

Intro Advanced Math. Answers to questions 1–8

- 1. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ For (a)–(h) you do not need to show your work, but for (i),(j) you need to justify your answer by showing all steps.
 - (a) \mathbb{N} : \aleph_0
 - (b) $\emptyset \times \mathbb{R}$: $0 \cdot c = 0$
 - (c) \mathbb{Q} : \aleph_0
 - (d) $\mathbb{R} \times P(\mathbb{Q})$: $c \cdot 2^{\aleph_0} = c \cdot c = c$
 - (e) $\mathbb{Q} \mathbb{Z}$: \aleph_0
 - (f) $P(\mathbb{N})$: $2^{\aleph_0} = c$
 - (g) $P(\mathbb{R})$: 2^c
 - (h) $\{2,2\}$: 1
 - (i) $\mathbb{R}^{\mathbb{N}}$: $c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0} = c$
 - (j) $\mathbb{R}^{\mathbb{R}}$: $c^c = (2^{\aleph_0})^c = 2^{\aleph_0 c} = 2^c$
- 2. Based on the answer in your previous question, does there exist: (it suffices to write yes/no):
 - (a) an injective function from $\mathbb{R}^{\mathbb{R}}$ to $P(\mathbb{R})$? Yes
 - (b) an injective function from \mathbb{Q} to \mathbb{N} ? Yes
 - (c) an injective function from $P(\mathbb{N})$ to \mathbb{N} ? No
- 3. Prove, using only the definition, that the intervals (0,1) and (0,2) have the same cardinality.

The function f(x) = 2x is a bijection from (0,1) to (0,2).

- 4. Let A, B be sets and let $C = A \bigcup B$. Suppose that $A \cap B = \emptyset$ and:
 - ullet (1) there is **no** bijection from A to C
 - (2) there is **no** bijection from B to C

Prove that A and B are finite sets.

Let a, b, c_0 be the cardinalities of A, B, C. Then $c_0 = a + b$. Suppose a or b is infinite. Then $c_0 = \max(a, b)$ so $c_0 = a$ or $c_0 = b$. But $c_0 \neq a$ by (1) and $c_0 \neq b$ by (2), contradiction.

- 5. Let A be any set. Prove that there is no bijection from \mathbb{N} to P(A). Suppose there is a bijection. Then $\operatorname{card}(P(A)) = \aleph_0$. But $\operatorname{card}(A) < \operatorname{card}(P(A))$. So $\operatorname{card}(A) < \aleph_0$. Then A is finite. Then P(A) is finite, contradiction.
- 6. TURN IN: We know that if d, e are natural numbers then $d \cdot e = e \cdot d$. But do you remember how to prove that? Lets prove this not only for natural numbers, but for all cardinal numbers! I will type the first line in the proof, and you finish it:

Proof: Let D, E be sets for which $d = \operatorname{card}(D)$ and $e = \operatorname{card}(E)$.

(a) Give the definition of $D \times E$.

This is the set of all pairs (x, y) with $x \in D$ and $y \in E$. The shortest way to denote that is: $\{(x, y) : x \in D, y \in E\}$.

(b) Give a bijection from $D \times E$ to $E \times D$.

Let $f: D \times E \to E \times D$ be the function that sends (x, y) to (y, x). [Explanation: Any element of $D \times E$ can be written as (x, y) with $x \in D$ and $y \in E$. But then the pair (y, x) will be an element of $E \times D$. Clearly this is a bijection.

Notation: If we write $f:(x,y)\mapsto (y,x)$ then this indicates that (x,y) is an element of the domain of f and that (y,x) is an element of the codomain (range) of f. In other words, this notation means that f sends this element (x,y) in $D\times E$ to the element (y,x) in $E\times D$.

- (c) Why does this bijection prove $d \cdot e = e \cdot d$? Because $d \cdot e$ is by definition $\operatorname{card}(D \times E)$. But giving a bijection from $D \times E$ to $E \times D$ proves that $\operatorname{card}(D \times E) = \operatorname{card}(E \times D)$ but the latter is by definition equal to $e \cdot d$.
- 7. TURN IN: Find all sets A for which the following is true: Every element of A is equal to 1.

Answer: $A = \emptyset$ and $A = \{1\}$.

8. TURN IN:

Item 22 says that if d, e are cardinals, and if at least one of them is infinite, then $d+e=\max(d,e)$. It is quite hard to prove this in general. Lets prove it in a special case, when $d=e=\aleph_0$, as follows: Let $\mathbb{N}^*=\{1,2,3,4,\ldots\},\ E=\{2,4,6,8,\ldots\},\ D=\{1,3,5,7,\ldots\}.$ So $E=\{\text{all even positive integers}\}$, and $D=\{\text{all odd positive integers}\}$.

(a) Give a bijection $f: \mathbb{N}^* \to E$ (write down: $f(n) = \ldots$) This function: f(n) = 2n is a bijection (there are other correct answers, but this one is the most obvious one).

- (b) Give a bijection $g: \mathbb{N}^* \to D$. This function: g(n) = 2n - 1 is a bijection.
- (c) Explain why parts (a),(b) prove that $\aleph_0 + \aleph_0 = \aleph_0$. If D, E are disjoint sets, each with cardinality \aleph_0 , then $\aleph_0 + \aleph_0$ is by definition the cardinality of the union $D \cup E$. So $\aleph_0 + \aleph_0 = \operatorname{card}(D \cup E) = \operatorname{card}(\mathbb{N}^*) = \aleph_0$.

[Note: this is exactly like the second part of Hotel Infinity.]

List of facts on cardinal numbers, shortened version.

Note: During the actual test, basic definitions that everyone must know (such as items 1-7) may be deleted!

- 1. $\operatorname{card}(A) = \operatorname{card}(B)$ means $\exists f : A \to B$ with f bijection.
- 2. $\operatorname{card}(A) \leq \operatorname{card}(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for card(\mathbb{N}^*).
- 4. c is short notation for card(\mathbb{R}).
- 5. The set A is countably infinite when: $\operatorname{card}(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. $\operatorname{card}(A) < \operatorname{card}(P(A))$.
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $\operatorname{card}(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f: A \to B$ is onto then $card(B) \le card(A)$.
- 10. A is countable when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $card(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $card(A) \le card(B)$.
- 14. The ordering \leq on cardinal numbers is a partial ordering. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. The proof is not easy! (Schroeder-Bernstein theorem on p 88–89).

- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.
- 16. Set A is uncountable when $\operatorname{card}(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $\operatorname{card}(A) > \aleph_0$.
- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
- 20. \mathbb{R} is uncountable. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*))$.
- 21. If $d = \operatorname{card}(D)$ and $e = \operatorname{card}(E)$ then d + e is the cardinality of $D \bigcup E$ if we assume that $D \cap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{\text{all functions from } E \text{ to } D\}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$.

If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \max$ are the same!

- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $\operatorname{card}(P(A)) = \operatorname{card}(\{0,1\}^A) = \operatorname{card}(\{0,1\})^{\operatorname{card}(A)} = 2^{\operatorname{card}(A)}$.
- 24. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*)) = \operatorname{card}(\{0, 1\}^{\mathbb{N}^*}) = 2^{\operatorname{card}(\mathbb{N}^*)} = 2^{\aleph_0}.$
- 25. $(d_1d_2)^e = d_1^e d_2^e$, $d^{e_1+e_2} = d^{e_1}d^{e_2}$, $(d^e)^f = d^{ef}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $\operatorname{card}(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by $\max(d,e)$, see item 22.
- 27. So far we have encountered these increasing cardinals:

$$0, 1, 2, 3, \dots \aleph_0, c = 2^{\aleph_0}, 2^c, 2^{2^c}, \dots$$

and we can wonder if there are any cardinals in between. Specifically, the *continuum hypothesis* asks if there is a cardinal d with $\aleph_0 < d < c$.

From the axioms of set theory (= the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.