More sample questions.

1. Simplify the following cardinal numbers to the point where they look like $0, 1, 2, \ldots$, or \aleph_0 , or c, or 2^c , or $2^{(2^c)}$, etc.

$$\begin{array}{lll} \operatorname{card}(\{3,3,3\}) &= \\ \operatorname{card}(P(\emptyset)) &= \\ \operatorname{card}(\mathbb{Q}) &= \\ \operatorname{card}(\mathbb{R} \times \mathbb{N}) &= \\ \aleph_0^{\aleph_0} &= \\ \operatorname{card}(P(\mathbb{R})) &= \\ c^{\aleph_0} &= \\ \end{array}$$

Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ?

- 2. Give the definitions:
 - (a) A function $f: A \to B$ is **injective** (same as "one-to-one") when:
 - (b) Sets A and B have the **same cardinality** when:
- 3. If $f: A \to B$ and $g: B \to C$ are both **injective** (exercise 2a) then prove that the composition $g \circ f: A \to C$ is also **injective**.
- 4. Using **only** the definition from exercise 2b, show that $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\mathbb{N}^* = \{1, 2, 3, \ldots\}$ have the **same cardinality**.
- 5. Let $A \subseteq B \subseteq C$ and suppose \exists injective function from C to A. Then prove that there is a surjective function from B to C.
- 6. Let A, B be sets and let $C = A \times B$. Show that **at least one** of these must be true:
 - (1) C is a **finite** set.
 - or (2) There exists a **bijection** from A to C.
 - or (3) There exists a **bijection** from B to C.