EXERCISES

AHM. LEVELT AND T.M.L. MULDERS

1. Determine the number of digits of the following numbers.
(a) 1000!
(b) 210000

2. Determine the floating point representation of e = exp(1) up to 10, 50 and 500 digits.

3. Determine the following numbers exact and up to 10 digits in their floating point repre-
sentation.
(a) cos(m/6)
(b) In(2e)
(c) arctan(v/3 + 2)

4. Determine the factorization of the following numbers,
(a) 98765432101234567890

(b) (2!0)C™)

5. Let
h )_£E5—31L‘4—4.T3—11:E2+61L‘—11
= 2 — bt +4x3 — 22+ 5 —4

) Let f(z) be the numerator of h(z).

) Let g(x) be the denomerator of h(z).

) Let d(z) be the ged(f(z), g(x)).

) Determine f(z)/d(z) and g(z)/d(x).

) Type normal(h). What happens?

) Type convert(h, parfrac’, z). What happens?

Let f(z) = e *°. Determine f'(z).

Let f(z) = In(z). Determine F(z) such that F'(z) = f(z).
Let h(z) be as in exercise 5. Determine h'(z).

Determine H (z) such that H'(z) = h(z).

a) Determine the taylor series in z = 0 of sin(z) up to order 10.
(b) Determine the taylor series in z = 0 of €* up to order 20
(c) Let

1
1—z—2%

fz) =
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Determine the taylor series in z = 0 of f(z) up to order 20. What can you say about
the coefficients of this taylor series?

. Solve the following (system of) equation(s).

(a) az? + bz +c=0.
(b) 28 + 23 — 22 — 1.
(c) sin(z) = cos(z).
(d) { rTt+y=a

22+ 1=
(e) Y

(") $2+y2—5=0
zy—y>+2=0
(g) 22 +z+1=12 z,y € Z
()ac—l—:c—l—l—y, z,y € Z/27 and z,y € Z/117Z
(i) Solve 28 + z3 — 22 — 1 numerical.
. Let
1 01 0 1 01 0
1 111 1 111
A= 0111 B = 0111
0 0 0 1 1 0 01
(a) Determine det(A) and det(B).
(b) Determine A~! and B~ 1.
(c) Determine C = AB.
Let
r 2 3 4
5 6 7 8
A= 9 10 11 12
13 14 15
For which z,y € R holds: det(A) = 0?7
Let
—-12 12 4 0
4 4 4 4
A=1 _40 4 4 4
21 0 0 4

(a) Determine A*%.
(b) Determine the characteristic polynomial of A. Can you explain the relation between
this result and the result in (a)?
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Let
1 z; 22 =3
I T3 T3
A= 1 x3 z% =3
1 x4 x?l :1:2
(a) Determine det(a).
(b) Factorize det(a).
(c) Generalize this exercise to a 6 x 6 matrix
Plot the following surfaces
x = sin(s) cos(t) s € [0, 27]
(a) ¢ y = cos(s) cos(t) t € [0,2n]
z = sin(t)
x = sin(s) cosh(t) s €10, 27]
(b) ¢ y = cos(s) cosh(t) te[-2,2]
z = sinh(t)
x = sin(s)t s € [0, 27]
(¢) { y=cos(s)t t € [—4,4]
z=1
x = sin(s)(2 + cos(t)) s € [0, 2m]
(d) { y = cos(s)(2+ cos(t)) t € [0,2n]
z = sin(t
z = sin(s)(4 + tcos(%s)) s €0, 27]
(e)  y=cos(s)(4+tcos(3s)) te[-1..1]

Solve, using Maple, for all a € R the following system of linear equations:

2az + 6y = 5
5t + (a—2)y = 7

Is the solution always correct?

Compute the extremal values of the function
frzead/5—zt/2 4+ 2% -z
Let

0 2
A= 5 3 and B =
2 6

~N o w
= = Ot

1
2
4
+

Compute A~!, AB and (A? + A)B using Maple.

Use Maple to verify the formula
4 arctan(1/5) — arctan(1/239) = «/4.

This formula can be used to find approximations of 7/4. How?
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Experiment with Maple and its on-line help system.

Let p € N be a prime number.
(a) Write a Maple-routine multtable which returns the multiplication table in Zj, as in
the following example for p = 5.

1 2 3 4
2 41 3
31 4 2 )°
4 3 21

where the 5 element is equal to ij mod p.
(b) Write a Maple-routine divtable which returns the table of division in Z, as in the
folling example for p = 5.

1 2 3 4

31 4 2

2 4 1 3 |’

4 3 21
where the 75" element is equal to 35~ mod p.

For the Fibonacci numbers F;, we have the following formula.

F_l 1+\/5n+1 1_\/5n+1
SV 2 2

(a) Write a Maple-routine to compute the Fibonacci numbers using their recursive defi-
nition (don’t forget the remember option).

(b) Write a Maple-routine to compute the Fibonacci numbers using above-mentioned
formula.

(c) Compare the speed of these routines.

Write a routine in Maple which computes the Fibonacci-polynomials F,,(z). The Fibonacci-
polynomials are defined as follows:

Fy(r) =1

Fi(z) ==

Fo(z) =xF, 1(z) + Fy_2o(z) voorn>2

Compute Fp(y).

Write a Maple-routine elsym such that elsym(s, [z1,z9,... ,Z,]) returns the ith elemen-
tary symmetric polynomial in 1, xo, ... ,Zp.
Write a package to do integer arithmetic. Do this as follows:

e Choose a base B (B a global variable).

e Represent a non-negative integer by a list [ap—1,... ,a1,a0] where 0 < a; < B and
an—1 # 0 or by [0]. A list [ap_1,...,a1,a0] will represent the number ag + a1 B +
v+ +a,_1B™ ! and [0] will represent 0.
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e Represent an integer by a list [s,p] where s € {—1,0,1} and p the representation

of a non-negative integer. [0,[0]] will represent 0, [1,[an_1,... ,a0]] will represent
ag+a1B+---+a,_1B" ! and [-1,[ay_1,--. ,a0]] will represent —(ag+a1B+---+
an_anil).

e Write Maple-routines for:
— comparing integers
— adding integers
— subtracting integers
— multiplying integers
Be sure that all operations you perform are elementary. Test your code on examples
using B = 1000.

Extend the package from the previous exercise with a routine to compute the quotient
and remainder when dividing two base B numbers.

(a) Write a Maple-routine representation such that for positive integers a and B the call
representation(a, B) returns the base B representation of a, i.e. if a = a9 + a1B +
-+ 4+ a, B™ it returns

[an,an—-1,... ,a1a9, B].

For example representation(1000000, 121) returns [68, 36, 56, 121].

(b) Write a maple-routine len which returns the number of digits in the above represen-
tation, i.e. len(1000000,121) = 9.

(c) Write a Maple-routine minimal_base which, for a positive integer a, computes a base
B for which len(a, B) is minimal.

(d) Can len(a, B) be smaller than length(a)? If yes, give an example.

The balanced ternary notation.
Prove that each non-zero integer can be written in a unique way as
do+di3+do3? +--- +dp3",

where n € N, d; € {—1,0,1} and d,, # 0. This is called the balanced ternary notation.
How can you see whether an integer in balanced ternary notation is positive or negative?

The mixed radix notation.

Let mg, my,... ,m, be integers > 1. Prove that each a € {0,1,... ,momy---m, — 1}
can be written in a unique way as

do + dimo + damomq + - - - + dpymomy -+ - My 1,

where d; € {0,1,... ,m; — 1}. This is called the mized radiz notation.

Let B be a positive integer > 1 and m an integer satisfying 0 < m < B. Prove that
|B/(m+1)]m > |B/2].
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(a) Write a Maple-routine to compute a™ for positive integers a and n. Do this in
two ways: by successive multiplication by a and by a divide-and-conquer technique.
Compare the speed of both routines.

(b) Do the same as in (a) but now to compute a" for a postive integer n and a € Z,, (m
a positive integer).

(c¢) For a positive integer n let [,, be the minimal number of multiplications needed to
compute a”. For example the minimal number of multiplications needed to compute
a'5 is 5 (see lecture notes). Write a Maple-routine which computes for a positive
integer m the set {n € N | [, = m}.

Notation as in Lemma 1 of Elementary arithmetic of the integers. Prove that:
l=95< —s3<s54<—85<---
1=t < —ta<ts < —lyg <+
Sic1ui — siui—1 = (1)1 i=1,...,n+1

ti—1u; — tiu;—1 = (—1)ia 1=1,...,n+ 1.

Prove that for a,b € Z such that a > b > 0 and not both 1, there exist integers s and ¢
such that ged(a,b) = sa+tb and |s| < b, |t| < b. Do s and ¢ computed in the extended
Euclid’s algorithm satisfy these inequalities?

Prove Corollary 4 of Elementary arithmetic of the integers. Use the fact that F, =

(5 - () /5.

Show that for positive integers a > b the time for computing ¢ and r such that a =
gb+ r (long division) can be bounded by O(In(a)(In(g) + 1)). Use this to show that the
computation time of the extended Euclid’s algorithm can be bounded by O(In?(a)).

Do exercices 10, 11 and 12 from Chapter 2 of [1].

Write a Maple-routine Karatsuba which multiplies two n-digit base B numbers using
Karatsuba’s method. Use the package of exercise 23 to do your base B arithmetic.

Compare the speed of your routine with multiplication in Maple (take B = 10). How
does the speed of your routine depend on the size of the input?

Write a Maple-routine my_gcd which for a,b € Z computes the greatest common divisor
of a and b. You may use the Maple-routines irem and iguo for this (do you need both?).
Write your routine such that it will print output as in the following example.

30 = 1 % 18 4+ 12
18 =1 « 12 + 6
12 = 2 « 6 + 0

Write a Maple-routine my_gcdez which for a,b € Z retruns a list [d, s, t] such that d is the
greatest common divisor of ¢ and b and d = sa + tb. You may use the Maple-routines
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irem and iquo for this (do you need both?). Write your routine such that it will print
output as in the following example.

30 = 1 % 18 + 12 12 = 1 x 30 4+ -1 * 18
18 = 1 x 12 + 6 6 = -1 x 30 + 2 =« 18
12 = 2 x 6 + 0 0 = 3 =+ 30 + -5 =« 18

38. The Maple-routines irem and iquo work do the following;:
For a,b € Z we have a = iquo(a,b) * b + irem(a,b) where —b < irem(a,b) < b
and sgn(irem(a, b)) = sgn(a) (when irem(a,b) # 0).
Write Maple-routines my_irem and my_iquo such that for a,b € Z the following holds:
a = my_iquo(a, b) * b + my_irem(a, b) where —b/2 < my_irem(a,b) < b/2.
Rewrite your routine from the previous exercise but now using my_irem and my_iquo
instead of irem and iquo.
Compare both routines on some large inputs. Which is faster?

39. For randomly chosen integers a and b the probability that they are relatively prime is
6/m% (E. Cesaro, 1881). Check this theorem using Maple. For random number generation
you can use teh Maple-routine rand.

40. Greatest common divisor in the ring of Gaussian integers.

Let G = {n+mi|n,m € Z} (i = v/—1). Show that G is a ring under usual addition
and multiplication. G is called the ring of Gaussian integers. Define the norm N on
G by N(n + mi) = n? + m?. Claim: for a,b € G, b # 0, there are ¢, € G such
that @ = ¢b+ 7 and 0 < N(r) < N(b). This can be seen as follows. Let ¢ = a/b,
c1 = R(c),co = S(c),q1 = round(cy), g2 = round(cz) and ¢ = q1 + ¢oi. Here for a € R,
round(a) = n is the integer satifyingn <a <n+1/2 or n —1/2 < a < n. Now prove
that N(q¢ —c) <1/2 and N(a — bg) < N(b)/2.

Write a Maple-routine Gauss_div which for a,b € G (b # 0) returns a list [g,7] such
that ¢,7 € G, a =gb+r and 0 < N(r) < N(b) (round is a builtin Maple-routine).

Write a Maple-routine Gauss_ged which for a,b € G (not both 0) returns a list [d, s, t]
such that d is the greatest common divisor of a and b satisfying R(d) > 0, S(d) > 0 and
d = sa + tb.

Test your routines for several (large) a and b.

41. Write a Maple-routine ged2 to compute a greatest common divisor of two numbers a,b €
{n+mv2|n,me7Z}.

42. For randomly chosen integers a and b the probability that they are relatively prime is
6/72 (E. Cesaro, 1881). Check this theorem using Maple. For random number generation
you can use teh Maple-routine rand.
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43. For integers a > b > 0 we can write § as

ap + 1
a1 + 1
as + 1
as +
Qp—1+ 1
)
where ag,ay,... ,a, are positive integers. This expression is denoted by [ag, a1, ... ,an]
and is called a continued fraction.
(a) Show how the numbers ag,aq,... ,a, can be extracted from the results during the

execution of Euclid’s algorithm.

(b) Write a Maple-routine calc_frac which computes the rational number corresponding
to a continued fraction.

(c) Write a Maple-routine determine_frac which computes the continued fraction corre-
sponding to a rational number.

(d) Test whether your routines are each others inverse.

44. Write a Maple-routine for multiplying polynomials using Karatsuba’s method.

45. Experiment using Maple’s normal function and study Maple’s on-line help on this func-
tion. What normal form is used by Maple?

46. Simplify the following expressions using Maple (think of expand, normal, simplify, factor,
combine, radsimp, etc.).
(a) (exp(z) + x)/(exp(2m) + 2z exp( ) + %)
(b) (z° + 40z* + 5952% + 390522 + 9680z + 1331)1/3
(c) (z— )3/2/( — 4z + 41/
(@) (V(z) )

(e) 1/(2 + 51/3)

(f) cos(z + y) + sin(z) sin(y) + 2%1Y

(g) 2cos(x)? — cos(2z)

47. Write a Maple-routine recursive which returns the recursive representation of a multi-
variate polynomial. For example
recursive(z3y?2? + 23y + 323y + 2yz? — xyt + z2y® + yz — y + 32, (2,9, 2])
should return

(2% +1)y? + 3y)z® + zyz? — (v* — 20°)z + (z — 1)y + 3=

48. Write a Maple-routine horner which returns the representation of a polynomial according
to Horner’s evaluation rule. For example

horner(79z° + 56x* + 6322 + 57z — 59)
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should return
—59 + (57 + (63 + (56 + 79z)2?)z)z.
Do not use Maple’s convert routine for this.

Define the nth Legendre polynomial P, (z) as the coefficient of y™ in the Taylor expansion

of 1/4/(1 — 2zy + 4?).

(a) Write a Maple-routine to compute the nth Legendre polynomial.

(b) Compute f_ll P, (z)P,,(x) for several n and m and conjecture a general formula for
this integral.

(c) Let @n(z) be defined by Qo(z) = 1,Q1(z) = = and Qn(z) = (n —1)/n(z@n-1(z) —
Qn—2(z)) + zQpn_1(z). Write a Maple-routine to compute the polynomials Q.

(d) COmpare the polynomials P, and Q.

An (ordinary, linear) differential operator of order n is an object of the following form:

P=3-r@ (1)

where the P;(z) are functions of z (usually assumed to be differentiable infinitely many
times). Omne can think of P as an operator acting on the set of functions, which are
infinitely many times differentiable, as follows:

pf= gam (£).

Now it is clear how to add these operators and how to multiply them with functions.
For operators P and @ we can also define their composition (or product) PQ as the
unique operator R such that for all functions Rf = P(Qf). Notice that in general we
have PQ # QP.

Implement differential operators in Maple, i.e. find a good data structure to represent
them and write routines for the following operations:
Multiplication with function
Addition
Composition
Action on functions

A partition of a positive integer n is a list [a1, a9, ... ,a,] where a1, a9, ... ,a, are positive
integers such that a1 > a3 >--->a, andn=a1 +az+--- + a,.
(a) Write a Maple-routine partitions such that partitions(n) returns a list of all partitions
of n.
Hint: First write a routine P such that P(n, k) returns all partitions [a1, ag, ... , ar)-
(b) Let N, denote the number of partitions of n. Write a Maple-routine N which com-
putes N,, (without actually computing all permutations).
A second way to compute N,, can be extracted from the following identity, due to

Euler.
1

(1-—z)1—-22)1—23)---

=1+ Niz + Noz® + N3z® + - --
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Try to understand this identity and write a Maple-routine which computes N,, using
this identity (use the Maple-routines taylor and coeff).
Compare the speed of both routines.

53. In this exercise we will do some ‘experimental mathematics‘. Let

54.

55.

56.

57.

58.

59.

o o
H(l —z") = Zan:c".
n=1 n=0

(a) Write a Maple-routine approz that computes [[>7 (1 — z™) mod z™.

(b) Look at the differences of the exponents of succeeding terms appearing. Can you
now guess what terms will appear.

(c) Look at the coefficients of the terms appearing. Can you now guess what the coeffi-
cients will be in general.

(d) Write now a Maple-routine that computes [[>2 (1 —2") mod 2™ without computing
a product of polynomials.

Check that a is a primitive nth root of unity in [,.
(a) p=41,n = 8,a = 14.

(b) p=97,n=32,a = 28.

(c) p=12289,n = 1024,a = —1987.

(d) p=104857601,n = 1048576,a = —25430071.

(a) Write a Maple-routine fft to perform the fast Fourier transformation, i.e. when p
is a prime number, n a power of 2, w a primitive nth root of unity in I, and a =
[ag, a1, ... ,an_1] alist of elements of F,, then fft(a, w, p) returns a list [Ag, A1,... , Ap_1],
the Fourier transform of a.

(b) Write a Maple-routine ifft for the inverse Fourier tramsformation.

(c) Check that your routines are each others inverse by the following example: a =
[1,4,3,10,5,16,5,0],w = 2,p = 17.

(d) Get an idea of the speed of your routines by studying the following big example:
p=12289,n = 210w = —1987 and a list of random numbers of length 2'°.

Study the Maple-routines F/F'T and iFFT, the fast Fourier transforms and its inverse over
the complex numbers (remind the on-line help). Compare the speed of these routines
and your routines fft and ifft.

Write a Maple-routine to evaluate a polynomial in the nth roots of unity (of a finite
prime field) using Horner’s rule. Do the same again but now using your fft-routine from
exercise 55. Compare the speed of both routines.

Write a Maple-routine to interpolate a polynomial in the nth roots of unity (of a finite
prime field) using Lagrange’s interpolation formula. Do the same again but now using
your ifft-routine from exercise 55. Compare the speed of both routines.

Write a Maple-routine to multiply two polynomials using the fast Fourier transformation.
Use your routines fft and ifft of exercise 55. Use your routine to multiply (z + 1)!® and
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z + 2)" in F,[z] where p = 104857601 (use the primitive 32th root of unity w =
P
43262874).

Compute all prime numbers < 23! of the form 1+ 22°k (use the Maple-routine isprime).
How many are there? Compare this with the result in the lecture notes.

(a) Write a Maple-routine to compute a primitive element of F, (use the Maple-routine
numtheory[factorset]).

(b) Write a Maple-routine that returns [n,w], where n is the largest power of 2 that
divides p — 1 and w is a primitive nth root of unity in If,.

(c) Use the routine of (b) to compute a primitive 22°th root of unity in Fj,, where
p=2%0.625+1.

Do some experiments using your fft routine of exercise 55. You can use your routine of
exercise 61 to find primitive roots of unity. Use random lists as input.

Write a Maple-routine to compute the resultant of two polynomials with coefficients in Q.
Do this in two ways: using the definition of the resultant and using the recursive formula
which comes from pseudo-division of the polynomials (see lecture notes). Compare the
speed of these routines and the Maple-routine resultant.

Write a Maple-routine resultant_ex which computes the resultant r of two polynomials
f, g, with coefficients in Q, and also polynomials a and b such that r = af + bg, deg(a) <

deg(g) and deg(b) < deg(f).
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