List of definitions and facts.

- 1. We say that p and x are ϵ -close when $|p-x| < \epsilon$. In other words, when the distance between p and x is less than ϵ
- 2. The set of all points that are ϵ -close to x is $(x \epsilon, x + \epsilon)$.
- 3. A set $\mathcal{O} \subseteq \mathbb{R}$ is **open** when $\forall_{x \in \mathcal{O}} \exists_{\epsilon > 0} (x \epsilon, x + \epsilon) \subseteq \mathcal{O}$. In other words, for any $x \in \mathcal{O}$ there is some $\epsilon > 0$ such that all points ϵ -close to x are again in \mathcal{O} .
- 4. \mathbb{R} and \emptyset are open (check this!). We proved in class that (a,b) is open.
- 5. Any union of open sets is always open (even infinite unions!).
- 6. The intersection of **finitely many** open sets is again open.
- 7. Let a_1, a_2, \ldots be a sequence. A **tail** is a subsequence of the form a_{K+1}, a_{K+2}, \ldots So a tail is: all terms beyond some cutoff point K.
- 8. a_1, a_2, \ldots converges to α when $\forall_{\epsilon>0} \exists_K \forall_{j>K} |a_i-\alpha| < \epsilon$. In other words, or every $\epsilon > 0$ the sequence has a tail contained in $(\alpha \epsilon, \alpha + \epsilon)$. In this case we call α the **limit** of the sequence a_1, a_2, \ldots
- 9. α is called a **limit point** of V when (i) there is a sequence in $V \{\alpha\}$ that converges to α . This is equivalent to (ii) $\forall_{\epsilon>0} (\alpha \epsilon, \alpha + \epsilon) \cap (V \{\alpha\}) \neq \emptyset$.
- 10. A set $V \subseteq \mathbb{R}$ is closed when
 - (a) The complement of V is open.
 - (b) If a sequence a_1, a_2, \ldots in V converges to α then $\alpha \in V$.
 - (c) V contains all of its limit points.
 - (d) If $(\alpha \epsilon, \alpha + \epsilon) \cap V$ is not empty for every $\epsilon > 0$ then $\alpha \in V$.
- 11. Notation: \overline{S} is called the **closure** of the set S
 - (a) \overline{S} is the union of S and all of its limit points.
 - (b) \overline{S} is the smallest closed set that contains S.
 - (c) \overline{S} is the intersection of all closed sets that contain S.
 - (d) $x \in \overline{S} \iff \forall_{\epsilon > 0}$ there is a point in S that is ϵ -close to x.
 - (e) $x \in \overline{S} \iff \forall_{\epsilon > 0} (x \epsilon, x + \epsilon)$ intersects S.
 - (f) $x \in \overline{S} \iff \exists$ a sequence $a_1, a_2, \ldots \in S$ that converges to x.
- 12. α is a limit point of S if α is in the closure of $S \{\alpha\}$.
- 13. The union of *finitely many* closed sets is again closed.
- 14. The intersection of closed sets (even infinitely many closes sets) is closed.
- 15. If $S \subseteq \mathbb{R}$ has finitely many elements then S is closed.
- 16. An **interior point** of S is a point s for which $\exists_{\epsilon>0} (s-\epsilon,s+\epsilon) \subseteq S$. Denote Int(S) as the set of interior points of S.
 - (a) S is open \iff every element of S is an interior point of S. In other words S is open \iff S = Int(S).
 - (b) Int(S) is open.

- (c) Int(S) is the union of all open subsets of S.
- (d) If S is the complement of U then \overline{S} is the complement of Int(U).
- 17. A point $s \in \mathbb{R}$ is a boundary point of S if

$$\forall_{\epsilon>0} \left((s-\epsilon,s+\epsilon) \bigcap S \neq \emptyset \text{ and } (s-\epsilon,s+\epsilon) \bigcap {}^cS \neq \emptyset \right)$$

The boundary of S is the set of all boundary points of S. It also equals the intersection of \overline{S} and $\overline{{}^cS}$.

- 18. (Ex 13 in the book). The set of limit points of any set S is closed.
- 19. A subset $S \subseteq \mathbb{R}$ is called *dense* if (definition is also in Ex 12 in the book) for every $x \in \mathbb{R}$ and every $\epsilon > 0$ the interval $(x \epsilon, x + \epsilon)$ contains an element of S.
 - (a) S dense $\iff \overline{S} = \mathbb{R}$
 - (b) S dense \iff For every $\alpha \in \mathbb{R}$ there exists a sequence $a_1, a_2, \ldots \in S$ that converges to α .
 - (c) S dense \iff Every non-empty open set intersects S (meaning, every non-empty open set has at least one element of S).
 - (d) S dense \iff Every non-empty open set contains infinitely many elements of S.
 - (e) Q is dense
 - (f) If A is countable then $\mathbb{R} A$ is dense.
- 20. S is a discrete set if $\forall_{s \in S} \exists_{\epsilon > 0} (s \epsilon, s + \epsilon) \cap S = \{s\}.$
- 21. Every finite set is discrete.
- 22. Every discrete set is countable.
- 23. NEW EXERCISES. Prove these:
 - (a) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.
 - (b) If $C = A \cup B$ then $\overline{C} = \overline{A} \cup \overline{B}$.
 - (c) If A is an open and B is closed set then A B is open.
 - (d) If S is a discrete set, and if $s \in S$, and if a_1, a_2, a_3, \ldots is a sequence in S and if that sequence converges to s, then a tail of that sequence must be s, s, s, \ldots
 - (e) If a_1, a_2, a_3, \ldots is a sequence that converges to s, and if s is an interior point of a set S, then show that some tail of the sequence lies in S.
 - (f) Now suppose that p is **not** an interior point of S. Then show that there exists a sequence a_1, a_2, a_3, \ldots inside the complement of S that converges to p.
 - (g) If S is a discrete set and x is any number then there is a sequence a_1, a_2, a_3, \ldots in the complement of S that converges to x.
 - (h) If S is a discrete set then its interior Int(S) is empty.

I'll add more questions/answers on Saturday.