
1. If V is a vector space, then {u1, . . . , un} is a basis of V when all of the
following are true:

(a) u1, . . . , un are in V .

(b) Every element of V is a linear combination of u1, . . . , un

(c) u1, . . . , un is linearly independent.

2. If V is a vector space, and if we know its dimension dim(V ) then it
is less work to check if some set {u1, . . . , un} is a basis of V or not,
because in this case we can do the following:

(a) First check that the number of vectors you have equals dim(V ).
If that’s not the same number, it’s not a basis.

(b) Next, check that your vectors u1, . . . , un are in V . In many exer-
cises, that’s already a given fact, but in some exercises you have
to check that.

(c) After that, you only need to check one out of these two (if one
of them is true, then so is the other. And if one of them is false,
then so is the other).

i. Either check that every element of V is a linear combination
of u1, . . . , un.

ii. Or check that u1, . . . , un is linearly independent.

So you see that if you don’t know dim(V ) then you have to check
both items 1b and 1c (same as items 2c.i and 2c.ii). But if you
do know dim(V ), which is often the case, then we have to check
only one of these two items 1b, 1c.
Furthermore, in many exercises it is easy to do one of these two
checks but not so easy to do the other, so if you remember that
if dim(V ) is known that then one of the two checks (1b or 1c) is
enough, then that can save quite a bit of time.
In fact, in some exercises one of these two checks 1b or 1c might
already be given as well as dim(V ) so in those exercises you don’t
have to compute anything other than simply checking 2a and 2b
which is usually easy to do.

3. Check for yourself that item 2 implies the following: Any n linearly
independent elements of Rn form a basis of Rn.
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4. Some other useful things if you know dim(V ).

(a) If you have more than dim(V ) vectors in V , then they’re auto-
matically linearly dependent.

(b) If you have fewer than dim(V ) vectors in V , then their SPAN can
not be V (their SPAN will have to be smaller than V ).

(c) Note: in item 4a we can’t say anything about the SPAN without
doing computation.
And in item 4b we can’t say anything about whether they are
dependent or independent without doing computation.

5. Dimensions. Let A be an m by n matrix, so m rows, and n columns.

(a) dim( Col(A) ) = rank(A).

(b) dim( Row(A) ) = rank(A).

(c) dim( Nul(A) ) = n− rank(A).

(d) Col(A) is a subspace of Rm because each of the n columns of A
has m entries, so each column of A is in Rm.

(e) The transpose of Row(A) is a subspace of Rn because each row
has n entries.

(f) Nul(A) is a subspace of Rn because if v ∈ Nul(A) then Av is
zero, but to multiply A times v we need v to have n entries.

(g) AT , the transpose of A, is an n by m matrix.

(h) rank(AT ) = rank(A).

6. An n by n matrix A is invertible whenever one of these is true (then
they’re automatically all true).

(a) The columns form a basis of Rn.

(b) The columns are linearly independent (see also item 3 from the
previous page).

(c) rank = n (pivot in n columns)

(d) Col(A) = Rn (no zero-rows)

(e) Nul(A) = {0} (no free variables, no columns without pivot).

Note: If a matrix is not square, then d) and e) are not equivalent.
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7. Some other useful facts:
det(A−1) = 1/det(A)
det(AT ) = det(A)
det(AB) = det(A) det(B)
Inverse of AB is B−1A−1.
Transpose of AB is BTAT .
(A−1)T = (AT )−1 (transpose of A−1 = inverse of AT ).

8. If you have a polynomial equation λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

then the sum of the solutions equals −an−1.
And the product of the solutions equals (−1)na0. Note that (−1)na0 is
just a0 if n is even, and it is −a0 if n is odd.

For these two formulas to work, if you have a multiple solution, you
must count it multiple times. An example for n = 4:
λ4 − 11λ3 + 42λ2 − 68λ + 40, this equals (λ − 2)3(λ − 5) so we have
the solution λ = 2 (three times) and λ = 5 (one time).
In the example an−1 = −11 so −an−1 = 11. This is indeed the sum of
the solutions, if we count solution λ = 2 three times:
−an−1 = 11 = 2 + 2 + 2 + 5.
Likewise, (−1)na0 = (−1)440 = 40 and this is indeed the product of
the solutions, counting λ = 2 three times:
(−1)na0 = 40 = (−1)4 · 2 · 2 · 2 · 5.

9. Let A be an n by n matrix. If you’ve computed the characteristic equa-
tion of A (the determinant of A − λI) then check your characteristic
equation as follows. Say you got: ±(λn+an−1λ

n−1+· · ·+a1λ+a0) = 0.
( About that ±, that’s a + if n is even and a − if n is odd. Some texts
use λI −A instead of A− λI, in that case that ± is always just + ).
Now look at the number −an−1 (don’t forget the − sign). That num-
ber must be equal to the sum of the diagonal of matrix A. If it is not,
you made a computation error.
Then look at (−1)na0. That must be the determinant of A. If it is
not, then you’ve made a computation error.
If your characteristic equation passes these two checks, then go ahead
and solve it. The solutions are the eigenvalues. The sum of the so-
lutions is −an−1 and the product is (−1)na0, if we count multiple
solutions multiple times as in the example above.
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10. The previous handout LIST4.pdf described how to compute the eigen-
vectors of an n by n matrix A. The process described in item 6 of
that handout always produces as many as possible linearly indepen-
dent eigenvectors. Now look at item 3 of this handout, and we see
that these eigenvectors form a basis of Rn if and only if we found
n eigenvectors with this process. So: matrix A has a basis of eigen-
vectors if and only if the process in the previous handout produces n
eigenvectors.

11. Let e1, . . . , en be the standard basis of Rn (so e1, . . . , en are the columns
of the identity matrix).

12. The simplest possible matrices are diagonal matrices. Why? Well, if
D is a diagonal matrix then multiplying by D is very easy. Finding
eigenvectors of D is also easy: If the entries on the diagonal are the
numbers λ1, . . . , λn then the vector ei is an eigenvector of D with
eigenvalue λi.

13. So a diagonal matrix has a basis of eigenvectors, namely e1, . . . , en.
The corresponding eigenvalues can be read from the diagonal.

14. If M is a matrix and if each of these vectors e1, . . . , en is an eigenvector
of M , then M must be a diagonal matrix.

15. A matrix A is called diagonizable if there exists an invertible matrix P
and a diagonal matrix D for which the following is true: A = PDP−1.

16. A matrix A is diagonizable if and only if A has a basis of eigenvec-
tors. So whether or not A is diagonizable is something we can fig-
ure out by doing the computations explained in the previous handout
(LIST4.pdf). If we find n eigenvectors, then diagonizable, if we find
fewer than n eigenvectors, then A is not diagonizable.

17. If A = PDP−1 with D diagonal, and P invertible, then the columns
of P form a basis of eigenvectors of A.

18. If A has a basis of eigenvectors, then put those eigenvectors as columns
in the matrix P . Then put the corresponding eigenvalues (in the same
ordering as you used in matrix P ) on the diagonal of matrix D. Then
PDP−1 will be equal to matrix A. If you’ve checked your eigenvectors
(see item 1 in the previous handout LIST4.pdf, you should always
check your eigenvectors in this way) then there is no need to check
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that PDP−1 equals A, besides, multiplying PDP−1 would take up
too much of your time anyway.

19. Many problems (see sections 5.6 and 5.7) are easy to solve for diagonal
matrices. If a matrix A is not diagonal, then we can still solve those
kind of problems by diagonalizing A (that means: computing the ma-
trices P and D). Unfortunately, not every matrix is diagonizable. If
a square matrix A is not diagonizable, then the next best thing is the
so-called Jordan normal form. We do not have enough time in this
course to compute the Jordan normal form, nevertheless, I do want
you to know the following things:
In the Jordan normal form, we’d write A = PJP−1 where now J is
not necessarily diagonal, but it is upper triangular, and moreover, it
has as many as possible 0’s. The Jordan normal form (matrix J) has
0’s below the diagonal, the eigenvalues on the diagonal, the slanted
line just above the diagonal has only 0’s and 1’s, and everything above
that is 0.
Problems like solving a system of linear differential equations can still
be solved once we’ve computed the Jordan normal form. Remember
just this then: The Jordan normal form is not necessarily a diagonal
matrix, but it’s as close to diagonal as one can possibly get. In appli-
cations of linear algebra you’re likely to encounter the Jordan normal
form, so it’s a good thing if you’ve heard about it.

20. Upper triangular matrices. If A is an upper triangular matrix, then
it’s easy to compute the eigenvalues of A:
The eigenvalues of an upper triangular matrix are simply the numbers
on the diagonal.
However, if you want to get the eigenvectors, you still need to do some
work (see the previous handout LIST4.pdf).

21. If an n by n matrix has n distinct eigenvalues, then it is diagoniz-
able. If it has fewer than n eigenvalues, then you’ll have to calculate
eigenvectors if you want to figure out if A is diagonizable or not.
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