¢, the accuracy is at least a + 1 if the following
holds: 0g4¢,s (L' + )(R' + 1)) = 0441,s(f), or equivalently

(LI + l)(RI + 7“) = f mOd Dvs(f)—i-a—l—t-

(L'+10)(R' +r)=L'R +IR + L'r +1Ir. To determine [R' mod D, (f)4a+¢ it suffices
to have R’ up to accuracy t because vys(l) + vs(R') > vs(f) + a. Similarly oy 4(L')
suffices to compute L'r mod D, (f)ta+tt- Vs(Ir) > vs(f) +a+a>v,(f) +a+tsolr
vanishes modulo D, (f)4a+¢- Hence

F=L'R +lo,(R)+ 04,5s(L')r mod Dy, (f)+a+tt-

By equating the coefficients of the left-hand side to the coefficients of the right-hand
side (the coeflicients of all monomials of valuation < vs(f) + a +t) we find the linear
equations in [;; and r;;. To determine these equations we must multiply ! by o s(R'),
(= o1,s(R) because R' equals R up to accuracy a and ¢t < a) which is the lowest
block of R with slope s and width ¢ in the Newton polygon of R. Similarly we must
compute oy s (L")r.
Usually the most time consuming part is the multiplication 'R’ modulo D, (f)4q+¢-

One approach is the following. Compute L'R' in k[z,1/z, ] and store the result to-
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gether with L' and R'. In the next lift step a similar multiplication must be per-
formed, but then L' and R’ are slightly changed. Suppose we must compute the
product (L' + e1)(R' + ez) in the next lift step. Here L' and R' are large expressions
and e; and ey are small. Using the previous multiplication L' R’ we can speed up this
multiplication by writing (L' + e;)(R' + e3) = L'R' + e; R' + L'es + ejes. The result
of this multiplication is again stored for use in the next lift step.

In this approach L' R’ has been computed exactly. This is not efficient since we only
need it up to accuracy a +t, i.e. modulo D, (f)4q4¢- Computing modulo D, (f)tatt
is not as convenient as computing modulo a power of z when using the multiplication
formula in section 2.3.2. We compute L' R’ modulo a suitable power of z such that
L'R' can still be determined modulo D, (f)4q4¢ Unless the slope s is zero, however,
a few more terms of the product L'R’ than needed have been computed then. These
terms are stored to speed up the multiplication the next time that the lift algorithm
is called.

2.5 Coprime index 1 factorizations

The lifting process for coprime factorizations can be done by solving linear equations.
However, for coprime index 1 solving linear equations can be avoided. In this case
we must solve a system (see section 2.4) of the form loy 4(R) + 01,,(L)r = g where
g is computed by multiplying the so far computed truncations (called L' and R' in
section 2.4) of L and R and subtracting this product from f. As in section 2.3.4 this
equation can be converted to an equation {Ro+rLy = g for certain I,r, Lo, Ro, g € k[T
and [, unknown. Such an equation can be solved by the Euclidean algorithm.

Consider the example f in section 2.3.4. f has slopes 0, 1/2 and 1 in this example.
In [35] a method is given to compute a right-hand factor f; with only slope 0 and order
1, a right factor f, with slope 1/2 and order 4 and a right factor f; with slope 1 and
order 4. The Newton polynomial of f; is the same as the Newton polynomial Ny 5(f)
of f for slope 1/2. It is 2 — 3T + T? = (T — 1)(T — 2). Because ged(T —1,T —2) =1
this fo is again reducible in Q((z))[d], cf. [35]. It has a right factor g, of order 2
and slope 1/2 with Newton polynomial T' — 1 and a right factor g» with Newton
polynomial 7' — 2. So to obtain g; two factorization were needed. In one application,
our algorithm for factorization in €(z)[0], we are mainly interested in one of the
irreducible right-hand factors of f in @((z))[6]. That is why we want to be able to
compute g; directly without using an intermediate factorization to compute fo. This
is done by the following algorithm.

Algorithm Coprime Index 1 Factorizations:

Input: f € k((z))[d], f monic

Output: All monic coprime index 1 factorizations f = LR in k((z))[0] such that R
does not have a non-trivial coprime index 1 factorization.

Note: the definition of coprime index depends on the valuation that is chosen on
k((x))[d]. Here only the valuations v, that are defined in section 2.2 are considered.

for all slopes s of f do

g = Ns(f)
Compute a prime factorization of g in k[T], g = cg5* -+ - g&",
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where g; are the different monic irreducible factors and ¢ € k.
if s = 0 then

M :={g1,---,9r}
N :=M\{9|9(T) =h(T +1i),h € M,i € N,i >0}

else
N:={g/";---,9:"}

end if

for hin N do

Write h = T? + hy,_1 TP~ + ... + hoT°.

Write s = n/d with d > 0 and ged(n,d) = 1.

R := P + by 1z 6P~V 4 by, oz 20§24 4 hozpPRG0.

Now R' has Newton polynomial h. We want to lift R’ to a right
factor R such that R’ is R modulo D, (g/)41-

L' := an operator such that o1 5(f) = 01,s(L'R’).
L' is uniquely determined by requiring that L' has no
monomials of valuation > v, (L').

f, L', R" with the lift algorithm gives a factorization f = LR

end do
end do

We need to prove the following:
1. I and R’ lift to a unique coprime index 1 factorization f = LR.
2. The right factors R do not allow a non-trivial coprime index 1 factorization.

3. All such coprime index 1 factorizations f = LR (f, L and R monic) are obtained
this way.

Suppose 04,5(L'R') = 04,5(f), meaning that the factorization has been lifted up to
accuracy a. If no lift steps were done yet, then a = 1. Now we look for I € Dy, (r)4q
and r € D, (r)4q such that o441((L' + 1)(R' + 1)) = 04q1,5(f) and order(r) <
order(R’'). To prove statement 1 we have to show that [, r exist and that 0,41 (L' +1)
and 0441,5(R' +7) are uniquely determined. This means that I mod D, (1)4q+1 € D
(cf. section 2.3.4) and 7 mod D, (g)4a+1 € D are uniquely determined. Then L' and
R' are replaced by L' +1 and R' + r and the accuracy of the approximations L' and
R' for L and R has increased by 1. I and 7 must satisfy the following equation in D

o1,s(L)r +101,5(R) = f — L'R' mod D, ()4a+1-
By applying N! we obtain the following equation in k[T]if s =0
St=rta(Lo)ro +loRo =g

and
Lorg +1lgRog =g or TLoro+1lgRo =g

if s > 0. Here Ly = N;(L), Ry = N;.(R), Iy = N;.(l mod Dvs(L)—l—a—H)a ro =
N;(r mod D, (g)ta+1) and g = N (f — L'R' mod D, (f)1q+1)- Note that vs(R)
is 0 if s = 0. The requirement order(r) < order(R) means degree(ry) < degree(Rp).
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To prove statement 1 we now have to show that lp,7¢ € k[T exist and are uniquely
determined. For this it is sufficient to show that ged(TLg,Rg) = 1if s > 0 and
ged(St=1+a(Lo),Ro) = 1 if s = 0. First the case s > 0. Ry is the factor h of the
Newton polynomial in the algorithm. LoRy = N.(f) = T'N,(f) for some integer
i. The set N of factors h of Ng(f) is chosen in such a way in the algorithm that
ged(h, Ng(f)/h) = 1. Also ged(h,T) = 1 because Ns(f) does not contain a factor T'
by definition and h is a factor of N(f). So ged(T'Lg, Ry) = 1. Now the case s = 0.
We have LoRy = N,(f) because vs(R) = 0 (see the multiplication formula for Ny in
section 2.3.4). Ry is the factor h of Ns(f) in the algorithm. We have to show that
ged(ST=11a(Lo), Ro) = 1. The set N containing these factors h was chosen in such
a way that this holds for all a > 1.

To prove the second statement we distinguish 2 cases. Suppose s = 0. Then
the Newton polynomial of R is irreducible. Hence R must be irreducible because
a factorization of R gives a factorization of the Newton polynomial. Now suppose
s > 0. Then the Newton polynomial is of the form p’ where p is irreducible and i is
an integer. If ¢ > 1 then it is not clear whether R is reducible or not. Suppose R
can be factored R = Ry R;. Then the Newton polynomials of R; and R, are both
factors of pf. So the ged of these Newton polynomials is not equal to 1. Coprime
index 1 would mean that g441,5(R1) and o441 s(R2) can be uniquely determined from
0a,5(R1), 04,5(R2) and o441,5(f). To determine o441 5(R1) and o441,5(R2) requires
solving an equation lgNs(Ry) +79Ns(R2) = g in k[T]. Such an equation has a unique
solution if and only if the ged of the Newton polynomials Ny (R1) and Ny(R») is 1. So
a possible factorization R = R; R, can not be a coprime index 1 factorization, which
proves statement 2.

Suppose f = LR is a monic factorization satisfying statement 2. Now we need
to show that the algorithm finds this factorization. R can have only one slope s,
otherwise it could be factored by the given algorithm (which contradicts the assump-
tion that statement 2 holds). First consider the case s = 0. Then Ny(R) must be
an irreducible polynomial, otherwise R can be factored by the algorithm. So N,(R)
must be an element of the set M in the algorithm. It can not be an element of
{919(T) = (T +14),h € M,i € N,i > 0} because then ged(Sr=r1q(Lo), Ro) = 1 does
not hold for all @ > 1 which was shown to be a necessary and sufficient condition
for having coprime index 1 if s = 0. So Ng(R) € N. This means that oy 4(R) and
hence also 07 5(L) are the same as o1 ;(R;) and 0y 5(L1) for a factorization L, Ry of
f given by the algorithm. Because the coprime index is 1 this factorization Lq, R; is
completely determined by o1,5(R1), 01,5(L1) and f. Hence these two factorizations
LR, and LR are the same and so the third statement holds. In the same way the
case s > 0 is proven.

O

Remark: the given method can also be applied for factorization in the ring L[d]
where L is a finite extension of k((z)), because

e The method is not different for algebraic extensions of the constants k C I.
¢ Ramifications over [((z)) can be handled using the map 6, , in section 2.3.2.

e All finite field extensions of k((x)) are obtained as an algebraic extension of the
constants followed by a ramification, cf. section 2.3.1.
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Consider again the example f in section 2.3.4 and let £k = @. The given algorithm
produces a right-hand factor R; with slope 0, order 1 and Newton polynomial T, a
right factor Ry with slope 1/2, order 2 and polynomial T' — 1, a right factor R3 with
slope 1/2, order 2 and polynomial T' — 2 and a right factor R4 with slope 1, order 4
and Newton polynomial (T?+7+1)2. Now R;, R, and Rj are irreducible in Q((z))[4]
because their Newton polynomials are irreducible. But it is not yet clear whether Ry
is irreducible or not. The second example in section 2.1 remains unfactored as well.
Reducible operators f that remain unfactored by the given factorization algorithm
are of the following form: f has one slope s > 0 and N,(f) is a power > 1 of an
irreducible polynomial. The given algorithm will compute only a trivial factorization
L =1, R = f for this case. If such an operator is reducible then a factorization
must have coprime index > 1. In section 2.6 the notion of exponential parts will
be introduced. Using exponential parts a description of the irreducible elements of
k((x))[d] will be given.

If f has one slope s > 0, s € N and the Newton polynomial is a power of a
polynomial of degree 1, then compute S.,-s(f) where ¢ is the root of the Newton
polynomial (see also case 4 of the algorithm in section 2.5.1). Then apply the factor-
ization algorithm to S.,-s(f) and find a factorization of f by applying S_,,-s to the
factors of S,z (f)- For all other cases (i.e. s ¢ N or degree(Ns(f)) > 1) we apply the
method in section 2.7. The factorization obtained that way lifts rather slowly, i.e. it
costs much time to compute more terms. The lifting will be speeded up using the lift
method of section 2.4 whenever that is possible (when its output is not the message
7 failed”).

A differential operator can have infinitely many different factorizations. For ex-
ample 6% which equals 1/2? times §2 — § has ax + b as solutions, where a and b are
constants. Hence it has 0 — (axz + b)'/(az +b) = 0 — a/(az + b) as right factors.
Note that algorithm coprime index 1 factorizations produces only a finite number of
different factorizations. In the semi-regular case (cf. section 2.3.4) it computes only
1 unique factorization, although like the example 8% shows other factorizations could
exist as well.

2.5.1 Computing first order factors over k((x))

An element r of some differential extension of k((z)) is by definition a Riccati solution
of f € k((z))[d] if § — r is a right factor of f. The reason this is called Riccati
solution is that they are solutions of the so-called Riccati equation. This is a non-
linear differential equation. The Riccati equation of f € k((z))[d] can be found by
computing a right division of f by § —u, where u is an indeterminate. The remainder
of this right division is the Riccati equation. It is a polynomial in » and the derivatives
of u. It vanishes precisely when we substitute for u an element r such that § — r is a
right-hand factor of f. The Riccati solutions are of the form zy' /y where y is a solution
of f. In the usual definition the Riccati solutions are the logarithmic derivatives y'/y
of solutions of f. The definition in this chapter differs by a factor xz because we
work with 6 = 20 instead of 0. In this chapter only Riccati solutions in k((z)) are
considered. In general there exist more Riccati solutions in larger differential fields.
The implementation does not determine the Riccati equation itself because this can be
a large expression. Instead we use factorization to find Riccati solutions. Computing
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first order right-hand factors of f is the same as computing Riccati solutions.

The following algorithm is similar to the Rational Newton algorithm (cf. [3]) which
is a version of the Newton algorithm (cf. [54, 19]) that computes formal solutions
using a minimal algebraic extension of the constants field k. A difference between
the Rational Newton algorithm and the following algorithm Riccati solution is that
we use factorization of differential operators. So the order of the differential operator
decreases during the computation.

Algorithm Riccati solution:

Input: f € k((z))[d]
Output: a first order right-hand factor in k((z))[d]

1. If order(f) = 1 then the problem is trivial.
2. If one of the following holds

(a) f is regular singular and the Ny(f) is reducible.
(b) The Newton polygon has more than 1 slope.

(¢) f has one slope s > 0 and N,(f) is not a power > 1 of an irreducible
polynomial.

then compute a coprime index 1 factorization and apply recursion to the right-
hand factor.

3. If f has one slope s and the Newton polynomial N,(f) is of the form p® with p
irreducible, e > 1 and pis of degree d > 1. Then extend & by one root r of p. Now
compute a right factor of order order(f)/d with (T —r)¢ as Newton polynomial
using a coprime index 1 factorization as in the algorithm in section 2.5. This is
a coprime index 1 factorization because the ged of (T'—r)¢ and p¢ /(T —r)® (this
is the Newton polynomial of the left hand factor) is 1. Now apply recursion to
the right-hand factor.

4. If f has one slope s > 0, s € N and N,(f) is a power of a polynomial of degree
1, then compute S,,-s(f) where ¢ is the root of N,(f). Use recursion (this
recursion is valid because the slopes of S.,-s(f) are smaller than the slope of
f) to find a first order factor of S,,—s(f). Then apply S_.;-s-

5. If f has one slope s > 0, s € N and the Newton polynomial is a power of a
polynomial of degree 1, then write s = n/d with ged(n,d) = 1, n > 0. Now
we will apply a ramification of index d. Instead of extending the field k((x))
we apply the isomorphism 6, 4 : k((r))[0] — k((z))[d] of section 2.3.2. First we
need to compute a suitable value a € k. 0, 4(z) = 0,,4(r?/a) = ?/a. Write the
Newton polynomial of f as (T — ¢)¢, where ¢ € k and e € N. Then the Newton
polynomial of 6,4(f) equals a constant times (T? — d%ca™)®. Now choose a
equal to c?, p € Z, such that d%ca™ is a d-th power of an element b € k. This
is done by choosing p such that pn + 1 is a multiple of d. Then the Newton
polynomial (7% —d%ca™)® equals (T?—b%)¢ and can be factored as (T —b)®g® with
ged((T' —b)¢, g°) = 1. Now use a coprime index 1 factorization as in section 2.5
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with (T — b)¢ as Newton polynomial for the right-hand factor. This provides a
right factor R of order e = order(f)/d. Now use recursion on R to find a first
order factor and apply 0;3.

Note that there are two cases where a field extension of k((z)) is applied. One
case was an extension of k of degree d, and the other case was a ramification of index
d. Both these cases were extensions of k((z)) of degree d. In both cases the algorithm
finds a right factor of order order(f)/d over this algebraic extension. In the three
other cases field extensions were not needed. We can conclude

Lemma 1 Every f € k((z))[d] has a Riccati solution which is algebraic over k((z))
of degree < order(f).

2.6 Exponential parts

A commutative invariant is a map ¢ from k((x))[d] to some set such that ¢(fg) =
¢(gf) for all f,g € k((x))[0]. An example is the Newton polygon, i.e. N(fg) = N(gf)
for all non-zero f and g. However, there are more properties of differential operators
that remain invariant under changing the order of multiplication. We want a commu-
tative invariant which contains as much information as possible. In [52] Sommeling
defines normalized eigenvalues and characteristic classes for matrix differential opera-
tors. The topic of this section is the analogue of normalized eigenvalues for differential
operators in k((z))[0]. We will call these ezponential parts. The exponential parts
are useful for several topics. They appear as an exponential integral in the formal
solutions (this explains the name exponential part). They describe precisely the al-
gebraic extensions over k((z)) needed to find the formal solutions. The exponential
parts are also used in our method of factorization in the ring k(z)[0] in chapter 3. For
factorization in k((x))[d] the exponential parts will be used to describe the irreducible
elements, (cf. theorem 2).

Differential operators (in this chapter that means elements of k((z))[d] or k((z))[0])
can be viewed as a special case of matrix differential operators. So our definition of
exponential parts could be viewed as a special case of the definition of normalized
eigenvalues in [52]. A reason for giving a different definition is that the tools for
computing with matrix differential operators are not the same as for differential op-
erators. Important tools for matrix differential operators are the splitting lemma and
the Moser algorithm. The tools we use for differential operators are the substitu-
tion map and the Newton polynomial. That is why we want to have a definition of
exponential parts expressed in these tools. Because then the definition allows the
computation of exponential parts using a variant of the “algorithm Riccati solution”,
namely the “algorithm semi-regular parts” in section 2.8.4. A second reason for our
approach is that it allows the definition of semi-regular parts of differential operators.

Let L be a finite extension of k((z)). Since L C k((z'/™)) for some integer n
we can write every r € L as r = e+t with e € E and t € £'/?k[[z'/"]). Now e is
called the principal part pp(r) of r € L. Using the following lemma we can conclude
e € k((x))[r] C L.

Lemma 2 Letn € @ and r € k((z)) be equal to rpz™ plus higher order terms. Then
rpx™ is an element of the field k((z))[r].
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Proof: Write r = r,, ™ + r,,™ plus higher order terms, where m € €, m > n. We
want to prove that there exists an s € k((x))[r] of the form r,z" plus terms higher
than ™. Then we can conclude r,z™ € k((z))[r] by repeating this argument and
using the fact that the field k((z))[r] is complete (cf. [12] Chap I, §2, thm. 2). We
can find this s as a @)-linear combination of r and mg—;.

O

Definition 1 Let f € k((z))[d], e € E andn = ram(e). Let P = No(Sc(f)), the New-
ton polynomial corresponding to slope 0 in the Newton polygon of S.(f) € k((z'/™))[4].
Now p.(f) is defined as the number of roots (counted with multiplicity) of P in 1Z
and G, (f) is defined as the number of roots (counted with multiplicity) of P in Q.

Recall that ram(e) denotes the ramification index of e. Note that we have only
defined the Newton polynomial for elements of k((z))[d], not for ramifications of
k((z)). Define No(f) for f € k((z*/™))[6] as follows. Write f = Y. z%/"f; with
fi € k[8]. Then Ny(f) is (written as a polynomial in § instead of T) defined as f;
where ¢ is minimal such that f; # 0.

We define an equivalence ~ on E as follows: e; ~ ey if e —es € %Z where n is
the ramification index of e;. Note that the ramification indices of e; and e, are the
same if e; — ey € Q. If e; ~ ey then pe, (f) = pe, (f) for all f € k((z))[d] so we can
define p. for e € E/ ~. Similarly f,(f) is defined for e € E/Q.

Definition 2 The exponential parts of an operator f € k((x))[d] are the elements
e € E/ ~ for which p.(f) > 0. The number p.(f) is the multiplicity of e in f.

Lemma 3 Let f = LR where f, L and R are elements of k((z'/™))[0]. Let N; be
the number of roots of No(f) in %Z, counted with multiplicity. Similarly define Ny,
and NR. Then Nf = NL +NR-

The proof of this lemma is not difficult; we will skip it. Note that if n = 1 then
Ny = po(f)-

Lemma 4 If f = LR where f, L and R are elements of k((x))[0] and e in E or in

E/ ~ then pie(f) = pe(L) + pe(R).
If f = LR where f, L and R are elements of k((2))[d] and e in E or in E/Q then

B (f) = B (L) + 71 (R).

Proof: If n is the ramification index of e, then p.(f) is the number of roots in %Z
of No(Se(f)). Now the first statement follows using the previous lemma and the fact
that Se(f) = Se(L)S¢(R). The proof for & is similar.

O

Theorem 1 Let f be a non-zero element of k((x))[d], then the sum of the multiplic-
ities of all exponential parts is:

> ne(f) = order(f).

e€E/~
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Let f be a non-zero element of k((x))[d], then

]

1.(f) = order(f).
eEE/Q

Proof: If order(f) = 1 then both statements hold. If f is reducible then we can use
induction and lemma 4 so then both statements hold. In k((z))[d] every operator of
order > 1 is reducible (see also the algorithm in section 2.5.1 which computes a first
order right-hand factor in k((z))[d]) so the second statement holds.

To prove the first statement we need to show that the sum of the multiplicities is
the same for p over all e € E/ ~ and Tz over all e € E/. Suppose € is an element
of E/Q. The sum of u.(f) taken over all e € E/ ~ such that € = e mod @ is equal
to Tz(f) because they are both equal to the number of rational roots of the same
Newton polynomial. So we can see that the sum of the multiplicities & is the same
as sum of the multiplicities g by grouping together those exponential parts of f that
are congruent modulo €.

2.6.1 Semi-regular part

An operator f € k((z))[0] is called semi-regular over k((z)) if f has only one ex-
ponential part which is equal to 0 € E/ ~. A semi-regular operator is a regular
singular operator with only integer roots of the Newton polynomial. In other words
uo(f) = order(f). An operator f € k((z))[d6] = k(())[0] is regular (or: non-singular)
if f can be written as a product of an element of k((z)) and a monic element of
E[[z]][0]- A regular operator is regular singular and the roots of the Newton polyno-
mial are 0, 1,...,order(f)—1. So aregular operator is semi-regular. We can generalize
the notion of semi-regular for algebraic extensions k((z)) C L.

Definition 3 f € L[d] is called semi-regular over L if it is regular singular and all
roots of No(f) are integers divided by the ramification index of L.

For a ramification r™ = ax an isomorphism 6, , : k((r))[0] = k((x))[6] was given in
section 2.3.2. Now f € k((r))[d] is semi-regular over k((r)) if and only if 6, ,(f) €
k((x))[d] is semi-regular over k((z)).

Definition 4 Let f € k((z))[0]. Then the semi-regular part R, of f for e € E is the
monic right-hand factor in k((x))[e, 8] of Se(f) of order u.(f) which is semi-regular
over k((z))[e].

R, can be computed by a coprime index 1 factorization of S¢(f) as in section 2.5
using slope s = 0. The Newton polynomial (called h in the algorithm) is the largest
factor of No(Se(f)) for which all roots are integers divided by the ramification index.
Since such coprime index 1 factorizations for a given Newton polynomial are unique
(see the comments after Algorithm Coprime Index 1 Factorizations) it follows that
R, is uniquely defined. Note that if the ramification index n is > 1 then in fact
our algorithm does not compute with S, (f) but with 6, ,(S.(f)) for some constant
a, cf. the remark on page 23. Then we have to compute the highest order factor
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of 6,,1,(Sc(f)) of which the roots of the Newton polynomial are integers, instead of
integers divided by n.

S_c(R.) is a right-hand factor of f. Note that if e; ~ ey then S_., (Re,) =
S_e,(Re,). Hence S_. (Re,),...,S ¢,(Re,) in the following lemma are up to a per-
mutation uniquely determined by f.

Lemma 5 Let f be an element of k((x))[d]. Let eq,...,e, € E be a list of represen-
tatives of all exponential parts in E/ ~ of f. Then

J =LCLM(S_¢,(Re,),---,S—¢,(Re,))-

Remark: A similar statement (expressed in the terminology of D-modules) is given
in corollaire 4.3.1 in [35]. There is, however, a subtle but important difference namely
that in our lemma the operators R; are semi-regular instead of regular singular. To
this difference corresponds a different notion of exponential parts as well; in corollaire
4.3.1 in [35] a notion appears which, in our terminology, can be viewed as elements of
E/k instead of our E/ ~. One often distinguishes the two notions irregular singular
and regular singular. In this thesis we propose to drop the notion of regular singular
as much as possible and only to make a distinction between semi-regular and not
semi-regular, and measure the “non-semi-regularity” using the exponential parts in
E/ ~. The motivation for doing this is to generalize algorithms that work for regular
singular operators to the irregular singular case. We will see later (chapters 3, 4 and
5) the benefits of this approach.

Proof: Let R = LCLM(S_,(R.,),...,S—¢,(Re,)). Conjugation over k((x)) only
permutes S_., (Re,),...,S_c,(Re,). Hence R is invariant under conjugation over
k((z)) and so R € k((2))[0]. S—e, (Re;) is a right factor of R, so R., is a right factor
of S¢,(R). So No(R,,) is a factor of No(Se,(R)), hence p.,(R) > degree(No(R,,)) =
e, (f) because all roots of Ng(R,,) are integers divided by the ramification index.
Then by theorem 1 we can conclude order(R) > order(f). R is a right-hand factor of
f because the S_., (R,,) are right factors of f. Hence f = R.

O

This provides a method to compute a fundamental system of solutions of f. The
solutions of f = LCLM(S_.,(R.,),.-.,S—c,(Re,)) are spanned by the solutions of
S_e(Rey)s---»S—¢,(Re,). The solutions of S_., (R.,) are obtained by multiplying
the solutions of R, by Exp(e1) (recall that Exp(e1) = exp([ £ dx), cf. section 2.3.2).
Consequently, when all e; and R., have been computed, then the problem of finding
the solutions of f is reduced to solving semi-regular differential operators, which is a
much easier problem (cf. section 2.8.1).

Define R, for e € E and f € k((x))[d] as the largest regular singular factor of
Se(f) for which all roots of the Newton polynomial are rational numbers. Now we
can show in the same way for f € k((z))[d] that

f= LCLM(Sfm (Em); ) Sfeq (Eeq)) (21)

where e1,...,eq € E is a list of representatives for all e € E/@ for which f,(f) > 0.
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2.6.2 Irreducible elements of k((z))[d]

If r € k((z)) is a Riccati solution of f € k((x))[6] then the principal part e =
pp(r) € k((x))[r] modulo ~ is an exponential part of f. Conversely, if p.(f) > 0
then f has Riccati solution 7. € k((z))[e] of which the principal part is e modulo
~. Though there may be infinitely many such Riccati solutions, we can compute one
such r, in a canonical way. The algorithm in section 2.5 provides (although infinitely
many different factorizations could exist) only 1 unique factorization of semi-regular
operators (namely the one that has coprime index 1). This way we can compute a
unique right factor § — r. of S_.(R.) by computing a first order factor of R, and
applying S_.. If e ~ ey then ro; = re,. So 7. is defined for exponential parts
e€E/~of f.

Suppose e; € E is algebraic over k((x)) of degree d and suppose p., (f) > 0.
Suppose ey, ...,eq € k((z)) are the conjugates of e; over k((x)). If L is a Galois
extension of k((z)) then conjugation over k((z)) is an automorphism of L[§]. So
pre; (f) = pe; (f) for all 4,5. We can find unique right factors § —r., € k((z))[e;,0] C
k((z))[d] of f as just described. Then R = LCLM(6 —r¢,,...,d —r.,) is a right-hand
factor of f. Because conjugation is an automorphism the r, are all conjugates of r.,
over k((z)). So the set {§ — r¢y,...,8 — 7, } is invariant under conjugation which
implies that R is invariant under conjugation over k((z)). Hence R € k((z))[d]. In
general

order(LCLM(fi, ..., fn)) < > _ order(f;)

because the order of an operator is equal to the dimension of the solution space, and
the solution space of LCLM(f1, ..., fn) is spanned by the solutions of fi,..., f,. So
order(R) < d. Since p,(R) = pe,(R) > 0 for all ¢ = 1,...,d we can conclude by
theorem 1 that order(R) > d if all e; represent different exponential parts. For this
we must prove e; —e; € Q if i # j. Suppose e; —e; € . We now have to prove
that e; = e;. The Galois group G of k((x))[e1,-..,eq] over k((x)) acts transitively
on ey,...,eq. Hence y(e;) = e; for some v € G. If v(e;) = e; + (e; — e;) where
(e; —e;) €  then v#C%(e;) = e; + (#G)(e; — e;). Here #G denotes the number of
elements of G. However, for any finite group G and element v € G the equation
y#G =1 holds so v#%(e;) = e;. Hence (#G)(ej —e;) = 0 and e; = e;. Now we can
conclude order(R) = d. We have partly proven the following

Theorem 2 f € k((z))[0] has an exponential part e which is algebraic over k((x)) of
degree d if and only if f has an irreducible right-hand factor R € k((x))[d] of order d.

Note: In a different terminology (normalized eigenvalues, characteristic classes and
D-modules) this result is found in [52] as well.

Proof: Given an exponential part of degree d over k((x)) we have already shown
how to construct R as LCLM(§ — r¢,,...,0 — 7e,). Now we must show that R is
irreducible in k((z))[0]. Suppose R has a non-trivial right-hand factor R; of order
d; < d. By induction we can conclude that R; has an exponential part e which is
algebraic over k((z)) of degree d;. Lemma 4 shows that e is an exponential part of R.
Then e, eq,...,eq are d + 1 different exponential parts of R contradicting theorem 1.
So R is irreducible.
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Now suppose f has an irreducible right factor R of order d. The exponential parts
of R are exponential parts of f by lemma 4. We will show that all exponential parts
of R are conjugated over k((z)) and algebraic of degree d over k((x)). Let e; be an

exponential part of R algebraic of degree p over k((z)). So the conjugates e1,...,ep
are exponential parts of R and by our construction we find an irreducible factor R; of
R of order p. Since R is irreducible we have R; = R and hence p = d. Now e1,...,eq

are d different exponential parts of R. Because of theorem 1 there can not be more
exponential parts, so all exponential parts of R are conjugated with e;.

O

2.7 Coprime index > 1 factorization

How can one compute an irreducible factor of a polynomial f € Q[y]? A method is to
compute a root r and the minimum polynomial of r. This is not the usual factorization
method for the ring Q[y]. But for the ring k((z))[d] this idea supplies a method for
the cases we have not yet treated. The role of the root is played by a Riccati solution.
The analogue of the minimum polynomial for a Riccati solution r is the least common
left multiple of § — r and its conjugates. A minimum polynomial is the product of
y —r and its conjugates. One does not need to compute the conjugates to determine
this product. The same holds for the least common left multiple. To see this write
the LCLM as an operator R with undetermined coefficients R = a,,0" + - - - + agd°.
Now the statement that § —r is a right factor of R translates into a linear equation in
ag, - - . ,ap. This is an equation over k((z))[r]. We know that all conjugated equations
(which we do not compute) hold as well. Then this system of equations can be
converted to a system over k((x)). We show how this can be done in a slightly more
general situation. Suppose « is algebraic of degree d over a field K and we have an
equation bpa® + - --bg_1a?"! = 0 (in our application K = k((x)), a = r and the b;
are k((x))-linear expressions in a;). The system formed by this linear equation and
all its conjugates is equivalent with bg = by = --- = bg_1 = 0. The reason is that
the transition matrix (which is a Vandermonde matrix) between these two systems of
linear equations is invertible.

This method for computing R is not very efficient for two reasons. The right-hand
factor R is computed by solving linear equations over k((z)) which is rather com-
plicated. The computation of these linear equations involves an algebraic extension
over k((z)). So we prefer to lift R with the algorithm in section 2.4 whenever possible.

Example:

2 9 1
_ 54 3 _ 252
f=8" 428 =28+ =+ = € k(@))]

The exponential parts are e; = ﬁ + @ in E/ ~ and the conjugates ey, e3,¢e4 of €;
over Q((z)). If v/—1 & k then ey is algebraic of degree 4 over k((z)) and then f is
irreducible in k((z))[0]. Now assume that /—1 € k. Then e is algebraic of degree 2
over k((z)) and hence f has an irreducible right-hand factor R € k((x))[d] of order 2.
To e; corresponds the following right-hand factor in k((z))

12 _ \/—lm0 27 3v/-1 1587  41414/-1
2

L2131 g
(=50~ 720 " * ({3800 T 12800

)$1+

r=06—=x
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Write R = 62 + a16 + ao where ag,a; € k((x)) are to be determined. Dividing R by r
results in a remainder of the form agboo + aibo,1 + bo 2 + /% (aobr o + aiby 1 + b1 2)
for some b; ; € k((z)). By equating this to zero, the following linear equations are
obtained: agb; 0 + a1b;1 +bi2 =0, i = 1,2. Solving these equations over k((z)) gives

1 573 | 3661y/—1
— 52 Z /=19 _ 1) 8t
R =6 +<(2 V=1)z° + ( 6100 6400 )zt + >5 +

(—xl n (_2\/—1 _3r 12291 -1 | 48663

RLAW Li...) 60
5~ 20t 6000 Teao0” T ) '

It is not efficient to compute many coefficients of ag,a; in this way. It suffices to
determine R in this way up to accuracy 2 (i.e. to determine the coefficient of z° in
a; and the coefficient of =1 in ag). Then the higher terms can be computed more
efficiently by the lift algorithm in section 2.4.

2.8 Formal solutions of differential equations

2.8.1 Solutions of semi-regular equations

Let f € k((z))[0] be a semi-regular operator of order n > 1. Then we can apply
section 2.5 to factor f = L(d — r) where r is an element of Z + z - k[[z]]. S,(f) =

Sy(L)d. We can recursively compute a fundamental system of solutions a1, . ..,an—1 €
k((z))[log(x)] of S.(L). Define s; = [ %dx for i = 1,...,n—1 and s, = 1. Then
81,---,8, is a fundamental system of solutions of S,.(f). These s; are elements of

kE((x))[log(z)] because a;/z € k((z))[log(z)] and every element of k((z))[log(z)] ha:
an anti-derivative in this ring. By requiring that the coefficients of z°log(x)° in
81,...,8n_1 are 0 the s; are uniquely defined. To obtain the solutions of f we multiply
the solutions of S,(f) by t = Exp(r) = exp( Ldz). This t € k((z)) can be computed
efficiently as follows. If r is written as m € Z plus an element of z - k[[z]] then ¢ can
be written as 2™ + ty 1 12™ 1! + 1 02™ 2 + -+ .. The the fact that ¢ is a solution of
0 — r gives a linear equation for t,, 1, after solving it we find an equation for ¢,,42,
etcetera.

The same method can also be used for an element f of L[§] which is semi-regular
over L, where L is an algebraic extension of k((z)), for the same reason as in the
remark on page 23. This way a uniquely defined basis of solutions si,...,s, €
L[log(z)] can be computed. By theorem 3 on page 34 (first apply the theorem to
kE((x))[d], then generalize using the remark on page 23) it follows that f is semi-
regular over L if and only if f has a fundamental system of solutions in L[log(z)].

2.8.2 The canonical basis of solutions

Let e1,...,e, € E be representatives for the exponential parts of f. Computing
e; and the corresponding semi-regular parts R, can be done by the algorithm in
section 2.8.4. Note that the algorithm only computes the e; up to conjugation over
kE((x)). This means that the formal solutions will also be computed up to conjugation
over k((x)), i-e. if a number of solutions are conjugated then only one of them will be
computed.
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The semi-regular R., € k((x))[e;, d] has a basis of solutions s; ; € k((z))[e;,log(x)].
So according to section 2.6.1 we get a basis of solutions of the form

y = Exp(e;)s;; where e; € E and s;; € k((z))[e;,log(z)] (2.2)

(recall that Exp(e;) € V stands for exp( &)). In the LCLM factorization in lemma 5
the S_¢, (R.,) are uniquely determined. Furthermore a unique basis of solutions for
semi-regular operators was defined in the previous section. As a consequence, the
basis of solutions obtained in this way is uniquely defined. We will call this basis the
canonical basis of solutions.

For a solution in the form (2.2) s; ; is called the semi-regular part of (2.2) and e;
is called the exponential part of (2.2). The exponential part of (2.2) is an exponential
part of the operator as well. The semi-regular part s; ; is a solution of the semi-regular
part Re,. Note that from a given y in the form (2.2), e; can be determined modulo
~ (without further restrictions on s; ; one can not determine e; € E from y because
when replacing for example e; by e; —1 and s; ; by z-s; ; in y we obtain an equivalent
expression).

A few introductory comments on the next section: Every f € k((z))[0] is an ele-
ment of some L[d] where L is a finite extension of k((z)). By a suitable transformation
0,4 as in the remark on page 23 the problem of finding solutions of f can be reduced
to finding solutions of an operator 8,4(f) € I((x))[6]. The solutions of f can be
obtained from the solutions of 8, 4(f). But the elements of the basis of solutions that
we find for f are not necessarily in the form (2.2) (in other words: are not necessarily
an element of some V,) but are element of some V., definitions follow in the next
section.

Example: § — \/z/(2 + 2/z). Apply 6: > to obtain 36 — £z/(1+ z). A basis for
the solutions is 1 + z. This is of the form (2.2) with e = 0. Now apply an inverse
transformation to find the solution 1 + 1/x of f. This is not of the form (2.2) but it
is a sum of two terms of the form (2.2), one with e = 0 and one with e = 1/2. This
example shows that the direct sum decomposition V(f) = @ Ve(f) in theorem 3 in
the next section which holds for f € k((z))[d] need not hold for f € k((x))[d]. For
f € k((2))[d] a less precise statement is given in theorem 3, corresponding to the less
precise version f of exponential parts.

2.8.3 The solution space and exponential parts

Definition 5 Define for e € E the set

Ve = Exp(e) - k((z))[log(z)] C V

and

Ve = Exp(e) - (k- k((2))[e])[log(2)]) C Ve
Ife; ~ ey then'V,, =V,, 50V, is also defined for e € E/ ~. Similarly V, is defined
for e € E/Q. Define

V() =V.\V() and V() =T. V(.
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Note that & - k((z))[e] = & - E((z'/™)) where n = ram(e). The reason for writing
E-k((z'/™)) instead of k((x'/™)) is that in general (namely if k # k) the field &((z'/™))
is not a subfield of k((z)).

Theorem 3 For non-zero f € k((x))[d]

V() =EVe(f) and dim(Ve(f)) = pe(f)

where the sum is taken over all e € E/ ~. For non-zero f € k((x))[d]

V) =@Ve() and dim(Ve(f)) = Fe(f)

where the sum is taken over all e € E/Q.
This theorem enables us to give an alternative definition of exponential parts and
their multiplicities p.(f) in terms of the solution space of f.

Proof: Let f € k((z))[0]. Each element of the basis of solutions in the previous
section is an element of some V, where e is an exponential part of f. So the sum of
the VeV (f) contains a complete basis of solutions of f. In this basis of solutions,
te(f) elements are in the form (2.2), i.e. p.(f) elements are in V,(f). Hence

V() =S V(f) and dim(Ve(f)) > po(f)

where the sum is taken over all exponential parts of f. It follows from the following
lemma 6 that this is a direct sum. Then order(f) = dim(V(f)) = >_, dim(Ve(f)) >
> te(f) = order(f) hence the > must be an equality. The second statement follows
in the same way.

O

Lemma 6

V=P W and V=P V:

e€EE/~ ecE/Q

Proof: Let n € N. Then k((z)) = @, Exp(q) - (k- k((z'/™))) where the sum is taken
over all g € Q with 0 < ¢ < 1/n. Sofore e E/Q

VEZ@‘/E

where the sum is taken over all e € E/ ~ such that € = e mod €. This reduces the first
direct sum to the second one. Because of the relations Exp(e;)Exp(es) = Exp(e; +e2)
every element of V' can be written as a polynomial in the Exp(e) of degree 1. So
V =Y _Vz We will show that this is a direct sum which finishes the proof of this
lemma.

Let e1,...,eq € E be different modulo €. Let s; € k((z))[log(z)] and s =

> ;Exp(e;)s; = 0. To prove that the sum is direct we need to show that all s;



Operators with Power Series Coefficients 35

are zero. Assume that not all s; = 0 and that d > 1 is minimal with this property.
Then all s; # 0. Now Z'g—; =, Exp(e;)(e;s; + xs}). Suppose the vectors (si,...,54)
and (e;s1 + zs},...,eq48q4 + xs);) are linearly independent over k((z))(log(z)). Then
we can find a linear combination in which at least one (but not all) of the compo-
nents vanishes. This contradicts the fact that d is minimal (multiply with a suitable
element of k((z))[log(z)] to eliminate log(z) from the denominator). So these two

vectors must be linearly dependent over k((z))(log(z)). It follows that

€181 + 8]  eas2+1Ish  ——<

- € k((z))(log(x))

S1 52

S0
ey — €1 = x81 /51 — x8h /52 = xb' /b

where b = s1/s5 € k((z))(log(z)). But es —e; € E and e; —e; ¢ € which contradicts
lemma, 7.

O

Lemma 7 Let b € k((2'/"))(log(z)). Suppose that the logarithmic derivative ¢ =
zb' /b is an element of k((z)). Then c € LZ + z/n . k[[z/"]].

Proof: Write b = p/q with p,q € k((z'/™))[log(z)]. Write p = p/log(z)! + --- and
q = gmlog(z)™ + --- where p;,¢m € k((z'/™)). The dots stands for an element of
E((z'/™))[log(x)] of lower degree as a polynomial in log(z).

'  xp g aplog(x) +--- _ Tgplog(z)™ + - -

c=—=——-—

b P q - pllog(a:)l + .- qmlog(m-)m + .-

_ 2Pt = Gnp)IOE@)T + - s
Pugmlog(z)tm 4 -

Then 2(p;qm — ¢mP1)/ (P1@m) must be the same element c of k((z)). Write r = p;/qm €
k((«'/™)). Then ¢ = 2(pjgm — ¢y,p1)/ (P1gm) = zr'[r € LZ + &t/™ - K[[z'/"]).

O

2.8.4 Coprime index 1 LCLM factorization
Lemma 8 Let f1,...,fs € k((z))[0], e € E/ ~ and f = LCLM(f1,..., fa).- Then

max; ,ue(fz') < Ne(f) < Zﬂe(fi)'

In particular every exponential part e of f is an exponential part of at least one of the

fi-

Proof: These inequalities follow from the dimensions of V,(f) and Ve(f;) in the
following equation: Vo(f) = Ve (32, V(fi)) = >, Ve(fi)- The second equality holds
because the V(f;) are direct sums of V(f;) [ Ve, taken over all e; € E/ ~.
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O

Lemma 9 Let f € k((z))[6] be monic and let fi,...,fs € k((x))[0] be right hand
factors of f. Suppose that ), order(f;) = order(f) and that the f; have no exponential
parts in common. Then

e f=LCLM(f1,.--,f4)
o Ife € E/ ~ and p.(f) > 0 then here is precisely one f; such that V.(f) C V(f;).

e For this e and f; the semi-reqular part R. of [ is the semi-reqular part of f; as
well.

Proof: Using the previous lemma, the fact that the f; have no exponential part in
common and theorem 1 we can conclude that order(LCLM(f1, ..., f4)) = >_ order(f;),
and this equals order(f) by the assumption in this lemma. Since all f;, and hence this
LCLM, are right-hand factors of f the first statement follows. If e is an exponential
part of f then for precisely one ¢ we have p.(f;) > 0. Then p.(f;) = p.(f) because
of the previous lemma and because the p. of the other f; are zero. For the second
statement note that V.(f;) C V.(f), because f; is a right-hand factor of f. Since
te(fi) = pe(f) the dimensions are the same. Hence V.(f) = V.(fi) C V(fi)- The
third statement follows because V(S_.(R.)) = Ve(f) C V(fi), hence S_.(R,) is a
right-hand factor of f; and so R, is a right-hand factor of S.(f;)-

O
Lemma 10 Let f,g € k((z))[0] and suppose gcd(Ns(f),Ns(9)) = 1 holds for all

s € Q, s > 0. Suppose gcd(Ny(f), ST=T+n(Ns(g))) = 1 holds for s = 0 and all
n € Z. Then [ and g have no exponential parts in common.

Proof: For every exponential part e of f there exists a Riccati solution r, of f such
that e is the principal part of r, modulo ~, cf. section 2.6.2. Now the proof follows
from the next lemma.

O

Lemma 11 Let r € k((z)) be a Riccati solution of f € k((x))[0]. Suppose r, viewed
as an element of |, k((z'/™)), can be written as rsx® plus higher order terms, where
s€Q, s<0andr; #0 if s <0. Write s = n/d with n,d € Z, ged(n,d) = 1 and
d > 0. Then —s is a slope of f and r? is a root of the Newton polynomial N_,(f).

Proof: § —r is a right-hand factor of f. If the ramification index of 7 is 1 the lemma
can easily be proved using the fact that the slopes of factors of f are slopes of f and
the Newton polynomials of right factors of f are factors of the Newton polynomials
of f, cf. section 2.3.4. However, we have not defined the Newton polygon and Newton
polynomial over ramifications of k((z)). Choose d' € N such that 6;,4(6 —r) €
k((z))[6]- Then d must divide d'. Now 6; 4(§ —r) is a right-hand factor of 6; 4 (f).
The slope of 6y 4(6 — r) is —sd' so 6,4 (f) has this slope as well. Hence f has a
slope —s. The Newton polynomial of 61 ¢(§ —r) is T —rs. If N_,(f) = (TP +
ap_1TP7 1+ -+ +agTP) where c is a constant then N_,q (61 4 (f)) is a constant times
Tpd+d’dap_1T(p_1)d+- et dPaoTO. So +T —rs is a factor of this Newton polynomial

hence r¢ is a root of T? + ap_1 TP~ + -+ + agT°.
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O

Now we can write algorithm LCLM factorization as follows. Take algorithm Co-
prime Index 1 Factorizations in section 2.5. Replace the lines

if s =0 then

M:={g1,...,9:}
N =M\ {9|9(T) = (T +1i),h € M,i € N,i > 0}
else

by the lines

if s =0 then
M:={g1,...,9-}
M':= M\ {g|g(T) = h(T' +i),h € M,i € N,i > 0}
M" := {{n|3;cz9n(T +14) = h}|h € M'}
N == {[l;cp 9:'|h € M"}
else

The resulting algorithm produces a number of factorizations. The sum of the
orders of the right factors is equal to the order of f. The different right factors
fi,---, fqa have no exponential parts in common because of lemma 10. Hence f =
LCLM(f1,-.., f4)- This variant on the algorithm in section 2.5 produces an LCLM
factorization, i.e. it produces a number of right-hand factors fi,..., fq such that
f = LCLM(f1,..., fa)- The orders of the f; need not be minimal because we only
apply the “easy” (i.e. coprime index 1) factorization method.

Algorithm semi-regular parts:

Input: f € k((z))[d]

Output: representatives ej,...,eq € E for all exponential parts up to conjugation
over k((z)) and the corresponding semi-regular parts R, € k((z))[e;,d].

1. Same as case 1 in Algorithm Riccati solution. This is also a special case of case
6 below after a suitable substitution map S,.

2. If algorithm LCLM factorization produces a non-trivial (i.e. d > 1) LCLM
factorization f = LCLM(fi,..., f4) then apply recursion to the right factors

frs--os fa

3. If the condition of case 3 in Algorithm Riccati solution holds, and furthermore
the slope of f is non-zero, then proceed as in case 3 in Algorithm Riccati solution;
apply recursion to the right-hand factor.

4. Same as case 4 in Algorithm Riccati solution, apply recursion to S.,—s(f).
5. Same as case 5 in Algorithm Riccati solution, apply recursion on R.

6. If f has one slope s = 0 and the Newton polynomial has the following form
Ns(f) = 9+ St=1+i,(9) - ** ST=T+:,(g) where n > 0 and i; are integers, and
g is an irreducible polynomial. Let r € k be a root of g. Extend the field



38 Chapter 2

k with r (note that g can have degree 1 in which case r € k). Define h =
T-(T+4) - (T +1iy,). This is the largest factor of No(S,(f)) which has only
integer roots. Now use a coprime index 1 factorization (cf. Algorithm Coprime
Index 1 Factorizations in section 2.5) to compute a right factor R of S,.(f) that
has Newton polynomial h.

The right-hand factors R that this algorithm produces in case 6 are the semi-
regular parts of f (actually such R is an image of a semi-regular part under certain
maps 0, 4 that were used in case 5). The corresponding exponential parts are obtained
by keeping track of the substitution maps S, and ramification maps 6,4 that were
performed. The recursion in case 2 of the algorithm is valid because of lemma 9.

In the cases 3 and 5 of the algorithm a field extension over k((x)) is applied (also in
case 6 if degree(g) > 1 but the argument is almost the same for this case). Suppose the
degree of the of this field extension is d. Then the algorithm computes a right factor
f1 of f and uses recursion on this right factor. Let f1,..., f4 € L[d] be the conjugates
of f1 over k((z)) where L is some finite extension of k((z)). Lemma 10 and lemma 9
were formulated for k((z))[d] instead of L[§], but they are still applicable when using
the less precise notion of exponential parts 7. We must replace the condition “for all
n € Z” by “for all n € " in lemma 10 in order for this lemma to hold for the case
of 7u instead of u. So our algorithm would produce all exponential parts and semi-
regular parts if we would use recursion on not only f; but alsoon fs, ..., f;. However,
this could introduce very large algebraic field extensions (worst case d factorial) which
could make the algorithm too slow to be useful. If we would use recursion on fa,..., fa
we will only find conjugates of the exponential parts and semi-regular parts that are
obtained from f;. So there is no need to do the recursion on fs, ..., f; because the
result of that computation can also be obtained as the conjugates (which are not
computed, however) of the output of the recursion on f;.

Algorithm formal solutions:

Input: f € k((2))[d]

Output: a basis of solutions, up to conjugation over k((x))

Step 1: this is the main step: apply algorithm semi-regular parts.
Step 2: compute the solutions s; ; of R.; as in section 2.8.1.
Step 3: Return the set of Exp(e;)s; ;.

Our method for computing formal solutions can not avoid the use of field exten-
sions over k((z)) because these field extensions appear in the output. It does, however,
delay the use of algebraic extensions as long as possible. The use of algorithm LCLM
factorization reduces the problem of finding solutions to subproblems for operators
of smaller order. This way the order of the operator is as small as possible at the
moment that an algebraic extension is introduced, and so the amount of computation
in algebraic extensions is minimized. Lazy evaluation is used to minimize the number
of operations in the constants field.
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2.9 A characterization of the solution spaces

The symbol log(z) is viewed as an element of a differential extension of k((z)) which
satisfies the equation y' = 1/z. The corresponding linear differential equation is
y" + Ly’ = 0. We do not view log(z) as a function on an open subset of the complex
plane, but as a formal expression which is defined by the property that the derivative
is 1/z. From this viewpoint it is clear that the k((z))-homomorphism

Stog : k((2))[log(z)] = k((z))[log(z)]

defined by Siog (log(z)) = log(z)+1is a differential automorphism, because the deriva-
tive of log(z) + 1 is also 1/z, and hence all differential properties of log(z) + 1 and
log(z) are the same. This automorphism can be extended to the ring V' by defining
Siog(Exp(e)) = Exp(e). If f € V[é] and y € V is a solution of f then S, (y) is a
solution of Si,z(f). Note that the differential Galois group G of the Picard-Vessiot
extension k((z)) C k((x))(log(x)) contains more elements than just Si,z. However,
we will see that it is sufficient to consider only Sio,. This is explained from the fact
that G is equal to the Zariski closure of the group generated by Siq,.

Let f € k((x))[d]. The questions of this section are: what are the possible right-
hand factors of f in k((z))[d], or in k((x))[d], what are the semi-regular and regular
right factors. Every right factor R corresponds to a subspace of solutions V(R) C
V(f). But not every linear subspace W C V(f) corresponds to a right factor of f
because we do not look for right factors in V[d] but only in smaller rings like k((x))[0].
So the question now is the following. Given a finite dimensional k vector space W C V,
when is W the solution space of either

1. a semi-regular operator in k((z))[d]
2. aregular operator in k((z))[d]

3. any operator in k((z))[]

4. any operator in k((z))[d].

Example: Let log(x) be a basis of W. Now there can not be any f € k((z))[d] such
that W = V(f). Because then Siog(log(z)) would be a solution of Sieg(f) = f. So f
has log(z) and Siog(log(x)) — log(z) = 1 as solutions. Hence the dimension of V (f)
is at least 2.

Lemma 12 Let W be a n dimensional k subspace of V.. Then W = V(f) for some
semi-regular f € k(())[d] if and only W has a basis by,...,b, € k((z))[log(z)] and
Slog(W) =W.

Proof: Let f € k((z))[d] be semi-regular. Then it follows from section 2.8.1 that V(f)
has a basis of solutions in k((z))[log(x)]. Furthermore Siog(V(f)) = V(Sig(f)) =
V().

Now suppose Siog (W) = W and suppose by,...,b, € k((z))[log(z)] is a basis of
W as a k vector space. We want to construct a semi-regular operator f such that
V(f) = W. Let b be an element of W of minimal degree d as a polynomial in log(z).
Suppose d > 0. Then Sio5(b)—b € W has degree d—1 which contradicts the minimality
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of d. Hence d = 0, so b is an element of k- k((z)). Then b € [ - k((z)) where [ is
some finite extension of k. After multiplication by a constant we may assume that
one of the coefficients of b is 1. Then, by taking the trace over the field extension
k C 1, we may assume b € k((x)) and b € W (use here that W has a basis of elements
in k((z))[log(z)], hence the trace over k of an element b € W is an element of W).
Now b # 0 because the trace of the coefficient 1 is not 0. Because b € V(f) for the
operator f that we want to construct it follows that R = § — zb'/b must be a right
factor of f. This operator R is a k linear map from V to V. The kernel is the solution
space of R. It has dimension 1. Because the kernel is a subspace of W it follows
that dim(R(W)) = n — 1. It is easy to check that R(W) satisfies the conditions
of this lemma, hence by induction there is a semi-regular operator L € k((z))[d]
such that V(L) = R(W). Now define f = LR. This is a semi-regular operator in
k((z))[d] because L, R € k((x))[d] are semi-regular. f(W) = L(R(W)) = {0} and
dim(W) = order(f) so V(f) = W.

O

From the remark on page 23 it follows that the lemma is also valid when k((z)) is
replaced by a finite extension L of k((z)).

Lemma 13 Let W be a n dimensional k subspace of V.. Then W = V(f) for some
regular f € k((2))[d] if and only W has a basis b1, ...,b, € k[[z]] and all non-zero
elements of W have valuation < n.

Proof: If f € k((x))[d] is regular it is known by the Cauchy theorem that there
exists a basis by, ..., b, € k[[z]] of solutions such that b; is z'~! modulo z™. It is easy
to compute these b; as follows. The equation f(b;) = 0 (writing f as an element of
k[[z]][0] is more convenient for this) gives a linear equation in the coefficient of z™ in
b;, a linear equation for the coefficient of 2™*!, etcetera. From these equations the
coefficients of b; can be computed.

To prove the reverse statement let bq,...,b, € k[[z]] be a basis of W and suppose
that all non-zero elements of W have valuation (i.e. the smallest exponent of z which
has a non-zero coefficient) smaller than n. Then, after a basis transformation, we may
assume that b; is z'~! modulo 2™. Now define R; € k[[z]][0] as Ry = 0 -1/ /b,. Define
for 1 < d < n the operator Rq41 € k[[z]][0] as follows: define ygr1 = Rg(bgt+1). Note
that v(R;i(bgy1)) = d—ifor 1 < i < d. So v(yay1) = 0 and hence 8 -y}, /yat1 €
E[[z]][0]. Now define Ryy1 = (0 — ¥}y, /yar1)Ra- Now f = R, is a monic element of
E[[z]][0], hence regular, with V(f) = W.

O

From the lemma we see that right factors of regular operators need not be regular.
Suppose for example that 1,z,z? is a basis of solutions of f. Then the right-hand
factor given by the basis of solutions 1,z? is not regular. But the right factor with
the basis 1, z 4+ 22 is regular. An LCLM of regular operators is not necessarily regular
either. For certain purposes (not for all) semi-regular is a more convenient notion than
regular because factors, products, LCLM’s and symmetric products of semi-regular
operators are semi-regular.

If W C V is a solution space of a differential operator f € k((x))[d] then W =
@-(W V=) because of theorem 3. Furthermore Sioq(W) must equal W because f
is invariant under Si,g. This proves one part of the following lemma.
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Lemma 14 Let W be a finite dimensional E_subspace of V. Then W = V(f) for
some f € k((x))[d] if and only W = @z(W (| Ve) = Siog(W) where the sum is taken
over alle € E/Q.

Proof: Assume W # {0} is finite dimensional and W = @ (W Vz) = Slog( ).
Let e € E such that W, = WV, # {0}. Note that Siog(Ve) = V. hence W,
is invariant under Si,z. W, has a basis of the form Exp(e) - s;, i = 1,...,t where
s;i € k((z))[log(x)] so s; € L[log(z)] for some finite extension L of k((z)). Using
lemma 12 it follows that there exists an operator R, € L[d] which has s;, i =1,...,t
as a basis of solutions. So S_(R.) has Exp(e)s;, i = 1,...,t as a basis of solutions and
80 S_¢(Re) must be a right-hand factor of the operator f that we want to construct.
Choose a representative e € E for every € € E/@ for which W [ Vz # {0}. Construct
the corresponding S (R.) and define f as the LCLM of these S_.(R.). Then V(f) =
w.

O

Lemma 15 Let W be a finite dimensional k subspace of V. Then W = V (f) for some
f € k((2))[9] if and only the conditions of the previous lemma hold, and furthermore
W is invariant under the action of the Galois group of the algebraic extension k((z)) C

k((x))-

Proof: if 7 is a k((z)) automorphism of k((z)) then 7 can be extended to V by
setting 7(log(z)) = log(z) and 7(Exp(e)) = Exp(7(e)). Now for any f € k((z))[d]
we have V(7(f)) = 7(V(f)) because conjugation commutes with differentiation. So
if f € k((z))[d] then V(f) = 7(V(f)) which proves one part of the lemma. Now
suppose W = V(f) for some monic f € k((z))[0] and suppose that W = 7(W).
Now order(f — 7(f)) < order(f) and W C V(f — 7(f)) so dim(V(f — 7(f))) >
order(f — 7(f)) and hence f — 7(f) must be 0. So if W is invariant under the Galois
group of the algebraic extension k((z)) C k((z)) then f is invariant as well, hence

f € k((z))[d]-

O

Every y € Vis afinite sum y = ), b, with b, € V.. Define W as the closure under
Galois actions and under Sy, of the set ), k - b.. Now W satisfies the conditions of
the previous lemma, hence for every y € V there is a g € k((x))[d] \ {0} such that
y € V(g). From this it follows that for any non-zero f € k((z))[6] themap f: V — V
is surjective. This is seen as follows. If the kernel of g is not contained in the image
of f then the dimension of the kernel of gf would be smaller than the sum of the
dimensions of the kernels of g and f. In other words, order(gf) < order(g) + order(f)
which is a contradiction. Hence V(g) C f(V) for every g and so f is surjective,
fvy=v.
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Chapter 3

Factorization of Differential
Operators with Rational
Functions Coeflicients

In this chapter we will give a new efficient method for factorizing differential operators
with rational functions coefficients. This method solves the main problem in Beke’s
factorization method, which is the use of splitting fields and/or Grobner basis.

3.1 Introduction
A differential equation
y™ +a, 19" 4 by +agy =0
corresponds to a differential operator
f=0"+ap, 10" 1+ +0apd°

acting on y. In this chapter the coefficients a; are elements of the differential field k()
and 0 is the differentiation d/dz. The field k is the field of constants. It is assumed
to have characteristic 0. k is the algebraic closure of k. The differential operator f is
an element of the non-commutative ring k(z)[d]. This is an example of an Ore ring
[40]. A factorization f = LR where L, R € k(z)[0] is useful for computing solutions
of f because solutions of the right-hand factor R are solutions of f as well.

The topic in this chapter is factorization in the ring k(z)[0]. Multiplication in
k(z)[0] is not commutative. However, some properties of are independent of the
order of the multiplication, for example the Newton polygons of fg and gf at a point
p are the same. The non-commutativity is one of the reasons that factorization in
k(z)[0] is difficult. To handle this difficulty we will extract the commutative part p..(f)
of an operator f. We will first try to find properties of differential operators which do
not depend on the order of multiplication and then we will define the commutative
part of f as the collection of these properties that we found. For this purpose we will
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first define exponential parts and their multiplicities for local differential operators in
section 3.3. Then u.(f) will be defined as the collection of all exponential parts and
their multiplicities at all singularities of f.

Let f = LR where f € k(x)[0)] is given and where L, R € k(z)[0)] is a factorization
that we want to compute. The commutative part u, has the following property

() = pa (L) + pu(R).

This equation leaves only a finite number of possibilities for p.(R). Beke’s method
(cf. [6] and also section 3.4) for computing first order right-hand factors R of f can
be explained in terms of u. as follows. Try all possible u.(R) and for each p.(R)
the problem of finding R is reduced to computing the rational solutions of a certain
differential operator. Computing rational solutions of a differential operator can be
done quickly (cf. [1]) but the number of possible u,(R) one needs to check depends
exponentially (worst case) on the number of singularities. So Beke’s method performs
well on examples with few singularities, but for operators with many singularities
“try all possibilities” is not a good answer to the question which u,(R) need to be
considered. Furthermore this method involves computing in algebraic extensions over
k which can be of exponentially large degree. Most previous factorization algorithms
(except [47]) are based on Beke’s algorithm for computing first order factors, and use
the exterior power method for computing higher order factors.
This chapter is organized as follows:

e Sections 3.5 and 3.6 contain the main result of this chapter: An algorithm, that
does not use computations with exponentially large algebraic extensions nor
Grobner bases, for factorizing differential operators. This algorithm can produce
(first order or higher order) factors, or irreducibility proofs, for a certain class
(specified in section 3.5) of differential operators. However, not every operator
is in this class, so not every operator can be handled. It even need not compute
all first order factors.

e Section 3.7. A supplemental algorithm, that makes our algorithm complete for
first order right-hand factors.

e Section 3.8. The exterior power method. This is another supplemental algo-
rithm, obtained from the literature, to make the algorithm complete for higher
order factors. The exterior power method is not efficient; only small operators
(low order and small coefficients) can be handled this way. So we want to avoid
it whenever possible.

e Section 3.4. Beke’s algorithm for computing factors of order 1, reformulated in
our terminology.

In section 3.7 we use the algorithm of sections 3.5 and 3.6 to compute a set S
with at most order(f) elements such that p.(R) € S for all first order right-hand
factors R. When such an S is computed, the problem of computing all first order
right-hand factors is practically solved because the number of possibilities that need
to be checked is now linear instead of exponential like in Beke’s algorithm, and the
algebraic extensions that we need to work with are of much lower degree than in
Beke’s algorithm. As already mentioned, Beke’s algorithm, section 3.4, sometimes
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performs well but it can also be extremely slow if there are many singularities. For
such cases the algorithm obtained by combining sections 3.5, 3.6 and 3.7 is an good
alternative.

Computing left-hand factors and computing right-hand factors are equivalent
problems. They can be reduced to each other by applying the adjoint. The ad-
joint is a k(z)-anti-automorphism of k(z)[0] given by & — —d. It interchanges the
role of left and right. Using the adjoint and the algorithm in sections 3.5, 3.6 and 3.7
we can compute all first order left and right-hand factors so every operator of order
< 3 can either be factored or proven to be irreducible. The method given sections 3.5
and 3.6 can also compute higher order factors (or to produce irreducibility proofs)
for many (see section 3.5 for a more precise description) operators of order > 3.
Tests show that this method can handle large examples; operators in Q(x)[9] of order
> 10 with > 10 singularities are often still feasible if the bound that is computed in
section 3.9.1 is not too high. This would be impossible with previous factorization
algorithms that use the exterior power method for computing higher order factors;
computing exterior powers of such large operators will cause the computer to run out
of memory. Note that in a few cases, namely the operators which do not belong in
the class specified in section 3.5, we have to use the exterior power method as well,
in which case factorizing operators of order 10 is impossible as well.

If the bound in section 3.9.1 is very high then even small operators are hard
to factor. We can not hope to solve this problem; for example the factorization of
0% — %6 + 2 with n = 10'° is not feasible no matter which method we use because
the result will not fit in any existing computer.

3.2 Preliminaries

The reader is assumed to be familiar with sections 3, 6 and 8 (except for the al-
gorithm) of chapter 2. From section 3 the preliminaries (note that these are found
elsewhere as well, references are given in chapter 2): Newton polygon/polynomial,
differential field, Ore ring, the ring k((x))[d] where § = 28, LCLM (Least Common
Left Multiple), algebraic extensions of k((x)) and the universal extension. From sec-
tion 6: exponential parts and from section 8 the relation between exponential parts
and formal solutions. In the next section we will give a different introduction to
exponential parts which is hopefully easier to understand than section 6 in chapter 2.

We assume that the characteristic of the constants field &k is 0. If f € k(z)[0)
then f has finitely many coefficients in k(z) and each of these coefficients has finitely
many coefficients in k. So without loss of generality we can restrict ourselves to a
coefficients field k and a differential operator f € k(x)[0] where k is finitely generated
over .

3.3 Exponential parts of local differential operators

This section gives a short introduction of exponential parts. For proofs of the state-
ments in this section see chapter 2. The notations are the same as in chapter 2.
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3.3.1 A description in terms of the solution space

Let V be the universal extension (called R in lemma 2.1.1 in [24]) of k((z)). This is
a differential ring extension of k((z)) consisting of all solutions of all f € k((x))[d].

Let f € k((z))[6]\ {0} be a differential operator. The action of f defines a k-linear
surjective (cf. page 41) map

f: V-V

The kernel of this map, denoted as V(f), is the solution space of f. V contains all
solutions of f. Hence the dimension of the kernel of f on V is maximal

order(f) = dim(V(f)).

This number dim(V (f)) is useful for factorization because it is independent of the
order of the multiplication, i.e. dim(V(fg)) = dim(V(gf)). To obtain more of such
useful numbers we will split V(f) in a direct sum and look at the dimensions of the
components (V,, E and ~ are defined in chapter 2, and are described below as well)

v=p V.

ecE/~

The V, are k-vector spaces and also k((z))[0]-modules. So f(V.) C V, for all f €
E((x))[0] \ {0}. Then f(V.) = V. because f is surjective on V. The kernel of f on V,
is denoted by V,(f) = V(f) [ Ve. Denote

pre(f) = dim(Ve(f))-

This is consistent with the definition of u.(f) in chapter 2 because of theorem 3 on
page 34. These p. are useful for factorization because they are independent of the
order of the multiplication, i.e. if f,g € k((z))[d] \ {0} then

pe(9f) = pe(fg) = pe(f) + pe(g)-

This equation is lemma 4 in chapter 2. It also follows from the fact that the dimension
of the kernel of the composition of two surjective linear maps equals the sum of the
dimensions of the kernels.

Recall the following definitions from chapter 2. These definitions were done in
such a way that the subspaces V, of V are as small as possible (more precisely: V, is
an indecomposable k - k((x))[6]-module) because then the integers . (f) give as much
as possible information about f. Denote the set

E = UE[afl/"]
and the map

Exp: E—>V

as Exp(e) = exp(f £dx). To define Exp(e) without ambiguity one can use the con-
struction of the universal extension (briefly described in section 2.3.2, the proof of this
construction is found in [24]). Then Exp(e; + e2) = Exp(e1)Exp(e2) so Exp behaves
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like an exponential function. For rational numbers ¢ we have Exp(q) = 27 € k((z)).
Denote (see also page 33)

Ve = Exp(e) - (k- k((2))[e])[log(z)] C V.

Note that k- k((z))[e] = k- k((z'/™)) where n is the ramification index of e. Define ~
on F as follows: e; ~ ey if and only if e; — e, is an integer divided by the ramification
index of e;. V,, = V,, if and only if e; ~ ez so V, is defined for e € E/ ~. Hence
te(f) is defined for e € E/ ~ as well.

V()= @ V()

e€E/~

An element e € E/ ~ is called an ezponential part of f if pe(f) > 0. The number
pe (f) = dim(Ve(f)) is called the multiplicity of e in f. The sum of the multiplicities
of all exponential parts of f equals the order of f.

3.3.2 Exponential parts and semi-regular parts

We now give the definition of u.(f) as it appears in chapter 2. Let e € k((z)). Then
the substitution map

Se : k((2))[6] = k((2))]d]
is the k((z))-automorphism given by

Se(d) =d+e.
The following gives the relation between the solution spaces

Exp(e) - V(Se(f)) = V(f)-

Let f € k((x))[0] \ {0} and e € E. Let n be the ramification index of e. Let
P = No(S.(f)) be the Newton polynomial corresponding to slope 0 in the Newton
polygon of S (f) € k((z'/™))[8]. Now . (f) is defined as the number of roots (counted
with multiplicity) of Pin Z. If e; ~ ey then pe, (f) = pe, (f) for all f € k((z))[6]\{0}
hence p.(f) is defined for e € E/ ~ as well.

Let L be a finite algebraic extension of k((z)) and let f € L[6]. Then f is called
semi-regular over L if f has a fundamental system of solutions in L[log(z)]. According
to chapter 2 this is equivalent with the following two conditions

e f is regular singular

e The roots of the Newton polynomial Ny(f) are integers divided by the ramifi-
cation index of L over k((z)).

Note that the definition of semi-regular depends on the field L. For f € k((z))[d]
we have po(f) = order(f) if and only if all solutions of f are elements of Vo =
k - k((x))[log(z)] if and only if f is semi-regular over k((z)). A regular operator is
semi-regular as well.

Semi-regular operators are “easy” differential operators. It is easy to compute the
formal solutions (cf. chapter 2) for such operators. One of the benefits of exponential
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parts and semi-regular parts is that we can use them to split up a “difficult” differential
operator f as an LCLM of “easier” parts. More precisely: an operator f can be
written as an LCLM of operators which are of the form S_.(R,) for some e € E and
semi-regular R, € k((z))[e, d].

Let e € E, f € k((z))[d] and p.(f) > 0. Then the semi-regular part R, of f for
e € E is defined in chapter 2 as the highest order monic right-hand factor of S, (f) in
k((z))[e, 6] which is semi-regular over k((z))[e]. The order of R, is pe(f). S_e(R.) is
a right-hand factor of f. If f is monic and ey,...,eq € E is a list of representatives
of all exponential parts of f, then (cf. section 2.6.1)

f = LCLM(‘SL& (Re1)7 ) S*Cd (Red))' (31)

This LCLM factorization of f corresponds to the direct sum splitting (cf. sec-
tions 2.8.2 and 2.8.3)

V(f):Va(f)@"'@Ved(f)' (32)
The solution space of S_¢; (Re;) is Ve, (f).

3.3.3 Generalized exponents

In some applications (section 3.9.1, chapter 4 and chapter 5) the use of the equivalence
~ erases useful information about the differential operator. We would like to make a
canonical choice of representatives in F for the exponential parts (which are in E/ ~),
and call these the generalized exponents!.

In chapter 2 we first defined exponential parts using the map S, and the Newton
polynomial Ny (because such a definition is convenient for computing the exponential
parts) and afterwards related the exponential parts to the formal solutions (because
that makes exponential parts easier to understand). We will do the same for the
generalized exponents, first define them using Ny and S,, and then relate them to the
formal solutions by introducing the notion of the valuation of a formal solution.

Definition 6 Let e € E and f € k((x))[d] \ {0}. Define the number v.(f) as the
multiplicity of the root 0 in No(Se(f)).

e € E is called o generalized exponent of f if v.(f) > 0. The number v (f) is
called the multiplicity of this generalized exponent.

For a given € € E/Q the sum of v,(f) taken over all e € E for which € is e mod @
equals 7iz(f). Hence by theorem 1 on page 27 it follows that

Z Ve(f) = order(f). (3.3)

eckE

Definition 7 Let f € k((x))[0] be of order n. The list e1,...,e, € E is called a list
of generalized exponents of f if for all e € E the number of e; which equal e is ve(f).

Tn an earlier version of this text a generalized exponent was called canonical ezponential part
(meaning: a canonical choice of a representative in E for an exponential part in E/ ~) and the list
of generalized exponents was called canonical list.
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Two lists of generalized exponents are equivalent if they are a permutation of each
other. Up to this equivalence a list of generalized exponents is uniquely defined for
every f € k((z))[d]. If f is regular singular then the list of generalized exponents is
the list of roots of the Newton polynomial No(f) of f.

Lemma 16 If e € E, f € k((z))[0] and e1,...,en € E is the list of generalized
exponents of f then e; —e,..., e, — e is the list of generalized exponents of S¢(f).

Proof: This follows from the fact that Se,_(Se(f)) = Se, (f)-

O

Lemma 17 If R is a right-hand factor of f then the list of generalized exponents of
R is a sublist of the list of generalized exponents of f. In other words: v.(R) < ve(f)
for alle € E.

Proof: If R is a right-hand factor of f then S.(R) is a right hand factor of S, (f). So
the Newton polynomial No(S(R)) is a factor of No(Se(f)), cf. section 2.3.4.

O

The lemma does not hold for left-hand factors of f. Take for example f = §-(§—3/z5).
The list of generalized exponents is 5,3/z® and the list of generalized exponents of §
is 0.

Lemma 18 If fi,..., fa € k((2))[d] have no generalized exponents in common then
the list of generalized exponents of f = LCLM(f1,..., f4) is the concatenation of the
lists of generalized exponents of the f;.

Proof: Denote [ as the list of generalized exponents of f and m as the concatenation
of the lists of generalized exponents of the f;. The lists of generalized exponents of
the f; are sublists of [ and since they have no elements in common it follows that m is
a sublist of . The number of elements of m is the sum of the orders of the f;. Hence
this number is > order(f), and this equals the number of elements of I. Hence [ is m
(up to a permutation).

O

Note that if the f; do have generalized exponents in common then not every gener-
alized exponent of f needs to be a generalized exponent of one of the f;. Take for
example f; such z is a basis of V(f;) and take f, such that = + z'° is a basis of
V(f2)- Then the lists of generalized exponents of f; and fs are both 1, but the list
of generalized exponents of LCLM(f1, f2) is 1, 10.

Consider the set

Vo = k((z))[log()]

cf. page 34 in chapter 2. We can define a valuation

v: Vo — Q| J{oo}
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where v(0) = oo and v(a) with a # 0 is the smallest exponent of z in a with a non-zero
coefficient. So z=%(¥qa € E[[z'/"]][log(x)] for some n and v(a) is maximal with this
property.

V. C V is defined as Exp(e) - Vy, cf. chapter 2. Define the set

Vi = (Uve) \ {0}

where the union is taken over all e € E. Notice that V, is closed under multiplication.
We can extend the valuation v to Vi

v:Ve—FE

as follows: let y € Vi. Then y = Exp(e)r for some e € E (which is determined modulo
@Q by y) and r € V. Now define v(y) = e + v(r). This v(y) does not depend on the
choice of e and r. For all e € E we have v(Exp(e)) = e. If v(y;) and v(ys) are both
defined (i.e. y1,y2 € Vi) then v(y1ys) = v(y1) + v(y2)-

Theorem 4 Let f € k((z))[0] be an operator of order m. There exists a basis
Y1, Ym € Vi of V(f) such that v(y1),...,v(ym) is the list of generalized exponents
of f. Conversely, for any solution y of f in Vi the valuation v(y) is a generalized
exponent.

Proof: We will first prove the theorem for operators f € k((«'/™))[6] which are
semi-regular over k((z'/™)). Note that v([ % dr) = v(a;) (take the coefficient of the
term 2°log(z)° in the integral equal to 0). From this it follows by induction that the
algorithm in section 2.8.1 produces a basis of solutions for which the valuations are the
roots of the Newton polynomial (and hence these valuations form the list of generalized
exponents). Now suppose y € k((x/"))[log(z)] is a solution of this semi-regular f.
Factor f (cf. section 2.5 and 2.8.1) as f = L-(6—g+a) where g € 1Z, a € z'/™ [[2*/"]]
and L € k((z'/™))[d] is semi-regular. If v(y) = ¢ then v(y) is a generalized exponent
of § — g+ a and hence of f as well. If v(y) # ¢ then write y = 3=, ; ¢; jz*log(x)?. Here
the sum is taken over ¢ € %Z and j € N. Take j maximal such that c,, ; # 0. Then
the coefficient of 2°(log(z)? in (6 — g+ a)(y) = zy' — qy + ay is cy(y),; (v(y) —q) # 0.
So v((6 — ¢+ a)(y)) < v(y). Furthermore all terms in zy' — qy + ay have valuation
> v(y) hence v((§ — ¢+ a)(y)) = v(y). Now (§ — q + a)(y) is a solution of the semi-
regular operator L and hence by induction v(y) is a root of the Newton polynomial
of L. Because f is regular singular the Newton polynomial of L is a factor of the
Newton polynomial of f and hence v(y) is a root of the Newton polynomial of f. So
the theorem holds for any semi-regular f € k((z'/™))[6].
To prove the theorem for any f € k((z))[d] write f as

f=TLCILM(S_,,(Rey),---,S—c, (Re,)) (3.4)

as in section 2.6.1. For a definition of R, for e € E and f € k((z))[0] see section 2.6.1.
It follows from the definition that the order of R, is 7i,(f). The solutions of S_.(R,)
are in V. (f), cf. section 2.8.2. The dimension of the solution space of S_.(R,) is
order(R,) = T, (f) which equals the dimension of V.(f) by theorem 3 on page 34.
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Hence V(S_.(R.)) = V.(f) and equation (3.4) corresponds to the following direct

sum
V(f) 2761(f)®-'-®veq(f)'

Theorem 4 holds for the R,, because these are semi-regular over k((z'/™)) for some
n. So we have a basis of solutions (computed by the method of section 2.8.1) y; ;,
J=1,...,1,(f) of R., such that the valuations of this basis form the list of gen-
eralized exponents of R.,. So Exp(e;)yi,j, j = 1,..., R, (f) is a basis of solutions of
S_¢;(R.;) and according to lemma 16 the valuations of these Exp(e;)y;; form the
list of generalized exponents of S_, (R.,). Then from equation (3.4) it follows that
Exp(ei)yij, 3 = 1,...,H,,(f), i = 1,...,q is a basis of solutions of f and according
to lemma 18 the valuations of this basis is the list of generalized exponents.

To prove the second statement take y € V(f) with y € V,. Then y is a non-zero
element of V,(f) for some e € E. So y is a solution of S_.(R.), and hence Exp(—e)y
is a solution of R,. Theorem 4 is true for R, because it is semi-regular over k((z'/"))
for some n. So v(Exp(—e)y) = v(y) — e is a generalized exponent of R.. Then by
lemma 16 it follows that v(y) is a generalized exponent of S_.(R.) and hence by
lemma 17 v(y) is a generalized exponent of f.

O

The following lemma gives a relation between factorizations in k((z))[0] and gen-
eralized exponents.

Lemma 19 Let rq,...,r, € k((z)) and f = 6" + an—16" 1 + --- + apd° € k((z))[4]

such that f = (6 —r1)--- (6 —ryn). Define v'(r) € Q for r € k((x)) as the minimum
of 0 and v(r). Let

e; = pp(ri) — Y_v'(ri — ;).

i>i
Then ey, ..., ey is the list of generalized exponents of f. Furthermore
pp(an-1) ==Y (ei+ Y _v'(ei —€))). (3.5)
i i>i

Recall that for r € k((x)) the principal part pp(r) € E is defined in section 2.6 by the
condition that v(r — pp(r)) > 0.

Proof: Let vo(a) for non-zero a € k((x))[d] be the smallest exponent of z in a
with a non-zero coefficient in k[§], and vo(0) = oo, which generalizes the definition
of vg in section 2.2. Then vg is a valuation on k((z))[0] and v'(r) = ve(d — r) for
r € k((z))- Now the following relation for the Newton polynomials holds for all
non-zero L, R € k((z))[0]

No(LR) = No(Sy,(r) (L)) - No(R)
which is a generalization of the formula in section 2.3.4 to k((z))[d]. Let L =6 —ry
and R = (6§ —72)---(0 —ryp) so f = LR. By induction we know that es,..., e,
is the list of generalized exponents of R. The list of generalized exponents of f is
the list of generalized exponents of R plus one more element. To show that this
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element is e; we must show that the multiplicity of the root 0 in the polynomial
No(Se, (f)) equals the multiplicity of the root 0 in Ny(Se,(R)) plus one, in other
words No(Se, (f))/No(Se, (R)) =T (here T is the variable used to denote the Newton
polynomial, as in chapter 2). Se,(f) = Se, (L) - Se, (R) and vg(Se, (R)) = vo(Se, (0 —
r9)) + -+ v(Se, (6 — 7)) =wvo(d —ra+e1)+ - +v9(d — 1y +e1) =v9(d — 1o +
r1)+---+vo(d — 7, +71) = pp(r1) — e1. Hence

No(Se, (£))
No(Se, (R))

Equation (3.5) follows from the fact that r; +---+r, = —a,_1 (note that v'(r; —r;) =
v'(e; —ej))-

= No(Suo(s., () (Ses (L)) = No(Spp(ri) (L)) =T.

O

Summary: The generalized exponents are the valuations of the solutions (of those
solutions for which the valuation is defined, i.e. which are in V,). The exponential
parts are the generalized exponents modulo the equivalence ~. Generalized exponents
of right-hand factors of f (but not of left-hand factors) are generalized exponents of
f as well. For exponential parts we have this property for all factors.

3.3.4 Localization and exponential parts

For a point p € P'(k) = k{J{oco} we can define a k-automorphism [, : k(z) — k()
as follows. If p = oo then [,() is defined as 1/z and if p € k then l,(z) =z + p. We
can extend [, to a ring automorphism of k(z)[0] by defining 1,(8) = 9 if p is finite
(i.e. p € k) and 1,(8) = —2?d if p is infinity. For a differential operator f € k(z)[d]
we call 1,,(f) the localization of f at the point 2 = p. The operator I,,(f) is viewed as
an element of k((x))[d] instead of k(x)[0].

Definition 8 Let e € E/ ~, f € k(z)[0] and p € P*(k). Define

,ue,p(f) = He (lp(f))

Now e is called an exponential part of f at the point p if p.,(f) > 0. The number
tep(f) is called the multiplicity of e in f at the point p.

If p is a semi-regular point of f then f has only a trivial (i.e. zero modulo ~) expo-
nential part at p.

The following notation . (f) € [N(E_/ ~*PHE) formalizes all exponential parts and
their multiplicities at all points in P! (k)

() s (Bf ~) x P'(F) > N
which maps (e, p) to pep(f). For f,g € k(x)[0] we have

pe(f9) = pae(gf) = pa(f) + pa(9)-

A remark on the implementation: Localizing a rational function at the point z = 0
is a mathematically trivial operation because k(z) C k((z)). On a computer this is
not a trivial operation, it is a conversion of data types. Computations with infinite
power series are done by lazy evaluation.
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3.3.5 The type of an operator

In this section we will examine the relation between u. and the so-called type of a
differential operator.

Definition 9 Let f,g € k(x)[0]. Now f and g are said to be of the same type if there
exist r1,79 € k(z)[0] such that

ri(V(f)) =V(g) and r(V(g)) =V(f)

This notion is called Art-begriff in [39]. Four different characterizations of this notion
are given in [47], corollary 2.6. Verifying if f and g are of the same type can be done
by computing the set Ep(g, f) (cf. chapter 5 and [47]) and checking if it contains
an ry for which r; : V(f) — V(g) is bijective. If such r; exists then an operator
ry € k(2)[0] with ro(V (g)) = V(f) exists as well (for properties like these and for a
quick introduction to this topic see also [56]). 75 can be found by solving the equation
ror1 + [f = 1 via the extended Euclidean algorithm (cf. [40]). This equation has a
solution 9,1 € k(x)[0] because r; is injective on V(f) and hence GCRD(f,r;) = 1
(GCRD stands for greatest common right divisor).
Define the following equivalence ~, on k(z).

T ~y o < Hyeﬁ(w) rE— 7T = yl/y.
Define for r € k(x) the k(z)-automorphism
S F(2)[0] = F(2)[9]

by S;(0) = 0 +r. Note that this is not the same (0 instead of §) as the previously
defined S,. For f, g € k(x)[0] if p«(f) = p«(g) then p. (S} (f)) = p«(Sk(g)). Similarly
if type(f) = type(g) then type(S;(f)) = type(S;(g))-

Lemma 20 Let a,b E_E(a:). Then p.(0) = (0 — a) if and only if 0 — a has a
non-zero solution y in k(x). Furthermore p.«(0 —a) = p«(0 —0b) if and only if a ~, b.

Note that 1.(9) = p1«(0 — a) means 0 — a is semi-regular at all points p € P*(k).

Proof: If 0 — a has a rational solution y then [,(0 — a) has a solution I,(y) € Vo.
Hence po(1,(0 — a)) > 0 for all p. Since the order is 1 there are no other exponential
parts hence [,(8 — a) is semi-regular. Conversely if 0 — a is semi-regular at all points
p then one can verify that

y=[](@-p)*™ € k(=)
pEk

is a non-zero rational solution of 0 — a, where a, € Z is the exponent of 0 — a at
p. Hence the first statement follows. The second statement is reduced to the first
statement by applying S;.
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Lemma 21 Let f =0"+a,_10" 1 +---4+0ap0" and g = 0™ +b,_10" L +-- -+ byO"
be in k(z)[0]. Let a;p,b;, € k((x)) fori =0,....,n—1 and p € P'(k) such that
L(f) = 0" + an1,p0" "t + -+ + agpd™ and l,(g) = 6™ + bp_1,,0™ 1 + -+ + by pd™.
Then an—1 ~x bp—1 if and only if pp(an—1,p — bn_1,,) is an integer for all p € P'(k).

Note: For convenience of notation I,(f) € k((2))[0] has been multiplied on the left by
an element of k((z)) so that it can be represented as a monic element of k((z))[d].

Proof: Denote f; = d+a,_1 and g1 = & + b,_1. One can verify (for a similar,
but more detailed computation see also lemma 25 in section 3.9.1) that [,(f;) =
8 +an—1,p +m, for some m, € Z. Now an—_1,p — bn—1,, € Z + z - k[[z]] if and only if
8+ an—1, and & + b,_1,, in k((x))[6] have the same exponential part e € E/ ~. So
an1p—bn 1, € Z+z-k[[z]] for all p € P'(k) if and only if p.(f1) = p«(g1). Now
the lemma follows from the previous lemma.

O

Proposition 1 Let f = 8"+an,_10" "'+ --+aed™ and g = 8" +b,_10™ "' +- - -+bd"
be in k(x)[0]. Then

type(f) = type(g) = p.(f) = p(9)- (3.6)

Furthermore
P (f) = px(9) = @n1 ~u b1 (3.7)

If n =1 then the two implication arrows can be reversed.

For n > 1 these arrows can not be reversed. Take for example 8%+ z® and 9% +2°® + z.
These two operators have the same p, but not the same type. The second ar-
row can not be reversed either if n > 1, as almost any random example will show:
px(0?) # 11.(0% — x); the exponential parts are different at x = oo.

Proof: Suppose type(f) = type(g). By definition »(V (f)) = V(g) for some operator
r. We need to show that p. ,(f) = e p(g) for all e and p. We may assume (after
having applied the map [,) that p = 0. Recall from section 3.3 that r(V.) = V,
Vo(f) = V.NV(f) and pe(f) = dim(Vo(f)). From r(Va(f) = r(Va V() C
r(V(MNNr(Ve) = V(g) Ve = Ve(g) it follows that pe(f) < pe(g). In the same
way one shows that p.(f) > p.(g) and so (3.6) is proven.

If n = 1 then (3.7) follows from lemma 20. The fact that a,—1 ~. b,—1 implies
type(f) = type(g) if n = 1 follows directly from the definitions. What remains to be
shown is (3.7) for the case n > 1.

Consider two lists eg,...,e, and €], ..., e, of elements of E[w’l/r] C E, such that
e; ~ e} for all i. Denote d = (e; + --- +e,) — (€} +--- +¢€,). Then d € L1Z but not
necessarily d € Z. However, if both lists are invariant (up to permutations) under
the Galois action of the field extension k(z) C k(z'/") then one can conclude d € Z.

Let p € PY(k). Let a;p,bi, be elements of k((z)) such that I,(f) = o™ +
10" 1 + -+ a9 0" and 1,(g) = 6™ + by_1 0" 1 + -+ 4 b 0" (note: here
I,(f) and I,(g) have been multiplied on the left by an element of k((z)) to make them
monic). Let eq,...,e, resp. ef,...,e), be the lists of generalized exponents of I,(f)
and Ip(g). Assume that p.(f) = p«(g9)- Then, after a permutation, we have e; ~ e
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for i = 1,...,n. Then v'(e; — ¢;) = v'(e] — €}) where v’ is defined in lemma 19.
Because the lists of generalized exponents are invariant under the Galois action of
k(z) C k(z'/7) it follows that Y_,(e; — €}) is an integer. Then by equation (3.5) it

follows that pp(an—1,p — bn—1,p) is an integer. This holds for all p € P!(k) hence (3.7)
follows from lemma 21.

O

Definition 10 Let f E_E(a:) [0] then v1(f) is the set of all p.(R) for all first order
right-hand factors R € k(x)[0] of f.

Because of lemma 20 the set v, (f) can be identified with a subset of k(z)[0]/ ~.. We
can also view it as the set of types of all first order right-hand factors. In the next
section we will see that once 1 (f) is known, then computing all first order right-hand
factors is not difficult anymore. This is in fact more general: Given an operator f
and an irreducible operator R, one can compute all right-hand factors of f that are
of the same type as R by solving a mixed equation. This follows from work of Loewy
and Ore, see [56] for an introduction to this topic. Solving the mixed equation is the
topic of chapter 5. So one can find all irreducible right-hand factors of f if one can
find the set of types (this set is finite) of all irreducible right-hand factors of f.

The fact that for order n = 1 the type of an operator corresponds to . (which is
a collection of local data, i.e. data that we can compute) is the reason that computing
factors of order 1 is theoretically easier than computing higher order factors. For
higher order factors R the type is not determined by u.(R) which makes the situation
more complicated. However, the coefficient a,_; of R = 0" 4+ a,_10™" ' + -+ 4+ ag0°
is determined modulo ~, by u.(R), in other words type(d + a,_1) is determined by
1« (R). Hence it is not surprising that in Beke’s method for higher order factors of
f one first computes a differential equation A™f, such that for any right-hand factor
R=0"+a,_10™ 1 +---4+ap0° of f the operator 0 + a,_, is as a right-hand factor
of A™f (see also section 3.8 on this).

3.4 Beke’s method for finding first order factors

In this section we will describe Beke’s factorization method in [6]. His method is a
good illustration how to use exponential parts. Previous implementations for factor-
ization in k(z)[0] are based on his method. For example, the factorizer in the Kovacic
algorithm (cf. Section 3.1 in [30]) is based on Beke’s method. Note that Beke only
uses this method for regular singular operators, for the more general case he uses
polynomial equations. However, equipped with the terminology of chapter 2, the reg-
ular singular case is not harder nor easier than the general case. We only need to
replace the word exponent in Beke’s text by exponential part. Though the method in
this section is not precisely the same as in [6], the difference is small enough to call it
Beke’s method.

Let f € k(x)[0]. Assume f has a first order right-hand factor factor @ — r where
r € k(z) and we want to compute such a factor. This is done in 2 steps

1. Determine p, (0 — r), i.e. determine the exponential part of & — r at all singu-
larities.
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2. Compute 7.

When p.(0 —r) is known then r is determined up to the equivalence ~,.. So we can
take a representative ro € k(z) such that ro ~, r, in other words r —ro = y'/y for
some y € k(z). Now r is easily found as follows. y is a rational solution of S} (0 —r)
and hence a rational solution of S} (f). Any rational solution of S} (f) gives a right
factor 9 —r =9 —rg —y'Jy of f.

Beke’s method does not give a real answer to how to do the first step, except
by trying all possibilities. Suppose order(f) = N and f has M singularities. In
every singularity there are at most IV different exponential parts so the number of
possibilities to check is < N™. Another reason that checking all possibilities is
very costly is because it can introduce large algebraic extensions. Localizing at all
singularities costs at most an algebraic extension of degree M! over k. Computing an
exponential part in one singularity costs at most an extension of degree N so Beke’s
method uses an algebraic extension of degree < M!- N™ . If the set +; (f) were known
then the algebraic extensions one needs to compute with would be much smaller.
Computing all first order right-hand factors of f and computing v1(f) are equivalent
problems.

Note that Beke’s method implies a method for computing the radical solutions
(i-e. solutions y for which y™ € k(z) for some integer n). For this we need to adapt
the algorithm such that it only tries exponential parts in @ modulo Z instead of all
exponential parts.

3.5 The main idea of the algorithm

Let f € k(x)[0] and suppose a non-trivial factorization f = LR exists with L, R €
k(z)[0]. We want to determine a right-hand factor of f. This could be done if we
knew a non-zero subspace W C V(R), cf. section 3.6. However, a priori we only know
that V/(R) C V(f) but this does not give any non-zero element of V(R).

For any exponential part e of f at a point p € P! (k) we have (after replacing f, L, R
by 1p(f),1p(L),1,(R) we may assume that p = 0) Ve(R) C Ve(f) and pe(L) + pe(R) =
te(f). Suppose that we are in a situation where p.(L) = 0. Then the dimensions of
Ve(R) and V,(f) are the same and hence we have found a subspace V.(f) = V.(R) of
V(R). Then we can factor f (cf. section 3.6). Note that we do not necessarily find
the factorization LR, it is possible that instead of R a right-hand factor of R is found.

So now we search for situations where we may assume p.(L) = 0. There are
several instances of this:

1. Suppose that order(L) = 1 and that f has more than 1 exponential part at the
point p. Let e; ¢ es be two different exponential parts of f. Then pe, (L) = 0 or
e, (L) = 0 because the sum of the multiplicities u. (L) for all exponential parts
e € E/ ~ is the order of L which is 1. So we need to distinguish two separate
cases and in at least one of these cases we will find a non-trivial factorization of

7.

2. More generally suppose order(L) = d and that at a point p the operator f has
at least d + 1 different exponential parts ey, ...,eq+1. Then for at least one of
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these e; we have p., (L) = 0. Hence by distinguishing d+1 casesi =1,...,d+1
we will find a non-trivial factorization of f.

So we can factor any reducible operator which has:

1. A first order left-hand factor and a singularity with more than 1 exponential
part.

2. Or more generally: an operator with a left-hand factor of order d and a singu-
larity at which there are more than d different exponential parts.

3. By using the adjoint we can also factor operators which have a right-hand factor
of order d and a point p with more than d different exponential parts.

4. An operator which has a singularity with an exponential part e of multiplicity
1. Then we can distinguish two cases p.(L) = 0 or u.(R) = 0. The latter case
is reduced to the former case using the adjoint. We call the minimum of the
multiplicities taken over all exponential parts of all singularities the minimum
multiplicity. By checking both cases pe(L) = 0 or p.(R) = 0 any operator f
with minimum multiplicity 1 is either irreducible or it is factored by our method.

Note on computing first order factors: If a first order left or right-hand factor
exists, then our approach can compute a factorization whenever there is a singularity
with at least two different exponential parts. This reduces the problem of finding all
first order factors, cf. section 3.7. The only case that remains is when each singularity
has only 1 exponential part. However, this special case is a trivial case for Beke’s
method because we need to check only one possibility in Beke’s method. We can
proceed as follows: Compute an r € k(x) such that & — r has the same exponential
part as f at all singularities. Then S}(f) is semi-regular at all singularities. For
computing the first order right-hand factors of such an operator the only thing one
needs to do in Beke’s method is to compute the rational solutions.

Note on computing higher order factors: An operator with minimum multiplic-
ity 1 is either irreducible or factored by our algorithm. If the minimum multiplicity is
> 1 we can often still factor f by constructing irreducible local factors for the different
exponential parts and trying to construct right-hand factors R € k(x)[0] from these
local factors in the same way as in section 3.6. However, in this case our algorithm
is a incomplete because we can not guarantee irreducibility if no factorization is ob-
tained. Currently our implementation will print a warning message in such cases. To
make the algorithm complete for these cases we will have to use the rather inefficient
exterior power method, cf. section 3.8.

Note that it is possible that a factor of a minimum multiplicity 1 operator has
minimum multiplicity > 1.

3.6 Computing a right-hand factor R

After having applied the map I, of section 3.3.4 (and a field extension of k if p € k\ k)
we may assume that the singularity p in the previous section is the point p = 0.

The assumption from section 3.5 was that an e € E is known for which p.(f) >
0 and p.(L) = 0. From this we concluded that V.(f) C V(R). In other words
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S_c(R.) € k((z))[e,d] is a right-hand factor of R, where R, is the semi-regular part
of f, cf. section 2.6.1. R, and hence S_.(R,) can be computed by local factorization
(cf. section 2.8.4). We want to have a local right-hand factor r of R. There are several
strategies: We can take r = S_.(R,), or we can take a first order right-hand factor in
k((z))[e,d] of S_¢(Re). Another strategy, to speed up the algorithm, is first to try to
factor f in k(x)[0)] instead of k(x)[8]. If no factorization in k(z)[8] is obtained, then
we can redo the computation afterwards to search a factorization in k(z)[0]. If we
want to factor f in k(z)[0] then we can take r € k((z))[d] of minimal order such that
S_¢(R,) is a right-hand factor of 7. So, depending on whether we want to factor f in
k(2)[0] or in k(z)[0], we have a right-hand factor r € k((x))[d] or r € k((x))[e,d] of
R. Note that to find r we do not need to compute formal solutions, we only need the
factorization algorithm in chapter 2. From now on we will assume that r € k((z))[d],
the other case works precisely the same (just replace k by k).

Let n = order(f). The goal is to compute an operator R = aq0? + --- 4+ agd° €
k[z, 0] that has r as a right-hand factor. Here d should be minimal. Because r divides
both f and R on the right it also divides GCRD(f, R). Then GCRD(f,R) = R
because d is minimal. We conclude that R is a right-hand factor of f. If d < n a
non-trivial factorization is obtained this way.

There are two ways of choosing the number d. The first is to try all values
d=1,2,...,n — 1. Suppose that for a certain d we find an R that has r as a right-
hand factor and for numbers smaller than d such R could not be found. Then d
is minimal and hence R is a right-hand factor of f. The second approach to take
d=n—1. If we find R = aq0? + - - - + ao0° that has r as a right-hand factor we can
compute GCRD(R, f). This way we also find a right-hand factor of f. Sometimes it
is possible to conclude a priori that there is no right-hand factor of order n — 1. If
for instance all irreducible local factors have order > 3 then the order of a right-hand
factor is < n — 3 and so we can take d = n — 3 instead of d = n — 1.

We can compute a bound N (cf. section 3.9) for the degrees of the a;. So the
problem now is

e Are there polynomials a; € k[z] of degree < N, not all equal to 0, such that r
is a right-hand factor of R = az0? + - - - + a¢0°?

Let m be the order of r. Write D = k((x))[0]. The D module D/Dr is a k((z))-vector
space of dimension m with a basis 8°,9',...,0™ 1. Write 8°,9',...,0? on this basis
as vectors g, ...,vq in k((z))™. Now multiply vo,...,vq with a suitable power of z
such that the v; become elements of k[[z]]™. r is a right factor of R if and only if

agvg + - +aqug =0

in k[[z]]™. This is a system of linear equations with coefficients in k[[x]] which should
be solved over k[z]. One way of solving this is to convert it to a system of linear
equations over k using the bound N. A much faster way is the Beckermann-Labahn
algorithm which was found first by Labahn and Beckermann, and later independently
by Derksen [17, 5]. Their method is as follows

Sketch of the Beckermann-Labahn algorithm

e Let M; C k[z]¢*! be the k[z]-module of all sequences (ag, a,...,aq) for which
v(aguo+- - -+aqvg) > i. The “valuation” v of a vector is defined as the minimum
of the valuations of its entries. The valuation of 0 is infinity.
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e Choose a basis (as k[z]-module) of M.
e For i =1,2,3,... compute a basis for M; using the basis for M; ;.

This sketch looks easy and the algorithm is short (Derksen’s implementation is only
a few kilobytes) but it is absolutely non-trivial. The difficult part is how to construct
a basis for M; from a basis for M;_; in an efficient way. Labahn, Beckermann and
Derksen give an elegant solution for this problem by computing a basis with a certain
extra property. Given a basis for M;_; with this property they are able to compute a
basis for M; in a very efficient way. Again this basis has this special property which
allows the computation of M;;1 so one can continue this way.

Define the degree of a vector of polynomials as the maximum of the degrees of
these polynomials. From the basis for M; we can find a non-zero A; € M; with mini-
mal degree. Suppose there exists a non-zero R = ag0% + - -+ + agd° € k[z, 0] having
r as a right-hand factor. Then there exists such R with all deg(a;) < N where N is
a bound we can compute, cf. section 3.9. So then there is a non-zero (ag, - .., aq) of
degree < N which is an element of every M;. Because of the minimality of deg(A;) it
follows that then deg(A4;) < N for all <. So whenever deg(A4;) > N for any i we know
that there is no R € k(z)[0] of order d which has r as a right-hand factor.

Algorithm Construct R
Fori=0,1,2,... do

e Compute M; and A; € M; of minimal degree.
e If deg(A;) > N then RETURN “R does not exist”.

o If deg(A4;) = deg(A;_3) then
Comment: the degree did not increase 3 steps in a row so it is likely that a
right-hand factor is found.
If A; = (ao,...,aq) then write R = aq0? + - - - + a¢0°. Divide by a4 to make R
monic. Test if R and f have a non-trivial right-hand factor in common. If so,
return this right-hand factor, otherwise continue with the next 1.

Suppose the algorithm does not terminate. Then deg(A;) = B; for all ¢ > B, for
some integers By and B,. Define D; C M; as the k-vector space generated by A;
with j > 4. These D; are finite dimensional k-vector spaces and D;41 C D; for
each 4. Then there must be an integer 4 such that D; is the intersection of all Dj;.
Let (ao,--.,aq) = A;. This A; is an element of every D; C M; so the valuation of
agug + -+ + aqug is > j for any j. Then agvg + - -+ + aqug = 0 so r is a right-hand
factor of g0 + --- + ag8°. Then we have a contradiction because this means that
the algorithm will find a right-hand factor in step i. So the algorithm terminates.

In our implementation we use modular arithmetic to replace the computations in
@) by computations modulo some prime power p™. This works for sufficiently large
p. If it appears during the computation that p is not high enough the computation
will be re-done with a larger prime number. Rational numbers can be reconstructed
from their modular images if we have taken sufficiently many and sufficiently large
prime powers (the algorithm is called iratrecon in Maple, unfortunately no reference
is given in the help page). If k is an algebraic extension of € then elements of k are
represented as polynomials over ) in one or more variables with a bounded degree.
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Then this modular arithmetic avoids the so-called “intermediate expression swell”. If
the transcendence degree of k over @ is more than 0 then modular arithmetic does
not avoid intermediate expression swell. If we then still want to avoid expression swell
we would need to substitute values in ) for transcendental elements of k to reduce
the transcendence degree. For factors of order > 1 it is not clear if this will work, for
the case of order 1 factors see the comments at the end of the next section.

3.7 Computing all first order right-hand factors

Our algorithm in sections 3.5 and 3.6 can find a non-trivial factorization for any
operator which has a first order right-hand factor. However, it may not compute all
first order right-hand factors. In this section we show how to combine Beke’s method
with our factorization method. With this combination we can:

1. Like Beke’s algorithm compute all first order right-hand factors R.

2. Avoid checking an exponential number of different p.(R). In fact we will need
to check at most order(f) different p.(R).

Lemma 22 If f,L,R € k(x)[0] and f = LR then v1(f) C (L) UM (R).

Proof: Let 0 —r be a right factor of f and let y # 0 be a solution of 0 —r. Then y is
a solution of f. We must prove that p. (0 —r) is in v1 (L) or 71 (R). If y is a solution
of R then 8 — r is a factor of R so u«(0 —r) € v1(R). If y is not a solution of R then
R(y) is a non-zero solution of L. Using the fact y' = ry we can write derivatives of
y as multiples of y and hence R(y) = ty for some t € k(). Now ty is a solution of
Lsod—(ty)/(ty) =0 —t'/t—y'J/y =0 —1t/t —r is a right-hand factor of L. So
(@ —t'Jt —r) € v1(L) and p. (0 —t'/t — r) = p(0 —r) (cf. section 3.3.5).

O

Lemma 23 If f = LCLM(fy,..., f1) with f,fi,...,fs € k(x)[0] and order(f) =
>_;order(f;) then v1(f) = U; m(fi)-

Without the condition order(f) = >, order(f;) the lemma need not hold. For exam-
ple fi=90-(0—=z)and fo =0 —-1/(z—1))- (0 —z).

Proof: |J; v1(fi) C v1(f) because every right-hand factor of every f; is a right-hand
factor of f. So we only need to show that v1(f) C U, 11 (fi)-

First suppose d = 2. Suppose & — r is a right-hand factor of f. We must show
that p.(0 —r) is in y1(f1) or in v1(f2). From the condition order(LCLM(f1, f2)) =
order(f1) + order(fs) it follows that f; and f> have no common right-hand factor.
Then we can write 1 = g1 f; + gofo for some g1,9, € k(x)[0] using the extended
Euclidean algorithm. The solution space of f is a direct sum V(f) = V(f1) P V(fa).
g1f1 + g2 f> is the identity and g2 f» acts like the zero map on V' (f2) hence gy fi acts
like the projection map of V(f) to V(f2). Similarly, if y € V(f) then g2 f2(y) € V(f1)
is the projection of y on the component V(f1). Let y € V(f) be a non-zero solution
of the right-hand factor 0 —r of f. (g1 fi +92/2)(y) =y so g1 fi(y) # 0 or g2 f2(y) # 0.
Assume g1 f1(y) # 0, in the other case the proof works in the same way. Like in the
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proof of the previous lemma we can write gy fi(y) = ty for some rational function ¢.
Then ty is a solution of f, and so & —r —¢'/t is a right-hand factor of fo. p.(0—r) =
(@ —1—t'/t) € 1 (f2).

If d > 2 write f = LCLM(f1, LCLM(fa, ..., f4)) and apply induction.

Algorithm compute the possible yu,(R)
Input: An operator f € k(x)[d].
Output: A set S with at most order(f) elements such that v, (f) C S.

1. If order(f) = 1 then the problem is trivial.
2. If order(f) > 1 then apply the factorization algorithm of section 3.5.

(a) If no non-trivial factorization is found then f has no first order right factors
so return the empty set.

(b) If a factorization f = LR is found then apply recursion on L and R and
use lemma 22.

(¢) If a factorization of the form f = L-LCLM(Ry,..., R4) is found then apply
recursion on L and apply step 2d on LCLM(Ry, ..., Ry).

(d) If an LCLM factorization f = LCLM(Ry,..., R4) is found then

i. If order(f) = ), order(R;) then apply lemma 23. Note that if the
R; € k(z)[0] are conjugated over k then it suffices to apply recursion
on only R; because v; of the other factors R, ..., Ry can be obtained
from 71 (R1) by conjugation.

ii. If order(f) < _, order(R;) then compute the greatest common right
divisor Gy of Ry and LCLM(Rsy, ..., Ry). If G; is a non-trivial factor
of R; then let Gy,...,G,, be the conjugates of Gy over k. Then f =
L - LCLM(Gh,-..,G,) for some L and so we can proceed as in case
2c. This recursion terminates because order(G1) < order(R;). If Gy is
not a non-trivial factor then compute operators R;, i = 2,...,d such
that V(R;) = Ri(V(R;)). Then f = LCLM(R,,...,Ry) - R, and we
can apply recursion.

Algorithm first order factors
Input: An operator f € k(z)[0]. 3
Output: All first order right-hand factors R € k(z)[d] of f.

1. Compute the set S from “algorithm compute the possible p«(R)”
2. For each element of s € S do

(a) Construct an r € k(z) such that u.(0 —r) = s. Note that this requires
no computation because a factor & — r with p.(8 —r) = s has already
been computed in a factorization that was done in “algorithm compute
the possible u.(R)”.
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(b) Compute a basis yi,...,yq of rational solutions of S}¥(f) and write the
general rational solution as ¢;y1 + - - - + cqyq where the ¢; are undetermined
constants.

(c) fd#0then & —r —(c1y1 +- -+ +cqya)'/(c1y1 + - - - + cqyq) are right-hand
factors of f parametrized by (cy,...,cq) € P¥1(k).

It follows that the set of 7 € k(x) for which & — r is a right-hand factor of f is a
disjoint union of at most order(f) projective spaces.

The algorithm in sections 3.5, 3.6 only avoids intermediate expression swell if
k C Q. If the transcendence degree of k is > 0 then the algorithm still works,
but then it is much less efficient. We will explain below that finding first order
factors of operators in k(z)[0] can be reduced to finding first order factors of operators
in @Q()[0]. This is important for the efficiency because in this way intermediate
expression swell can be avoided.

Suppose k is a field, finitely generated over @), of transcendence degree d > 0. We
will briefly describe in the rest of this section how computing all first order right-hand
factors over k can be reduced to the same problem over a field of transcendence degree
d—1. We will only give the idea and skip the details. Suppose k is an algebraic function
field k = I(s,t), where [ is of transcendence degree d — 1, s is transcendental over [
and t is algebraic over I(s). Then there exists a regular point (s,t) = (so,%9) € (I)?
on the corresponding curve such that the coefficients of f are in the local ring at this
point. A regular point corresponds to a valuation v on k. For elements ¢ € k we
have v(c) > 0 if and only if ¢ is in the local ring at this point. Such elements can
be evaluated at the point (sg,%p). Denote this evaluation map by 7. If ¢ € k with
v(c) > 0 then 7(c) € I(sg,ty) C 1.

This valuation v can be extended to a (non-discrete) valuation on k. It can be
further extended to a valuation on k[z] by defining the valuation of an element of k[z]
as the minimum of the valuations of its coefficients in k. Then v can be extended to
k(z) because this is the field of fractions of k[z]. Now v can be extended to k(z)[0]
by defining the valuation of an operator in k(x)[0] as the minimum of the valuations
of its coefficients in k(z). One can verify that this is indeed a valuation, i.e. that for
operators f, g € k(x)[0] we have v(f - g) = v(f) + v(g). The evaluation map 7 can be
extended as well, if g € k(x)[0] and v(g) > 0 then 7(g) € I(2)[0] can be defined (first
extend T to k[z], then to k(z) and then to k(x)[d]).

Without loss of generality we may assume that f is monic (i.e. the coefficient of
the highest power of @ in f is 1) and we only consider monic factors of f. We can
choose the point (sg,%g) in such a way that the valuation of f is 0. A monic operator
has valuation < 0 because the valuation of the leading coefficient is v(1) = 0. If
f = LR with L,R € k(z)[0] and L, R are monic then v(f) = v(L) + v(R) and since
the valuations of L and R are < 0 we have v(R) = 0. So any monic right-hand factor
R of f can be evaluated at the point (s,t) = (sg,%0). In other words: if f = LR with
L, R monic then this factorization can be evaluated at the point (sg,%o) which gives
the factorization 7(f) = 7(L)7(R). Now we can reduce the problem of computing all
first order right factors of f as follows: compute the right factors of 7(f), this gives
y1(7(f)) (cf. section 3.3.5 for a definition). Now for any first order right-hand factor
R of f we have a right-hand factor 7(R) of 7(f) so 7(v1(f)) C v (7(f)). Choose
the point (sg, fp) in such a way that for any two different exponential parts of f the
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images under 7 do not coincide. Then we can reconstruct v, (f) from 7(v1(f)). We
do not know 7(v1(f)), however. But we know that 7(v,(f)) is a subset of v, (7(f))
so we can check each element of v; (7(f)) to see if it yields a factor of f. This way we
find all first order right factors of f.

3.8 Several strategies for completing the algorithm

Suppose f € k(z)[0] and our factorization algorithm in sections 3.5, 3.6 and 3.7
produces no non-trivial factorization. Can we then stop the computation and conclude
that f is irreducible? If order(f) < 4 or if there exist e, p such that u.,(f) =1 (the
algorithm computes all p. ,(f) so it knows when this case occurs) then the answer is
yes. In the remaining cases we can apply the following approach that we will call the
exterior power method. It is obtained from [6] combined with significant improvements
(namely steps 3 and 4) given in [55, 14].

1. Compute an operator A%f € k(x)[0] with the property that if y1,...,yq € V(f)
then the Wronskian of y1, ..., yq isin V(AZf). We will call A%f the d-th exterior
power of f (called Differentialresolvente in [6]. These equations are often also
called associated equations). The important property is that if

0%+ ag_10"" + -+ + apd’
is a right-hand factor of f then 0 + a4_; is a right-hand factor of A?f.
2. Compute all first order right-hand factors in k(z)[8] of A¢f.

3. In [55] a method (based on Pliicker relations) is given for deciding which order
1 factors of A?f correspond to order d right-hand factors of f.

4. Use these first order factors to compute the factors of f of order d. An efficient
way to do this step is given in [14].

For operators of order 4 this approach works quite well, for order 5 it is already quite
costly, and for higher order it is usually infeasible unless the coefficients are very small.
Step 2 can be done by section 3.7, or by Beke’s method (cf. section 3.4 and [6], see
[13, 23, 42] for variations on Beke’s method). We will give a number of strategies to
speed up step 2.

First we apply the factorization method from chapter 5 on f. If this produces a
non-trivial factorization then we have gained something, we can apply recursion on
the factors. But if no factorization is found we gain something as well, because then
we can conclude by lemma 24 below that if f is reducible in k(x)[d] then it is reducible
in k(z)[0] as well. Hence we only need to compute first order factors of A? in k(z)[0]
instead of k(x)[0]. This information removes the main bottleneck (which is splitting
field computations) of Beke’s method for computing factors of order 1. But we can
gain even more as follows. We first try our algorithm in section 3.6 on all singularities
p and all exponential parts e. Note that such computations are usually cheaper than
computations with A%f because A?f is a much larger expression than f. If we are
lucky and find a factorization, then we can apply recursion. But if no factorization
was found, then we gain something as well, namely then we know that for all e, p if
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tep(f) > 0 then pe ,(L) > 0 (otherwise a factorization would have been found) and
in the same way p.,(R) > 0 (by applying the adjoint). Hence for every e,p we have
tep(L) > 0 if and only if pep(R) > 0. The number of possible p, in section 3.4
that need to be considered in Beke’s algorithm can be very large. However, with our
information on the exponential parts of L and R we can skip a lot of different p,. The
best case is if order(f) = 4. In this case L and R must be irreducible and have order
2 and furthermore p.(L) = p.(R) (otherwise f would already have been factored).
Then p(R) is known, and hence by proposition 1 the type of 8 + ag—1 is known (we
had R = 0% + ag_10%' + --- + ap0° and d = 2). We want to find & + ag_; as a
right-hand factor of A¢f, and since we know the only possible value of 1.(0 + aq_1)
we can find 0+ aq4 1 by checking only 1 possibility in Beke’s algorithm. So computing
0 + aq_1 has been reduced to finding rational solutions. If order(f) > 4 then we can
still significantly reduce the number of cases in Beke’s algorithm in this way, but we
can not reduce this number to 1 anymore.

Lemma 24 If f € k(z)[0)] is irreducible in k(x)[0] then it is completely reducible in
k(x)[0].

An operator is called completely reducible if it is an LCLM of irreducible (in k(z)[0])
operators. So any irreducible (in k(z)[d]) operator is completely reducible as well.

Proof: Let f; be an irreducible right factor of f in k(x)[8]. Let fi,...,f, be the
conjugates (over the field extension k C k) of f;. Because conjugation commutes with
differentiation we see that fi,..., f, are irreducible right factors of f. The Galois
group of the extension k& C k permutes the f; hence LCLM(fi,..., f,) is invariant
under this group. Then this LCLM is a factor of f in k(2)[8] and hence equal to f
because f is irreducible in this ring.

3.9 A bound for the degrees

Let f € k(z)[0] be given. Let R = 0" + a, 10" +--- + ao8° € k(z)[0] be a right-
hand factor of f. The topic of this section is to compute bounds for the degrees of
the numerators and denominators of the a;. These bounds are known when

e For every a; and for every singularity p of f and the point p = co we have a
lower bound for the valuation of [, (a;) € k((x)).

e We have an upper bound for the number of extra singularities. A point p € k is
called an extra singularity of the factorization f = LR if f is regular at p and
R is singular at p.

The bounds in the first item are obtained from the relation N(f) = N(L) + N(R)
(cf. section 2.3.3). The valuation of the a; at the extra singularities is also bounded
by this relation. So all that is still needed is an upper bound for the number of extra
singularities.
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3.9.1 The number of extra singularities

It is known that the number of extra singularities can be bounded using Fuchs’ rela-
tion. This relation says that the sum of the residues is zero (cf. lemma 26). In this
section we will relate these residues to the list of generalized exponents. The list of
generalized exponents of a right-hand factor R of f is a sublist of the list of generalized
exponents of f. This gives us a method to bound the residues of R in the singular
points of f. The residues at the extra singularities are negative integers. Hence,
since the sum of the residues is zero, the number of extra singularities is bounded by
the sum of the residues of R at the singularities of f. Note that the result in this
section is similar to [7]. A difference is that we have a precise equation instead of a
bound for lres(f) in lemma 27, resulting in a sharper bound for the number of extra
singularities.

Definition 11 Let f = a,0™ + a,—10""! + -+ + ag8° € k(z)[0] with a,, # 0. Let
p € k. Then the residue res,(f) of f at the point p is defined as the residue of an_1/an
at the point p. The residue ress (f) of f at oo is defined as the residue of —x2a,_1/ay,
at the point co.

Let f = apd™ + an 10"t + -+ + agd® € k((z))[8] with a, # 0. Define the local
residue lres(f) as the constant coefficient of an_1/a, € k((z)).

Lemma 25 Let f € k(z)[0]. Let n be the order of f. If p € k then res,(f) =
Ires(l,(f)) +1+2+4---4+ (n—1) and if p = 0o then resy(f) =lres(lp(f)) — (1 +2+
<-4 (n —1)).

Proof: Without loss of generality we may assume that f is monic. Write f =
0" + an 10" + --- + apd°. Suppose p € k. Then I,(f) = 0" + l(a, 1)0"* +
e+ 1p(ag)d° = (£0)™ + Lp(an—1)(£6)"™1 + - -+ + Iy(ag). The coefficient of 6™ in this
expression is 1/z™ and the coefficient of 6"~ is [p(ap—1)/z" ' = (1+2+ -+ (n —
1))/2™. So lres(l,(f)) is the residue at & = 0 of l,(an—1) (which is the same as the
residue at x = p of a,,_1) minus 1 + 2+ --- 4+ (n — 1) and hence the lemma holds for
pEk.

Now suppose p = 00. I,(f) = (—28)™ + lp(an_1)(—28)"~! + ---. The coefficient
of 6" in this expression is (—z)" and the coefficient of 6"~ is (—z)""'l,(an_1) +
(—z)"(14+2+---+ (n—1)). So the local residue is —1 times the coefficient of z! in
lp(an—1) € k((x)) (this coefficient equals the residue of I,(a,—1)/2? at = 0 and this
equals the residue of z2a,_1 at x = 0o0) plus 1 +2+---+ (n — 1).

O

Lemma 26 Let f,g € k(x)[0] be monic and p € P' (k). Then res,(fg) = res,(f) +
res,(9). If p € k and f is regular at the point p then res,(f) = 0. Furthermore

> resp(f)=0

peP1(k)

Proof: The proof of the first two statements is easy, we will skip it. Let f =
O™ +ap_10" 1 4+ --- +ap8°. The third statement is easy to prove if a,_; is of the
form (z — p)™ for some p € k and m € Z. Now the statement follows because every
an_1 € k(z) is a k-linear combination of such expressions (z — p)™.
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O

Note that the relation res,(fg) = res,(f) + res,(g) need not hold without the
restriction that g is monic (take for example f = 8, g = 258 and p = 0).

Let e1,...,e, € E. Define B(ey,...,e,) as the constant term in the expression
2oiei+ 205V (ei —€;), where v' is defined in lemma 19.

Lemma 27 Let f € k((z))[0] and e1,...,e, the list of generalized exponents of f.
Then Ires(f) = —B(ey,...,€ep).

Proof: pp(an—1) = =), (ei + 250 (e — ej)), cf. lemma 19. The local residue

is the constant term of a,_;. This equals the constant term of pp(a,_1), which is
—B(e1,---,€ep).

O

Lemma 28 Suppose f,L,R € k(z)[0] are momnic, f = LR and f is reqular at the
point p € k. Then R is singular at p if and only if resp(R) is a negative integer.

Proof: We may assume p = 0. Let v be the usual valuation on k((z)). Let n be the
order of R and by, ...,b, € k[[z]] be a basis of formal solutions of R such that the val-
uations v(b1),...,v(b,) is the list of generalized exponents of R. Because f is regular
the list of generalized exponents of f is 0,1,...,order(f) — 1. The list of generalized
exponents v(by), ..., v(b,) of R is a sublist of this. Hence B(v(b),...,v(by)) is an in-
teger > 0+1+---+(n—1). If Risregular then B(v(b),...,v(b,)) = 0+1+---+(n—1).
Conversely, if B(v(by),...,v(b,)) =0+1+---+(n—1) then (after a permutation) we
have v(b;) =i—1,i = 1,...,n. Furthermore b; € V(f) C k((z)). Hence by lemma, 13
in chapter 2 it follows that R is regular.

So R is singular if and only if B(v(by),...,v(b,)) > 0+1+4---+(n—1). reso(R) =
1+---+(n—1)—B(v(b1),...,v(b,)) hence this is a negative integer if and only if R
is singular.

O

Let f € k(z)[0] and R a right-hand factor of order d. Let S be the set of sin-
gularities of f and the point co. Let T be the set of extra singularities of R. So R
is regular outside S|JT and hence the residue of R is 0 outside S|JT. We want to
find an upper bound for the number #T of extra singularities. Since the sum of the
residues of R is zero we have

Y (resp(R)) = — ) (resy(R)) > #T.

peES peET

res,(R) is determined by the list of generalized exponents of R at p which is a sublist
of the list of generalized exponents of f at the point p. So for every p we have finitely
many possibilities for res,(R).

We search for a bound for the integer values that >° . g(res,(R)) can have. This
is a rather difficult problem if k is a complicated field. To simplify the problem we
will substitute values for the parameters appearing in k£ to reduce the transcendence
degree of k£ to 0. Then the problem is the following: for each point p we have lists of
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generalized exponents of f in Q[z~'/"] for some n. Each sublist determines one of the
residues that R can have in the point p. Every combination of the possible residues
at all p € S must be added to see if the result happens to be an integer and we must
find a bound that integer. This can require computing in algebraic field extensions
over @ of an enormous degree. So we must further simplify the problem (note that
this simplification can lead to a possibly higher bound, so the step we will make is
not always the best thing to do). This simplification can be done in several ways.
One way to eliminate these algebraic numbers is to replace each algebraic number by
its image under the following @-linear map:

U(a) is defined as the trace of a over the field extension @ C Q(a) divided by the
degree of this extension (one should take into account the fact that this may alter the
v'(e; — e;)). Another way is to compute with floating point approximations.

Now we need not compute in complicated constants fields anymore, but one prob-
lem remains, namely we must check a large number of different possibilities. To reduce
this number we can bound each residue (which is a rational number after having ap-
plied ¥) separately, add all these rational numbers and take the largest integer which
is < this sum. Similarly one can compute a bound for the image of the residue under
¥ without checking all sublists of the list of generalized exponents.

3.10 Factorization in other rings

The Labahn-Beckermann algorithm can be used to factor in other rings as well. For
example the commutative ring k(z)[y]. An element f in this ring can be factored
by computing an irreducible local factor I € k((x))[y] of f and constructing an R €
k(z)[y] of minimal degree such that [ is a factor of R, in the same way as in section 3.6.
Another example is the ring of difference operators k(z)[r] where 7.z = (z+1)-7.
The only place on P! (k) where we can study the difference operators locally is 2 = oo
because all other places on P!'(k) (a place on P(k) is a valuation on k(z)) are
not invariant under 7. One can compute local factorizations and define exponential
parts and generalized exponents for difference operators in a very similar way as
for differential operators. So we can apply the method from section 3.6 to the ring
k(z)[7] as well. In the differential case the completeness of our algorithm in section 3.7
depends on the fact that we can choose a suitable singularity to apply our method
from section 3.5 to. However, for the ring k(x)[7] we can not always choose a suitable
singularity because x = oo is the only point we can take. As a consequence, our
factorization algorithm for k(z)[7] is incomplete, even for factors of order 1.
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Chapter 4

An algorithm for computing
invariants of differential
Galois groups

The topic of this chapter is an algorithm for computing the invariants, of a given
degree, for differential Galois groups of linear differential equations. This chapter
is joint work with Jacques-Arthur Weil. It has been presented at the MEGA’96
conference. An extended version of this text has been submitted for publication.

4.1 Introduction

Let C be a field of characteristic 0 and denote C as the algebraic closure of C'. Denote
k = C(x) with the derivation 9 = %. Let

n
Ly) =) aiy? =0 an #0
=0

(where the a; are polynomials in C[z]) denote a homogeneous linear differential equa-
tion. For such differential equations there is a differential Galois theory analogous to
that for polynomial equations. By adjoining the solutions V(L) C V and all their
derivatives to k we get a differential field (recall that the universal extension V' has no
zero-divisors) extension k¥ C K. Then the differential Galois group G of L is defined
as the automorphism group of this differential field extension. G acts faithfully on
the vector space V(L), and so G can be viewed as a subgroup of GL(V(L)). G is
an algebraic group, which means that it is a Zariski-closed subset of GL(V(L)). The
group G contains all the information about the differential relations satisfied by the
solutions of L(y) = 0 over k. One way to obtain information on G is to compute
invariants. An invariant is an element of a symmetric power Sym™(V (L)) that is left
fixed by G.

Once a basis y1, - .., yn of V(L) is fixed, an element of Sym™(V (L)) can be viewed
as a homogeneous polynomial P of degree m in n variables Y3, ..., Y, with coefficients

69



70 Chapter 4

in C. The value of this P € C[Y1,...,Y,] is P(y1,-...,yn). If P is left invariant by
G then its value is in k, cf. section 4.2.1 below for more details. Given L and an
integer m, the standard method for computing invariants of degree m is to construct
an operator denoted as L®™ (which is called the m-th symmetric power of L) whose
solution space is the set of values of all homogeneous P € C[Y1,...,Y,] of degree m,
and then to search the rational (i.e. in k = C(z)) solutions of this equation. Though
there exists a good algorithm to compute rational solutions (cf. [1]), the coefficients
of L®™ rapidly become dramatically big (see [60]). For order(L) = 2 this approach
works fairly well ([58]). But for larger examples, the computation of these symmetric
powers is often too complicated for our computers. To avoid this problem several
authors have developed good necessary conditions (see [50] and references therein) by
studying the local solutions at singularities of the equation.

In a similar spirit the first main ingredient of this chapter is that, at a singularity
z = 0, L has a basis of formal solutions where each basis element has the form
exp ([ e/z)s. Here e € Clz~!/"] for some positive integer 7 and s is an element of
C((z))[e,log(z)]. By posing an extra condition on s (namely that the valuation of s
is 0, cf. section 4.3) these e’s are uniquely determined and are called the generalized
exponents of L at x = 0. A study of these generalized exponents will provide the
bounds needed for computing the invariants.

The second main ingredient of this chapter is the so-called Tannakian correspon-
dence. This will allow us to view an invariant either as a polynomial in the solutions
whose coefficients are a vector C of elements of C' (which we will call a vector invari-
ant of degree m), or as a differential polynomial whose coefficients are a vector F' of
rational functions (which we will call a dual first integral' of degree m).

From the first ingredient we derive in section 4.4.1 a heuristic that computes
a C-vector space that contains all vector invariants (plus perhaps some additional
rubbish)?. Using the heuristic we can compute candidates for the invariants. Then
we need to check if these candidates are indeed invariants. The main goal of this
chapter is to be able to compute invariants even for cases where the computation of
L®™ ig too complicated for our computer. So we need to have a method to check
correctness of our candidate invariants without computing this symmetric power. In
section 4.4.2 we show that, by using the dual approach (i.e compute first integrals), we
can check at a reasonable computational cost if a candidate provided by our heuristic
is indeed an invariant. Combining the heuristic with this checking criterion gives an
algorithm for computing invariants.

The first advantage of this algorithm is that it avoids the main bottleneck of the
standard method (the computation of LO™). A second advantage is that, depending
on the application, it is more convenient to have the invariant as a value, as a vec-
tor invariant, or as a dual first integral, and our checking algorithm provides these
different forms (whereas the standard method provides only the rational value).

We would like to thank Elie Compoint, Marius van der Put and Felix Ulmer
for stimulating conversations concerning the content of this chapter. We also thank
Elie for swamping us with lots of complicated examples that helped us with the

IThis is because such differential polynomials are first integrals of the dual system, cf. [59, 16].

2Tt is possible that the authors of [50] had such a heuristic in mind as well; most of the ideas that
we use in the case of irregular singularities seem to be “known to specialists”, though we never saw
all of them written down completely.
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implementation.

4.2 Invariants of differential Galois groups

In this section, we recall some basic facts about differential Galois groups and their
invariants. The unfamiliar reader can consult [44, 33, 36, 9] for a more detailed
introduction to differential Galois theory.

4.2.1 The classical theory

Using the universal extension (but also via other methods) one can show that for every
linear homogeneous differential equation L(y) = 0 there exists a minimal extension
k C K of differential fields such that K contains a fundamental system of solutions
of L. Such a field K is called a Picard-Vessiot extension of k. This extension plays
the role of a splitting field for L. Using the fact that the field of constants C of k is
algebraically closed, one can show that this extension is unique up to isomorphism
(see [44, 33] and references therein). The group G of k-automorphisms of K that
commute with the derivation is called the differential Galois group of L over k.

One can establish a Galois correspondence between the algebraic subgroups of G
and the differential subfields of K ([44, 9]). In particular, an element of K is in k
if and only if it is left fixed by G. The group acts naturally on all constructions on
V(L) obtained from the standard tools of linear algebra (tensor products, symmetric
powers, direct sums, etc. see [36, 9, 46]) and can be characterized as the stabilizer of
a line in some construction (Chevalley, [53]).

Definition 12 An element v of Sym™(V (L)) that is fized by G is called an invariant
of G.

An element v in Sym™(V (L)) that is sent to a constant multiple of itself by any
element of G is called a semi-invariant of G; this means that the one-dimensional
vector space spanned by v is invariant under G.

Suppose order(L) = n. Having chosen a basis yi, ..., y, of V(L), we may identify
an invariant with a homogeneous polynomial in C[Y7,...,Y,] (where Y7,...,Y,, are
variables on which G acts the same as on yi, ..., Yyn, see [31] for definition and prop-
erties of symmetric powers). An invariant given in this presentation will be called a
polynomial invariant. The invariants of G form a C-algebra.

Let P be an invariant of G, and f = P(y1,...,yn) € K. As P is an invariant, f
is fixed by G. The differential Galois correspondence then implies that f € k, so f
is a rational function. We will call f the wvalue of the invariant P. The expression
of P depends on the choice of the basis of V(L), but its value f is independent of
this choice. For some applications, one just needs this value (for example to compute
closed form solutions of the equation, see [49, 58]) and there, ‘to compute an invariant’
means ‘to compute its value’.

The number of monomials of degree m is (

nimol)  LOm s the operator whose

solution space is spanned by all monomials of degree m in the y;. The order of LO®m
is < (""':fl_l) It is < ("';’fl_l) if and only if there is a non-zero P € C[Y1,...,Y,],
homogeneous of degree m, having value 0. In this case it can happen that the value of
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a homogeneous polynomial P of degree m is in k even though P is not an invariant.

If order(LO™) = ("*+™ 1) then P is invariant if and only if its value is in k. See [48]

for the construction and properties of LO™,

4.2.2 The invariants viewed as first integrals

This section we recall some results from [59, 60, 16]. Let Y; denote the vectors
Y5 Y- ,y§"71)); they satisfy an n-dimensional first order system Y’ = AY, where
A is the companion matrix of L. The matrix U whose columns are the Y; is a
fundamental solution matrix for the system Y’/ = AY.

To simplify the writing, we denote by y; ; the entries of U (i.e. y; ; = yj(.’fl) ). The
solution space V4 of Y’ = AY is G-isomorphic with V(L).

For a fixed j, let Y = (y1,j,.-.,Yn,;) be a solution of Y’ = AY. If we consider
a monomial u of degree m in the y; ;, then its derivative is a k-linear combination

of monomials of degree m in the y; ;. As there are N = ("t™") such monomials,

the vectors w = (y,. .. ,ynfl,jy::fj_l,y;’fj) of all such monomials satisfy an N x N
system which we denote by Y' = S™(A)Y. It follows from the construction that
the solution space of the system Y' = S™(A)Y is G-isomorphic with Sym™(Vy4), the
m-th symmetric power of Vy.

Remark: Note that the matrix S™(A) is easy to construct from a computational
point of view (its entries are entries of A multiplied by integers), and that it is sparse.
In fact, to construct LO™ means to build S™(A) and then convert it to an equation
by a cyclic vector process. It is this conversion that makes the construction of L&™
costly.

To have a fundamental solution matrix of Y/ = S™(A)Y, we build the m-th
symmetric power matriz Sym™(U) the following way. Let v; = Z]rle ¢;y;,; for i =
1,...,n where ¢; are arbitrary constants (note that they are the same for all v;). For
r ranging from 1 to N, construct the r-th monomial p, in the v; (for the lexicographic
order with v; > ... > v,). Then, for s ranging from 1 to N, Sym™(U), s is found
from p, by taking the coeflicient of the s-th monomial in the ¢; (for the lexicographic
order with ¢; > ... > ¢,).

Lemma 29 The symmetric power matriz Sym™(U) is is a fundamental solution
matriz forY' = S™(A)Y and its columns can be identified with a basis of Sym™ (Vy).

Proof: Follows from the construction.

O

Remark: In the sequel, the notation Sym™(U) denotes the symmetric power of a
matrix, whereas S™(A) denotes the differential system whose solution space is the
symmetric power of the solution space of Y’ = AY’; this is not the same construction
and this is why we must use a different notation.

As the solution space of Y’ = S™(A)Y is isomorphic with Sym™(V4), the system
Y' = S™(A)Y has a non-zero solution of which all entries are rational if and only if
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G has an invariant of degree m. This yields the following two ways of representing
the invariants:

Definition 13 Let Y' = AY be a first order system (with A € My(k)), and let U
denote a fundamental solution matriz. For m € N put N = ("+m71).

n—1
For any C € c" \ {0} we form the vector F := Sym™(U)C € KN

We say that C € " is a vector invariant and that F := Sym™(U)C is a dual first
integral if F € k™.

Remark: This correspondence may seem a little bit miraculous. However, one can
see from the construction that, as the elements of the Galois group commute with the
derivation, they act the same on all rows of Sym™(U).

Any rational solution of Y’ = S™(A)Y is a dual first integral. To connect this with
the polynomial invariants, let Sym™(U); denote the i-th row of Sym™(U). As the
entries of the first row of Sym™ (U) are the monomials of degree m in the solutions y; of
L (with an integer coefficient), we see that Sym™(U);C is a homogeneous polynomial
in the y; that takes a rational value. The next lemma (cf. e.g. [16, 9]) shows that the
corresponding polynomial in the indeterminates Y; is an invariant of G.

Lemma 30 A polynomial P € C[Y1,...,Y,] is a polynomial invariant of degree m of
G if and only if for some nxn matriz ) whose first row is formed by the indeterminates
Y;, there exists C € " such that P = Sym™(V)1C and that F := Sym™(U)C is a
dual first integral (i.e F € kN ).

Proof: see [16].
O

It is equivalent to determine invariants, vector invariants, or dual first integrals
from a theoretical point of view. However, it is not equivalent from a computational
point of view. We will design below a good heuristic for computing candidate vector
invariants. From these vector invariants we will obtain the candidate dual first integral
and then it will be simple to check if a candidate is indeed a dual first integral.

One advantage of working with systems is that the construction of symmetric
powers is easy to perform (and thus it is easy to check if some given vector is a
solution of such a system). Another advantage is that the dual first integrals are
independent of the choice of basis of V(L) (whereas vector invariants depend on this
choice).

For any point 29 € P*(C), the system has a local formal fundamental solution
matrix U. The system has a dual first integral F' if and only if there exists C € UN
such that Sym™(U)C = F. We will use this in section 4.4 to compute F.

4.3 Bounds on exponents using generalized expo-
nents

When computing rational solutions of a differential operator L one first computes a
lower bound for the integer exponents of L at each point zo € P(C). We would
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like to compute rational solutions of symmetric powers (and other constructions)
of differential operators. In the regular singular case [50] gives the bound for the
integer exponents of L®™ in terms of the exponents of L. In the irregular singular
case, however, we can not obtain a bound for the integer exponents of L®™ from
the exponents of L. The reason is that in this case there are “too few exponents”.
More precisely: in the irregular singular case there are, counted with multiplicity, less
than order(L) exponents. To handle this difficulty we will use the generalization of
exponents from chapter 3. An alternative way to get a bound (a different bound than
ours) is found in lemma 3.3 in [46] using a different generalization of exponents in [7].
For convenience of notation we will now assume that the point of interest is the point
z = 0. Then L in C(z)[0)] is viewed as an element of the ring C((z))[d] = C((x))[]
where ¢ = z0.

4.3.1 A few preliminaries

In this section we list a few known facts about differential operators that we will use
in later sections.

Definition 14 The exponents of L are those elements e € C for which there is a
solution of L of the form

z°s where se€ C((z))[log(z)] with wv(s)=0.

For the definition of the valuation v(s) see chapter 3.
The following is a well-known property of exponents. It is generalized in proposi-
tion 2.

Lemma 31 An element e € C is an exponent of L if and only if e is a root of No(L).

Definitions and properties of Newton polygons and polynomials can be found in [35,
54, 3] and chapter 2. Note: In the literature exponents are often also called indices,
and the Newton polynomial Ny(L) is then called the indicial polynomial or indicial
equation.

Recall the definition in chapter 2 of Exp(e) for e € C((x)) as

Exp(e) = exp(/ gd:c)

and the substitution map

Se : C((2)[] = C((2))[4]

for e € C(()) as the C'((z))-homomorphism that maps d to § + e.
Exp(e) is a solution of the operator § — e. For rational numbers ¢ we have

Exp(q) = 2% € C((2)).

Furthermore
Exp(e) € C((z)) <= e € Z + z - C[[z]]
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and

Exp(e) € O((2)) <= ¢ € U(%Z 4l

C-Cllz*']) c O((@)).

Here C-C [[z'/7]] denotes the smallest sub-ring of C((z)) that contains both C[[z'/"]]
and C. Exp behaves like an exponential function:

Exp(e1 + e2) = Exp(e1)Exp(es).

The substitution map has the following well-known property: Exp(e)y is a solution
of L if and only if y is a solution of S, (L).

4.3.2 Generalized exponents reviewed

Using the substitution map, one can rewrite the standard property of exponents
(lemma 31) as follows:

Lemma 32 Let L € C((z))[6] \ {0}. An element e € C is an exponent of L if and
only if 0 is a root of the Newton polynomial No(S.(L)).

With this lemma in mind, we can generalize the exponents by replacing the set C

by a larger set of exponents
E = U@[m_l/r].
T

Let L € C((z))[6]\{0}. For an element e € E the number v, (L) is defined in chapter 3
as the multiplicity of the root 0 in Ny(Se(L)).
e € E is called a generalized exponent of L if v,(L) > 0. The number v, (L) is called
the multiplicity of the generalized exponent e in the operator L.

Remark: In an older version of chapter 3 the generalized exponents were called
canonical exponential parts. This name is no longer used, it is now called generalized
exponent. The reason for choosing this name is to point out the use of this notion,
which is to generalize methods that use exponents (for example: [50]) to the irregular
singular case. Alternative approaches are found in the literature (e.g. [15, 38]). The
exponents are those generalized exponents that are in C.

Computing the generalized exponents can be done using one of the several fac-
torization algorithms. It is a subproblem of computing formal solutions, so the gen-
eralized exponents can be computed using a part of the algorithm for computing
formal solutions, cf. [54, 3]. We use “algorithm semi-regular parts” in chapter 2.
This algorithm is a modified version of Malgrange’s factorization algorithm [35]. Tt
uses a different type of ramifications (obtained from [3]) to minimize the algebraic
extensions.

The relation between generalized exponents and formal solutions is the following
(this is theorem 4 in chapter 3):

Proposition 2 Let L € C((z))[d] \ {0}. An element e € E is a generalized exponent
of L if and only if L has a solution of the form

Exp(e)s where s€ C((z))[log(z)] and wv(s)=0.
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Note: Instead of using a Newton polynomial the generalized exponents can be de-
fined from the formal solutions using this proposition. A different generalization of
exponents by using formal solutions is found in [7].

4.3.3 Minimal exponents

As already mentioned, our reason for using generalized exponents was to obtain in-
formation about the exponents of L®&™ without computing the operator L®™. Now
a natural question arises: Given the generalized exponents of L at the point z = 0,
can we determine all (generalized) exponents of L&™? One easily finds a counter-
example to this: at the point z = 0 the operators 8% + z and 8% + z + 1 have the
same generalized exponents (the generalized exponents are in fact exponents in this
example), but their second symmetric powers do not. So instead of trying to find all
generalized exponents of the symmetric powers of L we will settle for a different goal,
namely to compute the minimal generalized exponents.

Definition 15 Let r be a positive integer. Define the following partial ordering <,
on E

1
e1<pey<=e1—ey € —Z and e; —ey <O0.
r

For a set S C E define min,.(S) as the set of minimal elements of S with respect to
the ordering <.

For an element L € C((z))[d] \ {0} define min, (L) as min,(S) where S is the set of
generalized exponents of L.

If L has an integer exponent e € Z then min,(L)(1Z contains 1 element. This
element is < e. So if we can compute min, for symmetric powers of L then we find
lower bounds for the integer exponents of these symmetric powers. For this we use
the following

Proposition 3 Let L; and Ly be non-zero elements of C((x))[0]. Let r be the least
common multiple of all ramification indices of the generalized exponents of L, and
L. For sets S1,S2 C E define the sum Sy + S2 = {s1 + s2|s1 € S1,82 € Sa} C E.
Then

min, (L1 ®Ls) = min,(min,(L;) + min,(Ly)).

The symmetric product of L1®Ls is defined as the monic operator of minimal order
such that y1ys € V(Li®Ls) for all y; € V(L1), y» € V(Ls). Strictly speaking this
is not a mathematically correct name, we use this name because of the resemblance
with the symmetric power construction L&®™.

Corollary 1 Let m be a positive integer and r the least common multiple of the
ramification indices of L. Denote for S C E the set m-S as S+ S+---+ S (m
times). Then

min, (L®™) = min, (m - min,(L)).

In particular if L™ has an integer ezponent e then min,(m-min, (L)) (| Z contains
1 element which is a lower bound for e. This lower bound can be computed from r, m
and min,(L).
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We postpone the proof of the proposition till after the proof of theorem 5 below.
To prove this theorem we first need to introduce some notations.

Remark: The fact that such a lower bound exists is not new (lemma 3.3 in [46]).
However, the bound in our proposition is sharper. It gives precisely the smallest ex-
ponent of LO™ in 1Z. So in case all ramification indices are 1 (i.e. r = 1) our bound
for the smallest integer exponent is sharp.

Recall that V' is the linear universal extension of C((z)) as in chapter 2, and
Ve = Exp(e) - (C - C((z))[e]) [log(z)]. We have V,, =V, if and only if e; ~ ey and (cf.
theorem 3 in chapter 2)

V=P . (4.1)
e€E/~
Now define o
E,=Clz V" CE
and

For e € E, define B

Ve = Exp(e) - (C - C((z'/7)))[log(x)].
Ife; —ex € %Z then Ve, » = Vi, 50 Ve, is also defined for e € ET/(%Z) Ve,r is
the direct sum of the V., taken over all e; € E,/ ~ for which e is congruent with e;
modulo %Z. Hence by the direct sum in equation (4.1) it follows that

Vir =P Ver (4.2)

where the sum is taken over all e € E,/(1Z).

From theorem 3 in chapter 2 it follows that V(L) C Vi, if and only if the rami-
fication indices of every generalized exponent of L divide the integer r. Now V, , is
closed under differentiation, addition and multiplication. Hence if for operators L

and Lo all ramification indices divide r, then the same holds for Lgl) (for a definition
see lemma 33), for Ly ®L2 and for LCLM (L4, Lo).

Theorem 5 Let L € C((z))[d] \ {0} be of order d and let r be a positive integer.
Suppose that the ramification indices of the generalized exponents divide the integer
r.

1. There exists a basis y1,--.,yn of V(L) which satisfies the following condition
yi = Exp(e;)s; for some s; € (C- C((z'/)))[log(x)], v(s;) =0 (4.3)
where e1,...,e, € E.

2. Suppose y1,-...,Yyn s a basis of the solution space V(L) which satisfies condi-
tion (4.3). Then
min, (L) = min.({e1,...,en}).
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Proof: Let e € min,(L). Since {e1,...,e,} is a subset of the set of all generalized
exponents of L (there are at most order(L) = d different generalized exponents) it
follows that the number of elements in min,({e1,...,e,}) can not be larger than the
number of elements in min,(L). So we only need to prove that e € min,({e1,...,e,}).
Without loss of generality we may assume that ¢; —e € 2Z fori <t and e; —e ¢ *Z
for i > t. We need to show that ¢t # 0 and that there is one ¢ < ¢t with e; — e < 0.
Then the theorem is proven as follows: We may assume that e; — e € %Z is minimal,

so e; € min,({e1,...,e,}). Because of the minimality of e we can not have e; —e < 0
hence e = e;.
In the basis y1’,...,y,' of formal solutions in section 2.8.2 each basis element can

be written in the form y;’ is a constant times Exp(e;’)s;’ with s;/ € C((z))[es’, log(x)]
and v(s;') = 0. Furthermore (see also the proof of theorem 4 in chapter 3) every
generalized exponent e;' of L occurs. This basis satisfies condition (4.3) because
C((z))[ei,log(z)] € (C - C((x*/7)))[log(x)]. Furthermore the generalized exponent e
of L occurs in this basis. So one of the elements of this basis is of the form y = Exp(e)s
(with s € (C - C((z*/7)))[log(z)] and v(s) = 0). Then y € V., and y € V(L).

Because of condition (4.3) each y; is an element of V, ,. Since the y; form a basis
of V(L) it follows that y is a C-linear combination of y1, .. .,y,. Because of the direct
sum in equation (4.2) it follows that y is a linear combination of y1, .. ., y;, since e; for
i > t is not equal to e modulo %Z and so y; is in a different component than V, , for
i > t. Dividing by Exp(e) it follows that s € V. = (C - C((z'/)))[log(z)] is a linear
combination of the Exp(e; —e)s; € Vj,, for i < t. Hence the valuation of at least one
of the Exp(e; — €)s; is < v(s) = 0. The valuation of the s; is 0 and the valuation of
Exp(e; —e) € C((x/7)) is e; — e. So for at least one i < t we have e; — e < 0 and so
the theorem follows.

O

Remark: Without the condition s; € (C - C((z/7)))[log(x)] the statement need not
hold. Take for example L = §* — 26 and r = 1. Then min,(L) = {0,1}. Now take
e1 =ey=0,5 =1and sy =14 /2. Then s, does not satisfy condition (4.3) and

min, (L) # min, ({e1,e2}) = {0}.

Remark: The existence result i) is also found in [15] (in a different terminology,
though).

Proof of proposition 3: Let y; = Exp(e;)s;, 4 = 1,...,order(L;) be a basis of V(L)
and y;' = Exp(e;')s;’, j = 1,...,order(Ly) be a basis of V(L) that both satisfy
condition (4.3). Then the products y;y;’ span V(Li®Ls). Let S be a set of pairs (i, j)
such that {y;y;'|(¢,7) € S} is a basis for V(Li®L2). Now y;y;' = Exp(e; + €;')s;s;’
and s;5;' € (C' - C((z'/7)))[log(x)] with v(s;s;') = 0. Hence by theorem 5 it follows
that min,(Ly®L2) = min, ({e; + ¢;|(4,7) € S}).

Now {e; + e;'|(i,j) € S} is a subset of the set T of all e; + e;'. So for each e €
min, ({e; +e;'[(i,7) € S}) there must be precisely one e’ € min,(T') such that €' <, e.
Furthermore T is a subset of the set of all generalized exponents of L1®Ls. Hence
for each e’ € min,(T) there must be precisely one e € min,(Li®L2) = min,({e; +
e;'|(i,j) € S}) such that e <, e’. Then it follows that min,(T) equals min,(L1®L>).
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O

Lemma 33 Let L € C((x))[d] be non-zero and let r be the least common multiple of
the ramification indices of L. Let L(Y) be the monic differential operator defined by
V(LW) = {2y € V(L)}.

If 0 € min,(L) then

min,.(LM) = {e + v(e) — 1|e € min,(L)}.

If 0 € min,.(L) then

min, (L) = {m} | J{e + v(e) — 1|e € min,(L) \ {0}}
where m € Z, m > —1, or
min, (LM) = {e + v(e) — 1|e € min, (L) \ {0}}.

Note that order(L) — order(L(")) is the dimension of the kernel of £ on V(L). So
order(L™M) = order(L) — 1 if 1 € V(L) and order(L(")) = order(L) otherwise.

Proof: If y = Exp(e)s where s € (C-C((z'/")))[log(z)] with v(s) = 0 and e # 0 then
the derivative y' is of the form Exp(e +v(e) — 1)t for some t € (C - C((z/7)))[log()]
with v(¢) = 0. Now the first statement follows by applying theorem 5.

For the second statement we note that vo(L) > 0 means that there is a formal
solution y € (C-C((z'/")))[log(z)] of L with v(y) = 0. The valuation of the derivative
y' is co or is an integer > —1. Now distinguish the two cases: v(y') € min, (L")
(then: v(y') is an integer m > —1) or v(y') & min, (L)) (then the other case holds).

O

In the case 0 € min, (L) one can get a slightly stronger statement about min, (L)
by noting that —1 € min, (L") if and only if vy(L) > 1. We will not use this small
improvement of the lemma.

As in chapter 3, define v' : E — @ as follows: v'(e) = v(e) for all e € E\ {0}
and v'(0) = 0. It follows from the lemma that for each e € min,(L(")) there is an
€' € min, (L) such that e — (¢' + v'(e’) — 1) is a non-negative integer.

Denote L) as the monic operator of which the solution space consists of the i-th
derivatives of the elements of V' (L). By repeated application of the lemma it follows
that for each e € min, (L") there is an ¢’ € min, (L) such that e — (¢/ +14 - v'(e') — i)
is a non-negative integer.

Corollary 2 Let L be a non-zero differential operator in C((x))[0] and let r be the
least common multiple of the ramification indices of the generalized exponents of L.
Let mg, ..., mu_1 be non-negative integers and M the symmetric product of the op-
erators (L()®mi  Let B; = {e +i-v'(e) —i}|e € min,(L)} and B=mg-By +--- +
Mp_1 - Bu_1. Suppose M has a non-zero solution y in (C - C((z'/7)))[log(z)]. Then
B\ LZ contains an element < v(y).

This provides a lower bound for the valuation of solutions in (C - C((x/7)))[log(x)]
of M. It can be computed from my, ..., my_1, r and min,(L).
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To compute the bound we need to compute the set of sums mg-Bg+ -+ My _1 -
B, _1 and to take the smallest element which is in %Z. This means computing in
a splitting field; it is not sufficient to take only one generalized exponent in each
conjugacy class of generalized exponents. One can try to avoid splitting fields for
computing this bound by various tricks (for example floating point computations)
but we will not go into this.

Procedure global-bounds

Input: L € C(z)[0] and non-negative integers myg, ..., Mp_1

Output: A rational function @ € C(z) and an integer N such that every rational
solution y € C(z) of M = (LO)®mog ... o(L"D)®mn-1 can be written as the
product of  and a polynomial in z of degree < N.

1. Denote n = order(L) and L = a, 0™ +- - - +apd°. After multiplication on the left
by an element of C'(z) we may assume that a; € C[z] with ged(ag,...,a,) = 1.

2. Factor a, in C[z].
3. Q:=1.
4. For each irreducible factor p € C[z] of a,, do

(a) Let a € C be a root of p.

(b) Let I, be the C-automorphism of C(z)[0] given by l,(z) = = + a and
1,(0) = 9, as in chapter 3. This transformation moves the point z = a to
the point z = 0. Compute ly(L).

(¢) Compute the generalized exponents of [, (L) at the point x = 0.

(d) Let r be the least common multiple of the ramification indices of the gener-
alized exponents and compute the min, of the set of generalized exponents.

(e) Compute the set B in corollary 2.

(f) If BN %Z is empty then stop the algorithm and return the following out-
put: @ =0and N =0.

(8) Let by € Z be the smallest element of B () £Z, rounded above to an integer.
(h) Replace Q by @ - p°=.

5. Let I, be a C automorphism of C(z)[0] given by lo(z) = 1/z and [,(0) =
—x20. This transformation moves the point infinity to the point z = 0. Com-
pute loo (L).

6. Compute the generalized exponents of loo(L).

7. Let r be the least common multiple of the ramification indices of the generalized
exponents and compute the min, of the set of generalized exponents.

8. Compute the set B in corollary 2.

9. If BN %Z is empty then stop the algorithm and return the following output:
@=0and N =0.
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10.
11.
12.

13.

Let bo, € Z be the smallest element of B[ %Z, rounded above to an integer.
Add2-(0-mog+1-my+---+Mn—1) -my_1) t0 beo-

Let N be —by, plus the valuation of @ at infinity (this valuation is the degree
of the denominator of () minus the degree of the numerator of Q).

Output: @ and N.

Remark: Note that even if = N = 0 there may still be an invariant (whose value
is zero); see the Hurwitz example in the next section for an illustration.

The fact that the algorithm works follows from the following observations:

For a € C the map I, : C(x) — C(z) given by l4(x) = = + o is an automor-
phism of C(z) as a differential field because -+ = m. Hence by defining
lo(0) = O this l, is extended to an automorphism of C(x)[0]). However, I
given by ls(z) = 1/x is not an automorphism of C(x) as a differential field;
ﬁ = —22L . One can check that by defining I (0) = —2?0 we obtain an
automorphism of C(z)[0)].

By the valuation of f € C(z) at z = a for @ € P'(C) we mean the valuation
of I,(f) € C((z)). Let @ € PY(C) = CU{oc}. Then f € C(z) is a rational
solution of a differential operator M if and only if I, (f) is a rational solution of
lo(M). So computing a lower bound for the valuation of rational solutions of M
at £ = « is the same as computing a lower bound for the valuation of rational
solutions of [, (M) at z = 0.

Computing the function Q € C(z) and the number N is equivalent with com-
puting a lower bound b, for the valuations of rational solutions of M at all
a € P1(C) (assuming that b, is non-zero for only finitely many «).

If L is regular at a point = a where a € C then M need not be regular at
x = a. However, all local solutions of L at z = « are analytic. Products, sums
and derivatives of analytic functions are analytic hence all local solutions of M
at £ = « are analytic. In particular, 0 is a lower bound for the valuation of
the solutions at * = a. Hence we only need to compute a bound b, at the
singularities of L and the point co.

Because algebraic conjugation over C is an automorphism of the differential
field C(z), it follows that if aj,as € C are conjugate over C' then the two
bounds by, ,b., € Z will be the same. Hence we need to take only one « in
every conjugacy class of the singularities of L. In other words: We need to
compute the bound for only one root of each factor of a,, in C[z]. Furthermore
the function Q € C(z) will be an element of C(z).

Note that for all @ € P!(C) the map I, on C(z)[0] commutes with taking
symmetric products and LCLM’s (least common left multiples) because the map
I, on C(x) commutes with multiplication and addition. However, I, does not
commute with derivation if @ = 0. So [, only commutes with the construction
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L+ LW on C(z)[8] if a € C. The solution space of Io, (L") equals 2? times the
solution space of (Ioo(L))"). So the valuations are 2 higher than in lemma 33.
For the point £ = oo there is a lemma similar to lemma 33 with the following
differences: e +v'(e) — 1 is replaced by e + v'(e) + 1 and m > —1 is replaced by
m > 1. We need a different corollary 2 specifically for the point z = oo, i.e. for
operators L € C((1))[0] instead of L € C((z))[d]. The only difference will be
that e+i-v'(e)—i needs to be replaced by e+i-v'(e)+i. The algorithm computes
the bound given by corollary 2 and then adds 2-(0-mo+1-mi+---+(n—1)-m,_1)
to correct for this difference.

The PSL3; example: The following example was adapted from N. Katz by Elie
Compoint ([16]). Let § = z- and

5 1 5 1 1
)(6 — g)(fs + g)(fs + g) —z(d+ g)(fs - g)-

1 1 1 1

L=4( 2)((5 4)((H— 4)(6 5
We want to compute the invariants of degree 2 and 3. The generalized exponents
(which are in fact exponents) of L at = 0 are —5/8,-1/4,-1/8,0,1/8,1/4,1/2 and
5/8. So the ramification index r is 1. Since all exponents are different modulo 1Z
the set min,(L) equals the set of exponents. Now the smallest element in (1Z) (2
min,(L)) is 0. The smallest element of (£Z) (3 - min,(L)) is —1.

The generalized exponents of I, (L) are —1/3,1/3 and all conjugates of z—1/64+2/3.
The ramification index 7 is 6. Now —1/3 <, 1/3 and all the other generalized ex-
ponents are different modulo 2Z. Hence min, (I (L)) contains 7 elements; all gener-
alized exponents except 1/3. Now the smallest element in (%Z) N(2 - min, (I (L)))
is —2/3. Rounded above to an integer this is 0. The smallest element in (%Z) N3 -
min, (I (L))) is —1.

So “procedure global-bounds” gives the following output for the second symmetric
power of L: Q = 1 and N = 0. This means that the values of all invariants of
degree 2 are constants. For the third symmetric power the output is @ = 1/z and
N = 2, which means that the values of the invariants of degree 3 must be of the form
1. (co2® + c1z' + c22”) for some constants co, c1, Ca.

4.4 The algorithm for computing invariants

4.4.1 Computing candidate invariants

In order to work with the solution space V(L) we will choose a point 2o € P*(C) and
compute the formal solutions at that point. Regular points have the advantage that
computing the formal solutions is easier, but irregular points have other advantages
that will be mentioned later. So we will not assume that zq is a regular point. For
convenience of notation we will assume that the point xq is 0, if choosing a different
point would be more favorable than we can move that point to 0 by the map I, .

Denote by A the companion matrix of L. So the equation L(y) = 0 corresponds
to the matrix differential equation AY =Y' where Y = (y,¢',...,y™ V).

Suppose §;, 1 < i < n = order(L), is a basis of formal solutions satisfying con-
dition (4.3). Then a monomial in these §;’s (i.e. a product [[(g;)™) is again of the
form (4.3), where the generalized exponent equals > m;e;.
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Lemma 34 Let §; be a basis of local formal solutions satisfying condition (4.3) and
let v be the least common multiple of the ramification indices. An entry of a vec-
tor invariant can only be non-zero if the generalized exponent of the corresponding
monomial is in %Z.

Proof: Let N = (":T; 1) and let U be a formal fundamental matrix of Y’ = AY
such that the first Tow is §1,...,9n, i.e. the entries of U are the 0, ..., (n — 1)-th
derivatives of g1, ..., J,. Let P be a polynomial invariant. Let C be the corresponding
vector invariant. Then Sym™(U)C € C(z)N C (Vo). Note that each column of
Sym™(U) is an element of (V,,,)N where e is the generalized exponent of the first
element (which is a monomial in the ;) of this column. Using the fact that the
columns of Sym™(U) are linearly independent and the direct sum (4.2) on page 77
it follows from Sym™(U)C € (Vo,-)" that C can only have a non-zero entry for those
columns which are in (Vp,)V, i.e. for those monomials whose generalized exponent is
in 17Z.

T

Heuristic for computing invariants:

Algorithm candidate vector invariants.

Input: an operator L, an integer m, a point zy, and a number v.

Output: a vector space of candidate invariants of degree m and their corresponding
candidate values, given as a parametrized candidate vector invariant and candidate
value.

o If 2y # 0 then apply recursion on I, (L) as follows: replace L and g by l,,(L)
and 0, apply this algorithm and then apply the inverse of I, on the candidate
values of the invariants.

e Use the procedure global-bounds to find the bounds @, V; for rational solutions
of the m-th symmetric power of L.

e Compute a basis of formal solution § at z = 0 having property (4.3) in theorem 5.
Let r be the least common multiple of the ramification indices. Let ) denote
the vector of all monomials of degree m in the ;. Each of these monomials has
a generalized exponent in Cz /7).

e Take a vector C of unknown constants and set to zero every entry corresponding
to a monomial with a generalized exponent that is not an element of %Z.

e Compute p; := &yc mod zN+v+l

e Build a linear system on C by equating to zero every term with degree higher
than N; and all terms involving a log or a non-integer power of .

e Output: the solution of this system (this is a vector space consisting of can-
didate vector invariants) and the corresponding (vector space of) rational func-

tions f1 = plQl-
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This algorithm is called a heuristic because the candidate invariants that it pro-
duces need not be invariants. The choice of the number v is discussed in the strategies
below.

Proposition 4 Denote by Wy, ., the vector space of candidate vector invariants
produced by the above heuristic. Denote Wi, m oo =), Wi,m,». Then:

1. For all v € N, any vector invariant of degree m is in Wi, p, ..
2. There exists vg € N such that Wi m 0 = Wi mug-

Proof: From section 4.3, we get that the value of any invariant of degree m is the
product of @; by a polynomial of degree at most Vy; thus, the above lemma proves
i). Increasing v adds more conditions on C s0 W mit1 C Wi mi- As Wi .00 is
finite dimensional, this implies ii).

O

Remark: order(L®™) < ("J;T_”l_ 1) if and only if the solutions of L satisfy a homoge-
neous polynomial relation of degree m. In this case the value of a non-zero invariant
can be zero, but it can also happen that W, ,, o contains elements (candidate vector
invariants) that are not vector invariants. Note that since we do not compute L®™

we have no easy way of checking if this problem case order(L®™) < (";T; 1) oceurs.

Remark: By reasoning as in section 1.c of [46], an application of Cramer’s formulas
shows that vy is bounded by N(1 + (N — 1)d + Nd;) (where N = ("I™1), d is
the maximum degree of the a;, and d; bounds the degrees of the numerator and de-
nominator of @1). Thus, the above heuristic could be turned into an algorithm (but
then the problem case order(L®™) < ("t ') in the previous remark would need
to be addressed as well, for example by applying a transformation on L). However,
this bound is big and so it is better to use the checking procedure that is given in

section 4.4.2.

The PSL3 example (continued): Let L be the 8-th order operator in the PSLg
example of section 4.3. We had found the bounds for rational solutions of L&? and
L®3; applying the heuristic with o = 0 and v = 10, we get the following (candidate)
invariants:

352 _ 3240799168 .., 36064 .
2 32805 11T T 915233605 01t T ese1 0P
20240 12397
O o Ye Vo + —22L 0 Va2
6561 016121 3ggp Co s

15167488 35500589056
_10167888 vy, 4 02000089056
cir ¥s Yo X2 + 0351875

659456 36929536
54675

P = ar Y1’ Y

cr Y7 Yy Ys
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743206912 106172416 A

_ 22292 VY + 220 Y, Y2

99975 crYsYs Y5 + 3967 (17 Y2 Y3
3479057727488 46450432 ,

T T slioo37s TN YsYat e oar Y
12176702046208 L, 424689664 )
2o O 2O 1r Ve Y

66130125 (Y8 Ye + —goon  cr¥eYs

+ a7 Y% Yy

0 Py(g) — egy (1 4 OLM5TE | 17832200806512
and 53ly) = ary 3025 3826625

z?)

where ¢y, ¢;7 denote arbitrary constants. Note that L®?2 and L©? have order 36 and
120 respectively. L®? can be computed in several days on a big computer and L&? is
out of reach of computers, whereas the above computation only takes a few minutes.

O

If one already has some information about the group then sometimes the heuris-
tical algorithm is sufficient to compute the invariants. Because if we know how many
linearly independent invariants of degree m exist, one can simply use the heuristic
by just increasing the value of v. If at a certain point the space of candidate vec-
tor invariants has the correct dimension then it is certain (even in the problem case
order(L®™) < ("+™-1)) that all invariants have been determined because the invari-
ants form a subspace of the candidate invariants. In practise, it turns out that the
required number v is much smaller than the theoretical bound.

The Hurwitz example: The following operator has Galois group Gies ([50]). Let
d=-2 and
dzx

Tr—4 _, 259222 — 2963z + 560 —40805 + 57024z
0"+ 0+

L= A A .
+ z(x —1) 25222 (x — 1)2 246962 (x — 1)2

The ring of invariants is generated by invariants of degree 4,6,14,21. The heuristic
with m = 4,29 = oo,v = 10 yields (in 0.75 seconds) a one-dimensional space gen-
erated by P = 1728 V1 Y5> + Vi3 Vs — 1728 Y5 Y3® together with the value 0. The
fact that the space of invariants of degree 4 has dimension exactly 1 proves that P
is indeed an invariant. Similarly, the heuristic yields the other invariants quickly (see
also [60]): for the invariant of degree 21, we need to compute 37 monomials at infinity
(using a regular point it would have been 253 monomials).

O

If we choose a small number v (even v = 0), the output of the above heuristic may
also contain vectors that are not invariants, but it still is a good pre-conditioning to
the algorithm Inwvariants in the following section.

4.4.2 Finding and proving which candidates are invariants

Let the monomial g be a product of y9 to the power m;, i =0,...,n—1. If y is a
solution of L then f is a solution of the symmetric product of the operators (L(%))®m:
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By applying procedure global-bounds on p we mean applying the procedure global-
bounds on these numbers mgq,...,m,_1.

Algorithm Invariants:
Input: L, m, 2o (optional: »)
Output: the space of invariants in vector and dual forms

e Like in algorithm candidate vector invariants, if g # 0 then we apply the
transformation [/, and use recursion.

e Now we may assume zo = 0. Compute a basis of formal solutions of L at the
point £ = 0 having property (4.3) in theorem 5. Construct U, the fundamental
solution matrix of Y’ = AY from this.

e Obtain F; = f and a vector C from the algorithm candidate vector invariants.
Note that f and C contain parameters.

e for ¢ from 2 to N do:

— Let p; be the i-th monomial of degree m in y,4',...;
Obtain Q; and N; from procedure global bounds applied to L and u;.

— Let p; :== &Sym([j)iC mod z™i*t! and F;:=p;-Q;.

— equate all terms involving logarithms or fractional powers of x to 0 (this
gives a set of linear equations in the parameters. If the equations are
non-trivial we use them to reduce the number of parameters).

e This returns a rational vector F' parametrized by the entries of C.
The relation F' — S™(A)F = 0 yields a system of linear equations in the pa-
rameters. Solve this system.

e Qutput: a basis of solutions C of this system and the corresponding dual first
integrals F € C(z)VN.

Theorem 6 The output of this algorithm is exactly the space of invariants of degree
m and the space of corresponding dual first integrals.

Proof: That any vector invariant is an element of the vector space produced by the
algorithm follows from the fact that this was true for our heuristic, and from the fact
that we only added necessary linear conditions in this algorithm. Hence also every
dual first integral F' is an element of the vector space produced by the algorithm.
Conversely, as the F' produced by the algorithm are rational vectors satisfying F' =
S™(A)F, they are first integrals. So the corresponding C are indeed vector invariants.

O

The advantage of choosing a singular point zg is that the number of monomials
that need to be considered in the heuristic is often smaller, and so in “algorithm
invariants” we need to evaluate fewer columns of Sym™(U). However, taking a point
in which a ramification occurs can be disadvantageous, because computing modulo

2N in C[[z'/"]] involves more coefficients in C' than computing modulo zV in C[[z]].
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The PSL3 example (continued): Inthe PSLj example of section 4.3, if we would
take a regular point xg then the heuristic would need to evaluate 36 monomials for
the invariants of degree 2, and 120 monomials for degree 3. However, when taking
the singularity zo = 0, only 5 monomials of degree 2 have an integer exponent (the
algorithm only considers monomials with an exponent in %Z, and r = 1 in this ex-
ample). And only 15 monomials of degree 3 have an integer exponent. So when using
the singular point £y = 0 the computation for both the heuristic and the algorithm
is much quicker than, say, with the regular point zg = 1.

Taking a point in which the generalized exponents require algebraic extensions can
have both advantages and disadvantages. The disadvantage is obvious: Computing
the formal solutions and evaluating monomials will be more costly. The advantage is
that many monomials need not be considered. Suppose for example that order(L) = 3
and that at the point o = 0 we have 3 generalized exponents ej, ez, e3 which are
algebraic over C'((z)) of degree 3. From cje; + caes + c3e3 € %Z and ¢y,cy,c3 € Z
it follows that ¢; = ¢z = c¢3. So only 1 monomial needs to be considered. This
monomial is a power of y;ysys where y1,ys,ys is a basis having property (4.3) in
theorem 5. If such a monomial is in C(z) then y;,9.ys3 is a radical of this element.
Hence in this example L has a non-trivial invariant if and only if y1y2y3 is a radical
solution of the third symmetric power of L. In general computing radical solutions
is a computationally costly problem, this problem is similar to computing first order
factors. But in this example it is not so costly because we can use the fact that the
radical solution (if it exists) is equal to y1y2y3. So for order 3, what would appear to
be the worst case (the e; are algebraic of degree 3), is in fact a relatively easy case.

Taking a higher value of v in the heuristic can decrease the dimension of the
candidates. This can speed up the more costly “algorithm Invariants”.

The algorithm is not yet completely implemented. Currently only an experimental
version of the implementation is available by e-mail request. When the implementa-
tion is ready it will be made available at the authors’ WWW addresses®.

Applications of this algorithm are the computation of first integrals ([59]), the
computation of differential relations satisfied by the solutions ([16]), the computation
of algebraic and Liouvillian solutions ([49, 58, 60]) and, more generally, to obtain
more knowledge on the Galois group.

Shttp://www-math.sci.kun.nl/math/compalg/diffop/ and
http://medicis.polytechnique.fr/gage/weil.html
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Chapter 5

Rational Solutions of the
Mixed Differential Equation
and its Application to
Factorization of Differential
Operators

The topic of this chapter is a fast method to compute the rational solutions of a
certain differential equation that will be called the mixed differential equation. This
can be applied to speed up the factorization of completely reducible linear differential
operators with rational functions coefficients.

5.1 Introduction

A differential equation
y™ +a, 1y + 4y +ay =0
corresponds to a differential operator of order n
f=0"4+a, 10" +...4+4ay0°

acting on y. Here the coefficients a; are elements of the differential field k(z) and
0 is the differentiation d/dz. The field k is the field of constants. It is assumed to
have characteristic 0. k is the algebraic closure of k. The differential operator f is an
element of the non-commutative ring k(z)[0]. This is an example of an Ore ring [40].
The equation 0x = x0 + 1 holds in this ring. We denote the solution space of f as
V(f). Tt is a k vector space of dimension order(f). One way to define V (f) without
ambiguity is as a subset of the universal extension, cf. [24].

A factorization f = LR where L, R € k(z)[0] is useful for computing solutions of
f because the solutions V(R) of the right-hand factor R are solutions of f as well.

89
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Given L and R we can ask the following question: How can one compute (if it exists)
an operator Ry € k(z)[0] such that V(f) = V(R) @ V(R2)? In section 5.3.1 it is
shown how this question can be reduced to the mixed equation (5.1) with ¢ = 1.
Such an operator Ry could also be computed by one of the factorization algorithms
for differential operators, cf. [6, 13, 42] and chapter 3. However, these factorization
algorithms can be quite costly so we want to have an alternative method.

The mixed equation (called gemischte Gleichung in [39]) is the following: Let L
and R be in k(x)[0]. We will assume that L and R are monic (i.e. the coefficient in
k(z) of the highest power of 8 is 1). Let ¢ € k(z)[0] with order(c) < order(L). In the
applications ¢ is either 1 (cf. section 5.3.1) or 0 (cf. section 5.3.2). Compute the set
of all 7 € k(z)[0] such that there exists an [ € k(x)[0] with

Rr+IL=c. (5.1)
We call this the mixed equation. An equivalent equation is
RRem(Rr,L) = c. (5.2)

Here RRem stands for the remainder after a right-hand division. Note that it is
sufficient to compute the following set of solutions

{r € k(=)[0]|order(r) < order(L) and RRem(Rr,L) = c} (5.3)

because the other solutions r of order > order(L) are obtained from these by adding
elements of k(z)[0]L.

The set (5.3) of solutions of the mixed equation in the case ¢ = 0 is called Ep(R, L)
in [47]. The operators r in this set map solutions of L to solutions of R. The set
Ep(f, f) is called the eigenring of f. Singer gives a very interesting application of
computing this eigenring, namely the following: If £p(f, f) contains a non-constant
element r then he shows how one can use r to compute a non-trivial factor in k(z)[0]
of f in an efficient way, cf. section 3.1 in [47]. We will give an example of this in
section 5.3.2. If f is completely reducible then either Ep(f, f) contains a non-constant
element (and so f can be factored) or Ep(f, f) is the set of constants and then f is
irreducible. This will be the main application of the mixed equation.

Acknowledgments: I would like to thank J.A. Weil and S.P. Tsarev for use-
ful discussions about these topics. It should also be noted that J.A. Weil has ideas
(which have not yet been written down) for similar results about factoring completely
reducible operators as well. Both approaches have their own advantages. The advan-
tage of his approach is it can be applied to other problems as well. The advantage of
the approach in this chapter is that the algorithm is short and, even though the bound
we give in proposition 5 is very technical, easier to implement. A proper comparison
between the two methods can be given when both methods are implemented.

Outline of this chapter: The part of this chapter that is new is section 5.4.
Sections 5.2 and 5.3 are not new, see also [39, 47]. These sections are intended as an
introduction for section 5.4 and to give applications. Section 5.4.1 can be viewed as
an introduction for section 5.4.2 because the result of section 5.4.1 is re-done more
generally in section 5.4.2. The algorithm in section 4 for solving the mixed equation
consists of two parts:
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1. For each singularity p € P'(k) compute a bound for the valuation at p of the
coefficients in k(z) of .

2. Solve linear equations over k (a different approach is given in section 5.4 as
well).

Computer algebra systems already have code for solving linear equations, so the only
thing that needs to be implemented for solving the mixed equation is the bound in
section 4.2.

An implementation of the algorithm (currently only the computation of Ep(f, f)
is implemented, but it is not much work to adapt this code for the case of a more
general mixed equation) is available from
http://www-math.sci.kun.nl/math/compalg/diffop/

5.2 Preliminaries

This section lists a few facts about differential operators. For a more complete intro-
duction see [47]. In section 5.4.2 the reader is assumed to be familiar with section 3
in chapter 3.

The greatest common right divisor R = GCRD(f1, f2) of two operators fi and f,
is defined as the monic operator R with maximal order such that R is a right-hand
factor of both f; and fo. V(R) = V(f1)(V(f2). By the Euclidean algorithm (cf.
[40]) one can find two operators g1 and g2 such that

R=gifi+g92/>

and order(g;) < order(f;). If R = 1 then the pair g1, gs is uniquely determined.
This can be shown as follows: If there were two different pairs then the difference
hi,hs of these pairs would satisfy the equation hy f; + hafo = 0 and order(h;) <
order(f2). Then V(f2) C V(hif1) implying f1(V(f2)) C V(hi). However, f is
injective on V(f2) because V(f1) NV (f2) = V(R) = 0. So order(hy) = dim(V (hy))
> dim(f1(V(f2))) = dim(V(f2)) = order(f2) which is a contradiction.

A waluation on a ring R is a map v : R — Z|J{oo} (other additive groups than
Z, such as @, are allowed as well) such that v(0) = oo, v(fg) = v(f) + v(g) for all
7,9 € R\{0}. Furthermore v(f +g) > min(v(f), v(g)) and v(f +g) = min(v(), v(g))
if v(f) # v(g). One can define different valuations on the ring of local (i.e. power
series coefficients) differential operators, cf. section 2 in chapter 2. The valuation of
a power series a € k((x)) \ {0} is defined as the smallest n for which the coefficient of
z™ in a is non-zero. The valuation of a non-zero rational function a € k(z) \ {0} at a
point p € P! (k) = k|J{oo} is defined as follows: If p = co then the valuation of a at
p is the degree of the denominator minus the degree of the numerator. If p € k then
the valuation of a at p is defined as the integer n for which b = a/(z — p)™ has no
pole at p and b(p) # 0. Suppose that B, for p € Pl(k) are given integers for which
By, # 0 for only finitely many p and that N > 0 where N = )" B,,. Then the set of all
a in k(z) for which the valuation of a at p is > —B, is a k vector space of dimension
N + 1. The elements of this vector space are of the form n/D where D € k(z) can
be determined from the B, and where n € k[z] is a polynomial of degree < N.
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In section 3.1 in [47] Singer gives three methods for computing Ep(f, f). We will
describe here the first method because we can draw two useful conclusions from this
method (this method is computationally very costly, however. That is why we give an
alternative method in section 5.4). Let n = order(L) and m = order(R). Write r =
ro0%+...+7r,_10" ! where the r; are indeterminates. Write ¢ = ¢g0°+. ..+ ¢,_10™ 1.
Now RRem(Rr, L) is a k(z) linear combination of the r; and the derivatives of the
r;. The highest derivative of r; that appears in RRem(Rr, L) is ngm)_ This rgm) only
appears in the coefficient of 8" in RRem(Rr, L) and the coefficient of rl(m) in that
expression is 1 (recall that R is monic). So equation (5.2) is equivalent with the
following set of differential equations

™4 =g0<i<n—1}

where the dots stand for k(x)-linear expressions in r§m’), je{0,...,n—1}, m' €
{0,...,m —1}. If ¢ # 0 then this system is not homogeneous. To make it homoge-
neous we add one extra variable z, one equation 2z’ = 0, and replace the ¢; by z¢;.
We can convert this system to a system of first order equations by introducing new
indeterminates r; ; for the j-th derivative of r; and adding the equations r; j11 = r} ;

17.7 )
This way we obtain a system of equations of the form
Ay =y (54)

where A is a nm + 1 by nm + 1 matrix (if ¢ = 0 then nm instead of nm + 1 because
then z is not needed) over k(z) and y is a vector consisting of the r; ; and z. Such
a matrix differential equation can be reduced to a single equation of order nm + 1
(resp. nm if ¢ = 0) by a cyclic vector computation and can then be solved, see [1] for
computing rational solutions of a differential operator. We note the following:

Remark 1. If p € k is a regular point for L, R and the ¢; have no pole at p then
the matrix A has no pole at the point p. If the vector y would have a pole of order
t at the point p then the pole order of y' would be ¢ + 1, but the pole order of Ay
is < t. This contradicts Ay = y' so y (and hence the r; as well) have no pole at the
point p.

Remark 2. Every basis of the solutions y of equation 5.4 over k(zx) is a basis of
solutions y over k(z) as well. Hence, for the mixed equation, to compute a basis for
the solutions r € k(z)[d] it suffices to compute a basis for the solutions r € k(x)[0)].

5.3 Applications of the mixed equation

5.3.1 Computing a complement of V(R)

Let f = LR where f,L,R € k(z)[0] are monic and suppose there exists a different
factorization f = LoRs in k(z)[0] such that V(f) = V(R) @ V(R2). We assume
that the operators f, L, R, L» and Ry are monic. The greatest common right divisor
GCRD(R, R>) of R and Ry must be 1 because R and R2 have no common non-zero
solutions. Then, by the Euclidean algorithm, it follows that

rR+roRy =1
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for some r, 7y € k(x)[0] which are uniquely determined under the condition order(r) <
order(Ry) (note that order(Rs) = order(L)).

The map rR + ro Ry = 1 is the identity and the map r2R» acts like the zero map
on V(R2) C V(f). Hence the map rR acts like the projection of V(f) to V(Rz2). So
rR acts like the identity on V(Rz). Now R maps V (f) onto V (L), the kernel is V(R).
Hence R is a bijection from V(Ry) to V(L). So r is the inverse bijection from V(L)
to V(Rz). Hence Rr acts like the identity on V(L), then Rr — 1 maps V(L) to 0 so
L must be a right-hand factor of Rr — 1. In other words

Rr+IL=1 (5.5)

for some | € k(z)[0]. Ry can be constructed from r using the equation V(Ry) =
r(V(L)) as follows: Write z = r(y). We can write the derivatives of z as vectors over
k(z) on the basis y,7/,...,y™ Y (the higher order derivatives of y can be simplified
using the relation L(y) = 0). Here n = order(L). The n-th derivative of z must be
k(z) linearly dependent on the lower order derivatives z,2/,...,2("~Y. Computing
this linear dependence gives R,.

So: computing the set of monic operators Ry with V(f) = V(R)@ V(Ry) is
equivalent with solving the mized equation (5.1) for ¢ = 1. These monic Ry are in 1-1
correspondence to the solutions 7 in (5.3) of this mixed equation. Because of remark
2 in section 5.2 the existence of such an Ry € k(2)[d] is equivalent with the existence
of such an Ry € k(z)[0].

5.3.2 Singer’s Factorization method

In this section we describe a factorization method of Singer (cf. section 3.1 in [47])
and show in an example how to combine Singer’s method with the method from
section 5.4. Note that our f and r are called L and R in [47]. In the previous section
afactorization f = LR was given and the goal was to compute different factorizations.
In this section only f € k(z)[d] is given and we want to factor f using the solutions
of the following mixed equation

fr+if =0. (5.6)

This equation is a special case of (5.1). The set of solutions (5.3) is called Ep(f, f)-

Suppose the dimension of Ep(f, f) is greater than 1. Then we can take an element
r € k(z)[0] in Ep(f, f) which is not a constant. Now r is a k-linear map from V'(f)
to V(f). We can compute a basis of V(f) by computing formal solutions of f at a
point (this is easiest at a regular point). Then compute the matrix of the map r in
this basis and compute an eigenvalue a € k. Then GCRD(f,r — a) € k(x)[0] is a
non-trivial factor of f. Note that the only algebraic extension over k that was used
to compute a right-hand factor is the eigenvalue a.

Corollary 3 If f € k(2)[0] has an irreducible right-hand factor in k(z)[0] of order
d then f has an irreducible right-hand factor of order d in l(z)[0] for some algebraic
extension | of k of degree < order(f)/d.

Proof: Let g be the LCLM of all irreducible right-hand factors of f of order d. Now
the statement follows by applying Singer’s factorization method to g.

O
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Example: Given is the following differential operator

(x2-1)_, 2@Bz2-1)_ 1
pr o — poc 8+ﬁ

f=a4+ga3+2

which is the LCLM of two irreducible operators in @(x)[0]. The problem is to find
a right-hand factor of f. In section 5.4 we will compute Ep(f, f), the solutions r
of order < order(f) of equation (5.6). It has dimension 2. Then we can choose a
non-constant solution:

r=—z°8° — 2*8% + 22°0 + 2.

Now we need a basis for V' (f). We compute a basis b1,...,bs € Q((x — 1)) of formal
solutions at the point £ = 1. These b; are uniquely determined by requiring that b;
is (z —1)"~! mod (x — 1)*. The operator r acts on this basis as

0 3 -2 —6
1 3 -2 0
—3/2 1/2 2 -3
13/6 —5/3 1/3 7

The eigenvalues of this matrix are 3 + v/2 and 3 — /2. From the eigenvalue 3 + V2
we obtain the following right-hand factor of f

GCRD(f,r —3—V2) :6%?6—;{1.

The other eigenvalue 3 — /2 gives the conjugate over @ of this factor.

Note that dim(Ep(f, f)) > 1 implies that f is reducible but not that f is com-
pletely reducible. For example if f = (0 + 1/z)0 then r = 20 € Ep(f, f) (giving the
right-hand factor 9) but f is not the LCLM of irreducible operators.

5.4 Solving the mixed equation

Write
order(L)—1

r= Z ;0

i=0
and suppose r is a solution of the mixed equation (5.2) or equation (5.1) which is
equivalent. In section 5.2 we have seen that the r; can not have a pole at a point
p € kif R, L and ¢ have no pole at p. In section 5.4.1 (lemma 35) and section 5.4.2
(proposition 5 and the comments after proposition 5) we show how to compute a
bound for the valuation of each r; in the remaining places (i.e. the point co and the
points in k£ where R, L or ¢ has a pole). Then we can write

_ M

r; = D,

with n; € k[z] of degree < N; and D; € k(z) where N; and D; are computed from the
bounds. So given the bounds, we only need to determine the polynomials n;. This
can be done in several different ways:
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e Approach 1. Write the n; as a polynomials in x of degree N; with undeter-
mined coefficients. Then substitute r in the mixed equation (5.2) and find linear
equations for these undetermined coefficients. Solving these equations gives the
solutions of the mixed equation.

e Approach 2.

Let L; be an operator such that V(L1) = ¢(V(L)). If ¢ = 0 then put Ly =1,
if ¢ = 1 then L; = L. In the remaining cases L; can be obtained as follows:
write z = ¢(y) where y is a solution of L. Denote n = order(L). Using L(y) =
0 we write the derivatives of z as k(x) linear expressions in y,3’,...,y™!
Computing a k(z)-linear dependence between z, 7/, ..., 2™ gives L.

Compute a basis for V(L) and a basis 21,..., 2, for V(L R) (for example a
basis of formal solutions at a regular point). Let y € V(L). Then Rr(y) =
c(y) € V(L) so r(y) € V(L1 R). Assume that all the D; are equal to one
polynomial D (if they are not polynomials we can take the numerator, and if
they are not equal we can replace the D; by the least common multiple). Then

1 .
r(y) = ) Zm@’(y) € V(L1R)
S0 .
an‘y(z) =C1 Dz + ...+ CpDzp,. (5.7)

Here the n; and C; are polynomials in z with a bounded degree (the degree of
the C; is 0). The y@ and Dz; are power series in z — p (if we computed the
formal solutions at a regular point p). For each basis element y of V(L) we
obtain an equation of this form. The problem of computing all polynomials n;
and C; satisfying the given conditions on their degrees, such that equation (5.7)
holds up to a given accuracy a € N (i.e. modulo (z—p)?®) is handled efficiently by
the Beckermann-Labahn algorithm, cf. [17, 5]. A good guess for the accuracy a
that is required to obtain solutions of the mixed equation to take a such that the
number of linear conditions over k is at least the number of unknown coefficients
of the n; and C;. If we took the accuracy a too small then we find too many
solutions, i.e. we find a basis by,...,b; such that the solutions of the mixed
equation form a subspace of the vector space spanned by by,...,b;. Then we
can pick out the correct solutions from this vector space as follows: Substitute
r = c1by + ...ciby, where the ¢; are variables, in the mixed equation (5.2) and
solve linear equations to find the right cq,...,¢.

e Approach 3. One can compute the n; from the formal solutions r; € k((z —p))
of the mixed equation where p is a regular point, in a way that is similar to
the way that the rational solutions of a differential operator are obtained from
the formal solutions in [1]. This way we have to solve linear equations over k in
order(L) - order(R) variables.

5.4.1 The local bound problem, regular singular case

Define § = zd. The ring k(z)[0] is a sub-ring of the ring k((2))[0] = k((z))[0]. In
section 2.2 we have defined a valuation

vo : k(())[0] = Z [ J{oo}
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as follows: For non-zero f = Z” fi,j2'87 the valuation vo(f) is the smallest ¢ for
which f; ; # 0 for some j. For this f we can define the Newton polynomial for slope
0 (as in section 2.3.4) using a variable T as follows

No(f) =Y foo(p)T? € KITY.
i

The substitution map
ST:T+z‘ : k[T] — k[T]

is a k homomorphism defined by 7' +— T + 1.
We recall a few facts about the Newton polynomial Ny

e degree(Ny(f)) = order(f) if and only if f is regular singular.
e The roots of Ny(f) in k are called the ezponents of f.
e For all L, R in k((z))[d] we have

No(L - R) = Sr=1yv,(r)(No(L)) - No(R).

Note that we assumed that L and R are monic in k(z)[0]. So if the order is > 0 they
are not monic when considered as elements of k((x))[d].

The local bound problem is the following: Given R,L and c in k((z))[0] with
order(c) < order(L) compute a lower bound for vo(r) (or a lower bound for each
coefficient of r in k((x)) separately) for all solutions r € k((z))[d] of the mixed equa-
tion (5.1), i.e. for all » € k((2))[0] with order(r) < order(L) for which there exists an
I € k((x))[6] such that Rr +IL = c.

Lemma 35 (Bound for vy(r) in the regular singular case). Let R,r,l,L and c be in
kE((x))[0] with Rr + IL = ¢, order(c) < order(L), order(r) < order(L), R#0, L #0
and r #£0. Assume that L is regular singular. Then

c#0 and wo(r) > vo(c) — vo(R)

gcd(ST=T4v,(r) (No(R)), No(L)) # 1. (5.8)

Proof: If vy(r) > vo(c) — vo(R) then vo(c) must be finite and so ¢ # 0. Now assume
vo(r) < wo(c) — vo(R). Then vo(Rr) < vo(c) = vo(Rr + IL). This is only possible if
the lowest power of z in Rr and [L cancel, in other words

No(Rr) + No(IL) = 0.
The assumption that L is regular singular means
degree(Ng(L)) = order(L).
Apply the multiplication formula for the Newton polynomials

No(Rr) + No(IL)
= Sr=T4ue(r)(No(R)) - No(r) + Sr=11v,(£)(No(1)) - No(L).

Because degree(Ny(r)) < order(L) = degree(No(L)) equation 5.8 follows.

0
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O

Note that equation 5.8 can hold for only finitely many integers vo(r). So the
minimum of these integers (and the integer vo(c) — vo(R) if ¢ # 0) is a lower bound
for vo(r). The bound can be computed from wvg(c), vo(R), No(L) and No(R).

5.4.2 The local bound problem, general case

We can generalize the valuation vy and the Newton polynomial Ny to k((z))[d] as
follows: If f € k((x))[6] then f is an element of k((z'/™))[6] for some n € N. Write
f =, z'f; where f; € k[6] and where the sum is taken over i € 2Z. If f # 0 then
vo(f) is defined as the smallest 4 for which f; # 0 and the Newton polynomial Ny (f)
is defined as this f; (with § replaced by the variable T').

First let us recall a few definitions and notations from section 3.3. We have defined
aset E = |J, k[z~'/"] and a partially defined valuation v from the universal extension
V to the set E. This v is defined on the set V, C V, which is the set of all non-zero
y € V that can be written in the form Exp(e)s for some e € E and s € V. Here

Vo = k((x))[log(2)]-

The map
Exp: E =V,

is defined as Exp(e) = exp([ £dx). We have v(Exp(e)) = e. For e € k((x)) the
substitution map

Se = k((2))[0] = k((2))[9]

is defined as the k((x))-homomorphism given by S.(6) = 6 + e. For e € E and
f € k((2))[d] \ {0} we have defined the multiplicity v.(f) of the generalized exponent
e in f as the multiplicity of the root 0 in No(Se(f)). Note: v(f) is not the same
as the multiplicity of the exponential part u.(f). The exponential parts are the
generalized exponents modulo a certain equivalence, hence their multiplicity p.(f) is
> the multiplicity v.(f) of the generalized exponent. The sum of v,(f) taken over
all e € E is the number of elements of the list of generalized exponents which equals
order(f).

The generalized exponents are a generalization of the classical notion of exponents.
The exponents of an operator f are those generalized exponents which are in k. An
operator is regular singular if and only if all generalized exponents are exponents, i.e.
if they are elements of k.

Our approach for the general (i.e. not necessarily regular singular) case is quite
technical. To explain the idea we will first reformulate the previous section into the
terminology of exponents instead of Newton polynomials. Then we can generalize by
replacing the exponents by generalized exponents. If

Rr+IlL=c¢c and ¢=0

and e is an exponent of L then e is an exponent of Rr as well. If v,(r) < v,(L) then
(the proof follows later in the more general case) vo(r) + e is an exponent of R. This
must happen for at least one exponent e of L because if L is regular singular then
the number of exponents e (counting with multiplicity) is greater than the order of
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r. By comparing the exponents of R and L, and taking the smallest possible integer
difference, we obtain a bound for vo(r). If ¢ # 0 we have to consider the possibility
vo(Rr) > vo(c) as well.

If L is not regular singular (L is irregular singular) then the number of exponents
e is not necessarily larger than order(r). Then there need not be an exponent e with
Ve(r) < we(L). This problem can be fixed by using generalized exponents instead
of exponents. Using generalized exponents we always have an e with v, (r) < v (L)
because order(r) < order(L). Then we can take a solution y € V, of L with v(y) =e.
By substituting y in the mixed equation (5.1) we get the equation Rr(y) = c(y).-
The idea is now to relate the multiplicity of a generalized exponent to a property
degl of elements of V,. Using this property we can study the relation between the
valuation of f, f(y) and y. We apply this two times on the equation Rr(y) = c(y),
first to find a relation between the valuations of R, R(r(y)) and r(y) (note that R
and R(r(y)) = ¢(y) are known, so this relation gives information on the valuation of
r(y)) and then to find a relation between the valuations of r, 7(y) and y to obtain
information on the valuation of r.

Definition 16 For a non-zero element y € V¢ define degl(y) as follows: Write y as
Y=2, a;;z'log(z)? where the sum is taken over j € N and i € %Z for some n € N.
Then degl(y) is the mazimal j for which a,y) ; # 0.

Every element y € V, is of the form Exp(e)z for some e € E and z € V. Then
degl(y) is defined as degl(z).

Lemma 36 Lete € k, f = —e+ s with s € k((x)) with v(s) > 0 and y € Vo \ {0}.
If e # v(y) then

v(f(y)) =v(y) and degl(f(y)) = degl(y).

If e = v(y) and degl(y) > 0 then

v(f(y)) =v(y) and degl(f(y)) = degl(y) — 1

and if e = v(y) and degl(y) =0 then
v(f(y)) > v(y).

Since the proof of the lemma is easy we skip it. Note that f(y) = 0 is only possible
in the case e = v(y) and degl(y) = 0.

Lemma 37 Let f € k((x))[6] \ {0}, y € Vo \ {0} and d = degl(y). Lete =v(y) € Q
and d = v.(f). If d' < d then

v(f() =vo(f) +v(y) and degl(f(y))=d-d.

If d' > d then
v(f(y)) > vo(f) +v(y)

Note that f(y) = 0 is only possible in the case d’' > d.
Proof: Factor (cf. section 5 in chapter 2) fas f=L-(0—e1 +81) -+ (6 —en + 8,)
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where v(s;) > 0, e1,...,e, € k are the exponents of f and L has no regular singular
factor (i.e. L has no slope 0 in the Newton polygon). Then vo(f) = vo(L). Denote
2=(0—e +51) (6 —en+8,)(y) € Vo. Now either v(z) € Q or z = 0. d' is the
number of ¢ for which e; = v(y).

Assume z # 0. Write L = Lyd® + ... + L,,6™. Now v(L;) > v(Lg) for i > 0
(because L has no slope 0) and v(6%(2)) > v(z) so v(L;6%(z)) > v(Lg - 2). Hence
v(L(2)) = v(Lo - ) and degl(L(2)) = degl(Lo - 2). Now f(y) = L(z) so v(f(y)) =
v(Lo - 2) = v(Lo) +v(z) = vo(L) +v(2) = vo(f) +v((6 —e1+51) - (8§ —en +5n)(y))
and degl(f(y)) = degl(Lo - z) = degl(z) = degl((6 —e1 + 1) --- (6§ —en + 51)(y)). Now
the lemma follows by repeated use of the previous lemma.

O

Lemma 38 Let f € k((x))[0]. Then f has a solution y in Vi with degl(y) = d and
v(y) = e if and only if v.(f) > d.

Note the following consequence of the lemma: If there exists a solution y with v(y) = e
and degl(y) > 0 then there exists a solution z with v(z) = e and degl(z) = degl(y) — 1.
This can easily be shown in a different way as well, take z = y — Siog(y) where Siog
is the map that replaces log(z) by log(z) + 1, cf. section 9 in chapter 2.

Proof: Let y € V, with degl(y) =d, v(y) = e and f(y) = 0. Write z = Exp(—e)y, so
v(z) =0 and z € Vy \ {0}. We have V(f) = Exp(e) - V(S.(f)). So S.(f)(z) =0 and
hence by lemma 37 it follows that vo(Se(f)) > degl(z) = d. Since v (f) = vo(Se(f))
one part of the lemma, follows.

Now suppose v, (f) > d. We must prove that f has a solution in V, with valuation
e and degl d. Let R € k((z))[e,d] be the right-hand factor of S.(f) of maximal
order which is semi-regular (cf. section 3.2 in chapter 3) over k((z))[e]. Now vo(R) =
vo(Se(f)) = ve(f) > d.

It is sufficient to prove that R has a solution y with valuation 0 and degl d, because
then Exp(e)y is a solution of f with the desired property. Section 8.1 in chapter 2
gives a recursive algorithm for computing a basis of solutions of R. This algorithm
makes repeated use of integration s; = [ %dz. In this integration process (we take
the constant term in the integral equal to 0) we have v(s;) = v(a;). Furthermore
degl(s;) = degl(a;) if v(a;) # 0 and degl(s;) = degl(a;) + 1 if v(a;) = 0. Using these
relations and induction with respect to the order of R it follows that the algorithm
in section 8.1 of chapter 2 produces a solution y with valuation e and degl(y) = j for
every exponent e of R and every integer j with 0 < j < v.(R).

O

Lemma 39 Let f € k((z))[0] be of order n and e € E. Letv' = 0 if e = 0 and
v' = v(e) otherwise (so v' € @ and v' < 0). Let d = vo(Sc(f)). Then d is an
integer divided by the ramification index of e. The coefficient of 6 in f has valuation
>d+ (n—i)'.

The proof of the lemma is easy, we skip it. The ramification indez of e is defined as
the smallest positive integer n such that e € k((z'/")).
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Proposition 5 (Bound for vo(S,(r))). Let Rr+IL = ¢ where R,r,l,L,c in k((x))[d]
with R# 0, L # 0, r # 0, order(c) < order(L) and order(r) < order(L).

Suppose e € E with ve(L) > v.(r). Lety € V. be a solution of L with v(y) = e
and degl(y) = ve(L)—1. Let M = 00 if ¢(y) =0 and M = v(c(y)) —e € Q if c(y) # 0.
Then

) 0 and wo(Se(r) = M — vg(S.(R))

or vo(Se(r)) + e is a generalized exponent of R.

Note: It is not a priori known which e satisfies v.(L) > v,(r). Also note that v.(L) >
ve(r) implies that v.(L) > 0 in other words: e is a generalized exponent of L.

In the two applications in section 5.3 we have c =0 or ¢ = 1. If ¢ = 0 then M = oo
so then the first case in the proposition can not occur. If ¢ = 1 then M = 0. So in
both applications the proposition can be used without computing a solution y with
the desired properties degl(y) = ve(L) — 1 and v(y) = e.

Proof:

Rr(y) = (Rr +1L)(y) = c(y)-

Denote z = Exp(—e)y and w = S.(r)(z). Then v(z) = 0 and degl(z) = degl(y) =
Ve(L) =1 > ve(r) = vo(Se(r)). Now Se(R)Sc(r) + Se(1)Se(L) = Se(c) and z is a
solution of S(L) so

Se(R)(w) = Se(R)(Se(r)(z)) = Se(c)(2) (5.9)
Now S, (c)(z) = Exp(—e)c(y) so
v(Se(R)(w)) = v(c(y)) —e = M.
By lemma 37 and degl(z) > vo(S.(r)) it follows that
v(w) = v(S.(r)(2)) = vo(Se(r)) + v(2) = vo(S.(r)). (5.10)

According to lemma 37 and equation 5.9 there are two possibilities (if M = oo
then the first case can not occur)

v(Se(R)(w)) = vo(Se(R)) + v(w)

OF V(1) (Se(R)) > degl(w) which implies that v(w) is a generalized exponent of S, (R).
The latter case implies that v(w) + e is a generalized exponent of R. So vo(Se(r)) =
v(w) = V(S (R)(w)) — vo(Se(R)) = M — v9(Se(R)) or vo(Se(r)) + e = v(w) +eis a
generalized exponent of R.

O

Note that both cases imply a lower bound for vy (S, (r)). Since we do not know which
of these two cases holds (unless M = oo then the first case can not occur) we have
to take the minimum of these two bounds to obtain a lower bound for vg(Se(r)). In
the case where vy (S, (r)) + e is a generalized exponent of R we obtain a lower bound
for v9(S.(r)) by taking the minimal m € ml for which m + e is a generalized
exponent of R (recall that ram(e) is the ramification index of e¢). Then by lemma 39

we obtain a lower bound for the valuation of the coefficients of r.
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The order of an operator equals the sum of the v, taken over all e € E. Since
order(L) > order(r) we must have

Ve(L) > ve(r) (5.11)

for at least one e € E. Note, however, that we do not know for which e equation 5.11
holds. So to obtain a lower bound for the valuations of the coefficients of r we must
take the minimum of these lower bounds for all generalized exponents e of L.

Example, continued from section 5.3.2: Now we will use the bound to com-
pute the rational solutions r of the mixed equation in the example of section 5.3.2.
We can write

_ N3 g3 o 40
r—D33 +...+D08.

The only singularities of f are z = 0 and z = oco. The point x = 0 is an irregular
singularity so we must compute the list of generalized exponents:

1 1 1 1
a——2—-a-—,a+—,2—-a+ —.
x x x x

Here a is a root of the polynomial 1 — 4Z + 272 (note that it is not necessary to
compute all generalized exponents, it suffices to compute them up to conjugation).
Now the smallest possible difference between generalized exponents which is an integer
divided by the ramification index is 0. So we have vo(S(r)) > 0 for some e in the list
of generalized exponents. Then by lemma 39 it follows that the coefficient of ¢ in r
(here r localized at the point z = 0, in § notation instead of d notation, cf. section
3.4 in chapter 3) has valuation > ¢ — 3. Now we should convert this bound for the
4 notation to a bound in @ notation. The result is that r; = n;/D; has valuation
> i — 3+ at the point z = 0. So we can take D; = 2°~2¢ (D; is not a polynomial
if 4 > 2, however. In these cases the notion of the degree of D; is problematic. But
then we can simply interpret degree(D;) as —1 times the valuation of D; at the point
infinity).

Now we want a lower bound for the valuation of r; at infinity (i.e. an upper bound
for degree(n;) — degree(D;)). The operator f is regular singular at infinity and the
Newton polynomial is 7% — 5T? + 2T = T(T — 2)(T? + 2T — 1). Then by lemma 35
it follows that vo(loo(r)) > —2. Here I (r) is r localized at infinity, cf. section 3.4
in chapter 3. We have to convert this to a bound for the valuation of r; at infin-
ity. The result is that the valuation of r; at infinity is > —2 — 24. This means
degree(n;) — degree(D;) < 2+ 2i. Hence degree(n;) < 2+ 2i + degree(D;) = 5. So we
can write 7 with 4 - (5 + 1) undetermined coefficients. Twenty-four indeterminates is
not very much so approach 1 in section 5.4, solving linear equations, will be efficient
enough to be able to handle this example. These linear equations are obtained from
RRem(fr, f) = 0. By solving these linear equations we can find the following basis
of solutions: 1 and —z°8% — 216? + 22°0 + z0.

Example:

6 8r2 +5 2z 1
d? o2 0 .
.712 + 1 + (3;2 + 1)2 + (.CL'2 + 1)2 + (.CL'Z + 1)2

f=0"+
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This operator is completely reducible. Using the implementation in diffop one can
compute in a few seconds the following basis of the eigenring: by = 4z + (22 — 2)0 +
6z(z%+1)0% + (2% +1)%0%, by = 20+ (22 +1)0%, b =z — 0+ z(2* +1)0%, by = 1. We
choose a Q(t)-linear combination of by, by, bs (the constant term by has no influence
on the resulting factorizations) for which the endomorphism that is obtained has
eigenvalues that depend on ¢. Then, by applying Singer’s factorization algorithm, we
obtain a right-hand factor that depends on t. After simplification this results in the
following right-hand factors

tr—1 n 2r+t+s
(2 +1)(z+1) 2(z2 +1)(z + 1)

R,y =0+ , where s*=-3t> -4, t € P'(k).
These R, are irreducible. Every R;; must have the same type otherwise f could
not have infinitely many different factorizations (cf. [56] or [39]). Since the set of all
irreducible right-hand factors can be parametrized by P!(k), cf. [56], and any non-
constant morphism from a conic s = —3t? — 4 to P!(k) is surjective, it follows that
{Rs.|s? = —3t> — 4, t € P'(k)} is the set of all irreducible right-hand factors of f.
As one can see none of the R, ; is defined over @, so f is irreducible in Q(z)[0], even
though it has infinitely many different factorizations in Q(z)[d)].

Proposition 6 Let f = LR with f,L,R monic elements of k((x))[d]. Let s € @,
s >0 and v, be the valuation defined in section 2.2. Then the coprime index (defined
in section 2.2) with respect to vs of this factorization is finite.

Proof: If the coprime index is > ¢ then there exists an a > t and operators L;, R;
such that

e o4it+1(LtRt) = 04ri4+1(LR), in other words: vs(LiR; — LR) > vs(LR) + a + t.
e 0,(Ly) = 0,(L) and 6,(R;) = 0,(R). In other words:

vs(L— L) > vs(L)+a and vs(R—Ry) >vs(R)+a (5.12)

o 0411(Lt) # 0gy1(L) or 0441 (Ry) # 0a41(R). In other

vs(L—Lg) <wvs(L)+a+1 or vs(R—Ry) <vs(R)+a+1 (5.13)

We will assume that f, L, R, L;, R; are monic; the definition of the coprime index in
section 2.2 is less technical for this case.

Denotely = Ly—L and ry = R;—R. Then LyR; = (L+1;)(R+r¢) = LR+I;R+Lri+
liri. Now vs(lyry) > vs(LR)+2a > v,(LR) +a+t and vg(Li Ry — LR) > vs(LR)+a+t.
Hence I;R + Lry (which is LyR; — LR minus l;r;) has valuation > vs(LR) + a +t as
well.

Assume t > 1. From equation (5.13) and from v,(l;R + Lr;) > v,(LR) + a +t
it follows that [; R, or Lr; has valuation smaller than the valuation of the sum ;R +
Lry. From this it follows that vs(l;R) = vs(Lr;), and this equals vs(LR) + a by
equations (5.12) and (5.13).

If a is sufficiently large (take t sufficiently large) then from the assumptions that
L,L;, R, R; are monic and equation (5.12) it follows that order(L) = order(L;) and
order(R) = order(R;). So order(l;) < order(L), order(r;) < order(R).
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Let ¢ = ;R + Lry. Perform a right-division of ¢ by R and let ¢ be the quotient.
Then vs(q) > vs(c) +¢1 > vs(LR) 4+ a+t+ ¢ for some constant ¢; depending only on
R and order(L). Hence v,(q) > vs(l;) for sufficiently large t. After subtracting ¢ from
l; and L; (note that this does not affect v, (l;) and vs(L;) because vs(q) > vs(l;)) we
may assume that order(c) < order(R). Then proposition 5 says that (the effect of S,
on the valuations is bounded by some constants ¢, cg, ¢; that can be computed from
L, R and s) one of the following holds

e vo(ry) > M — ¢y for some constant ¢s. Note that M > vg(c) + ¢3 where c¢3 is
some constant so vg(rs) > vg(c) + ¢4 where ¢4 is some constant. Or:

e vo(ry) + c5 + e is a generalized exponent of L for some generalized exponent e
of R, where ¢y is a rational number between some constants ¢g and c7.

(the names L and R are reversed in proposition 5).

If ¢ goes to infinity, then so do a, hence v,(r¢), and hence vo(ry). So if ¢ is
sufficiently large then the second case can not occur, and so the first case must hold.
The first case says that vg(c) — vo(rs) is bounded from above. Then wvy(c) — vs(ry) is
bounded from above. But v,(r;) = vs(R) + a hence vs(c) is bounded from above by
a plus some constant. Furthermore vs(c) = vs(I; R + Lry) > vs(LR) + a + ¢, hence ¢
is bounded from above, which finishes the proof.

O

Suppose f = LR where f,L, R are monic elements of the commutative ring
k((z))[y]- For each s € @ a valuation vs; on k((z))[y] is defined in section 2.2, and
corresponding to vs a notion of the coprime index. Using the same arguments as
in the proof above, one sees that the coprime index of f = LR is finite if and only
if there exists a number N such that vs(l;R + Lry) — vs(r;) < N for all non-zero
ly,r¢ with degree(l;) < degree(L) and degree(r;) < degree(R). If L, R are coprime,
i.e. if gcd(L,R) = 1, then such N exists by the extended Euclidean algorithm. If
ged(L, R) # 1 one easily finds Iy, r¢, t € N for which vs(l;R + Lry) — vs(rs) is not
bounded from above. Hence, for a factorization f = LR in k((z))[y] the coprime
index (with respect to vs) is finite if and only if L, R are coprime.
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Samenvatting

Voor lineaire differentiaalvergelijkingen bestaat er een Galoistheorie analoog aan die
voor polynoomvergelijkingen. De Galoisgroep voor polynoomvergelijkingen kan ge-
bruikt worden om de structuur van de oplossingen te bestuderen en om te beslissen
of er exacte (uitgedrukt in geneste worteluitdrukkingen) oplossingen bestaan. De
Galoisgroep van differentiaalvergelijkingen heeft soortgelijke toepassingen.

Om de Galoisgroep en eventuele exacte oplossingen te berekenen zijn een aantal
algoritmische hulpmiddelen nodig. Een van die hulpmiddelen voor polynoomverge-
lijkingen is het factorisatie-algoritme voor polynomen. Precies hetzelfde geldt ook
voor lineaire differentiaalvergelijkingen; algoritmen voor het ontbinden van differen-
tiaaloperatoren spelen een belangrijke rol in het berekenen van exacte oplossingen en
de Galoisgroep. Het hoofddoel van dit proefschrift is nu het vinden van efficiénte
methoden voor het ontbinden van differentiaaloperatoren.

Er zijn al algoritmen bekend voor de ontbinding van differentiaaloperatoren. In
theorie werken deze algoritmen altijd. Echter, in de praktijk kan een berekening mis-
lukken als een algoritme meer tijd of geheugen gebruikt dan er beschikbaar is. Het
mislukken van zo’n berekening is vaak het gevolg van het feit dat er bepaalde construc-
ties gebruikt worden die een explosieve coéfficiéntengroei tot gevolg kunnen hebben.
Voorbeelden van zulke constructies zijn splijtlichamen en Grobnerbasis-berekeningen.
Wil men een algoritme hebben dat minder vaak mislukt, dan moeten dit soort con-
structies dus vermeden worden. De moeilijkheid van het vinden van een goed algo-
ritme is dus dat men werkt met een handicap: de bedoeling is het vinden van een
algoritme, maar een aantal constructies die dit eenvoudig zouden maken mag men
uit efficiéntie-overwegingen niet gebruiken. Deze handicap heeft men niet als men
alleen wil aantonen dat een gegeven probleem berekenbaar is, dat is dus niet het-
zelfde probleem als het vinden van een goed algoritme. Het belangrijkste resultaat
in dit proefschrift is dus niet zomaar een algoritme voor de ontbinding van differen-
tiaaloperatoren, maar een algoritme dat geen gebruik maakt van splijtlichamen of
Grobnerbasis-berekeningen. Gezien vanuit de vorige methoden, die gebaseerd zijn op
Beke’s algoritme, lag het niet voor de hand dat zo’n algoritme mogelijk was.

Voor ontbinding van polynomen in @[z] beschouwt men gewoonlijk eerst locale
ontbindingen; dat wil zeggen ontbindingen over Fj of de p-adische getallen. Voor
differentiaaloperatoren volgen we dezelfde strategie. Daarom worden in hoofdstuk 2
eigenschappen van locale differentiaaloperatoren bestudeerd. Het doel hiervan is de
toepassing in hoofdstuk 3, de ontbinding van globale (dat wil zeggen: met rationale
coéfficiénten) differentiaaloperatoren. Een aantal bekende feiten over locale diffe-
rentiaaloperatoren worden in hoofdstuk 2 op een andere manier herschreven. Een

109



110 Samenvatting

voorbeeld daarvan zijn de zogenaamde “exponential parts”. In zekere zin zijn deze
al bekend in de vorm van “normalized eigenvalues” en “characteristic classes” in Ron
Sommeling’s proefschrift. Er zijn echter subtiele verschillen. In de definitie van de
characteristic classes wordt gebruik gemaakt van de Jordan-Hdlder stelling, impliciet
wordt dus gebruik gemaakt van een ontbinding. Echter, in plaats van ontbindingen
te gebruiken om characteristic classes uit te rekenen, willen we juist precies het omge-
keerde, namelijk een dergelijk begrip gebruiken om locale differentiaaloperatoren te
kunnen ontbinden. Daarom wordt in paragraaf 2.6 een alternatieve aanpak gegeven;
er wordt een definitie van exponential parts gegeven die berekend kan worden zonder
dat een volledig factorisatie-algoritme (zie paragraaf 2.7) nodig is. Deze aanpak is
wat technisch, maar wel praktisch voor de doeleinden in dit proefschrift.

In hoofdstuk 3 gaat het om het ontbinden van differentiaaloperatoren met rationale
functies als coéfficiénten. We kunnen een differentiaaloperator f eerst locaal ontbinden
en locale rechtsfactoren r vinden. Een van de resultaten in hoofdstuk 3 is dat het
mogelijk is om, gegeven r, een operator R van minimale orde te vinden zodanig dat r
een rechtsfactor van R is. Dan is R een rechtsfactor van f. Echter, men heeft goede
kans dat R gelijk aan f is. De kunst is dus het vinden van een locale rechtsfactor van
f, die tevens rechtsfactor is van een niet-triviale globale factor van f. Men kan dit ook
als volgt formuleren: gezocht wordt een deelruimte van een niet-triviale G-invariante
deelruimte van de oplossingsruimte van f, waar G de differentiaal-Galoisgroep is.
In deze formulering is de methode in hoofdstuk 3 het eenvoudigst te begrijpen; de
“exponential parts” geven op een natuurlijke wijze een directe-som splitsing van de
oplossingsruimte van f. Dit helpt bij het vinden van een deelruimte met de gewenste
eigenschappen. Het verband met oplossingsruimten wordt echter alleen gebruikt om
het algoritme uit te leggen, het algoritme zelf rekent met locale factoren in plaats
van met oplossingen. Dit is equivalent vanwege het verband tussen rechtsfactoren en
deelruimten van de oplossingen.

Hoofdstuk 4 is gezamelijk werk met Jacques-Arthur Weil. Dit hoofdstuk gaat over
het berekenen van invarianten van de differentiaal-Galoisgroep. Locale berekeningen
gecombineerd met het idee om gebruik te maken van zogenaamde “dual first integrals”
vormen hier de basis van een efficiénte methode om de invarianten te berekenen.

In hoofdstuk 5 gaat het om het berekenen van de rationale oplossingen van de
zogenaamde “gemengde vergelijking”. Dit kan dan toegepast worden voor de ont-
binding van differentiaaloperatoren. Voor dit doel wordt gebruik gemaakt van de
“gegeneraliseerde exponenten” van differentiaaloperatoren, die geintroduceerd zijn in
hoofdstuk 3. De belangrijkste benodigde eigenschap is dat het aantal gegeneraliseerde
exponenten, geteld met multipliciteiten, altijd gelijk is aan de orde van de operator.
Voor de klassiek bekende exponenten geldt dit alleen in het regulier singuliere geval,
vandaar dat voor het irregulier singuliere geval een veralgemening nodig is.
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