More sample questions, ANSWERS

1. Simplify the following cardinal numbers to the point where they look like $0, 1, 2, \ldots$, or \aleph_0 , or c, or 2^c , or $2^{(2^c)}$, etc.

$$\begin{array}{ll} \operatorname{card}(\{3,3,3\}) = 1 \\ \operatorname{card}(P(\emptyset)) &= 2^0 = 1 \\ \operatorname{card}(\mathbb{Q}) &= \aleph_0 \\ \operatorname{card}(\mathbb{R} \times \mathbb{N}) &= c \cdot \aleph_0 = c \\ \aleph_0^{\aleph_0} &= c \text{ (explanation: } 2_0^{\aleph} \leq \aleph_0^{\aleph_0} \leq c^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}) \\ \operatorname{card}(P(\mathbb{R})) &= 2^c \\ c^{\aleph_0} &= c \text{ (explanation: } 2_0^{\aleph} \leq c^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}) \end{array}$$

Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ? Yes, $\operatorname{card}(\mathbb{R}^{\mathbb{N}}) = c^{\aleph_0} = c$ (see above) so both have cardinality c so there is even a bijection.

- 2. Give the definitions:
 - (a) A function $f: A \to B$ is **injective** (same as "one-to-one") when: $f(a_1) = f(a_2) \Longrightarrow a_1 = a_2$ (for all $a_1, a_2 \in A$)
 - (b) Sets A and B have the **same cardinality** when:

When there exists a bijection from A to B.

3. If $f:A\to B$ and $g:B\to C$ are both **injective** (exercise 2a) then prove that the composition $g\circ f:A\to C$ is also **injective**.

Let $a_1, a_2 \in A$ and assume $g(f(a_1)) = g(f(a_2))$. To prove: $a_1 = a_2$. Given: g is injective so $g(b_1) = g(b_2) \Longrightarrow b_1 = b_2$ for any $b_1, b_2 \in B$. Applying that to $b_1 = f(a_1)$, $b_2 = f(a_2)$ gives $f(a_1) = f(a_2)$. Then the statement in exercise 2a gives $a_1 = a_2$.

4. Using **only** the definition from exercise 2b, show that $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\mathbb{N}^* = \{1, 2, 3, \ldots\}$ have the **same cardinality**.

To prove: there exists a bijection from \mathbb{N} to \mathbb{N}^* .

Proof: take the function f(n) := n + 1.

[Shouldn't we also prove that this is a bijection? In principle yes, but if you skip that on the test then you will still get full credit. The most important part about "show that there exists a bijection" is to actually write down what that bijection is! Students will get full credit if

and only if they write that bijection. To emphasize this, in my answer sheet I only write what f is and skip the proof that f is a bijection even though that is in principle part of a complete proof.

- 5. Let $A \subseteq B \subseteq C$ and suppose \exists injective function from C to A. Then prove that there is a surjective function from B to C.
 - $\operatorname{card}(A) \leq \operatorname{card}(B) \leq \operatorname{card}(C) \leq \operatorname{card}(A)$ (the first two \leq are by item 13 and the last one is by item 2). In particular $\operatorname{card}(B) \leq \operatorname{card}(C)$ and $\operatorname{card}(C) \leq \operatorname{card}(B)$ but then $\operatorname{card}(B) = \operatorname{card}(C)$ by item 14. Then there exists a bijection from B to C (item 1). Any bijection is surjective [as well as injective.]
- 6. Let A, B be sets and let $C = A \times B$. Show that **at least one** of these must be true:
 - (1) C is a **finite** set.
 - or (2) There exists a **bijection** from A to C.
 - or (3) There exists a **bijection** from B to C.

If not (1), then C is infinite and $\operatorname{card}(C) = \operatorname{card}(A) \cdot \operatorname{card}(B) = \max(\operatorname{card}(A), \operatorname{card}(B))$ by item 22. Then $\operatorname{card}(C)$ equals $\operatorname{card}(A)$ or $\operatorname{card}(B)$, hence (2) or (3).