Answers Test 2, Intro Advanced Math, Oct 18 2019.

- 1. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ No explanation is needed for (a)–(e). Do explain your answers for (f),(g).
 - (a) $\{3,3,3\}$. Cardinality is 1.
 - (b) $\mathbb{R} \setminus \mathbb{Q}$. Cardinality is c. [Any other answer would violate item 22]
 - (c) $\mathbb{N} \times \mathbb{Q}$. Cardinality is $\aleph_0 \cdot \aleph_0 = \aleph_0$.
 - (d) $P(\mathbb{Q})$. Cardinality is $2^{\aleph_0} = c$. [See items 23 and 24].
 - (e) $\mathbb{R}^{\mathbb{R}}$. Cardinality is $c^c = (2^{\aleph_0})^c = 2^{\aleph_0 c} = 2^c$.
 - (f) $\mathbb{R}^{\mathbb{N}}$. Cardinality is $c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0} = c$.
 - (g) Does there exist a bijection between $\mathbb{R}^{\mathbb{N}}$ and \mathbb{R} ? Yes because question (f) showed that both have the same cardinality.

2. Give the definitions:

- (a) A relation R on a set S is an equivalence relation when:
 - i. [Reflexive] $\forall_{x \in S} xRx$
 - ii. [Symmetric] $\forall_{x,y \in S} xRy \Longrightarrow yRx$
 - iii. [Transitive] $\forall_{x,y,z \in S} xRy \land yRz \Longrightarrow xRz$

[Here it is OK if you omitted the quantifier \forall .

It is also OK to write $(x, y) \in R$ instead of xRy

(b) A function $f: A \to B$ is onto (surjective) when:

$$\forall_{b \in B} \exists_{a \in A} \ f(a) = b.$$

[Here it is not OK if you omitted quantifiers, but it is always OK to write text like "for all" and "exists" instead of symbols like \forall and \exists . It is also OK to use other letters than a, b.]

3. Suppose that $f: P(A) \to B$ is injective.

Prove that there is no injective function $g: B \to A$.

$$\operatorname{card}(A) < \operatorname{card}(P(A)) \le \operatorname{card}(B)$$
 (1).

[The < is item 7, while the \le is because f is injective]

Then an injective function $g: B \to A$ can not exist because that would imply $\operatorname{card}(B) \leq \operatorname{card}(A)$ contradicting (1).

4. Suppose that A_q is a set for every $q \in \mathbb{Q}$.

Suppose that for every $r \in \mathbb{R}$ there is some $q \in \mathbb{Q}$ for which $r \in A_q$.

Must there be some $q \in \mathbb{Q}$ for which A_q is uncountable?

Why or why not?

Yes, because if every A_q were countable, then $S := \bigcup_{q \in \mathbb{Q}} A_q$ would be a countable union of countable sets. Then S would be countable [item 19], contradicting the fact that every $r \in \mathbb{R}$ is in S.

5. Let C be a set, let A be a subset of C, and let $B = C \setminus A$. Suppose there is an injective function from B to A but not from C to A. Prove that C must be a finite set.

There is an injective function from B to A, so (a): $\operatorname{card}(B) \leq \operatorname{card}(A)$. Suppose C is infinite. To Prove: a contradiction.

```
C = A \bigcup B and A \cap B = \emptyset so [see item 21:]
```

```
\operatorname{card}(C) = \operatorname{card}(A) + \operatorname{card}(B) [we can use item 22 because C is infinite:]
= \max(\operatorname{card}(A), \operatorname{card}(B))
= \operatorname{card}(A) by (a).
```

But $\operatorname{card}(C) = \operatorname{card}(A)$ contradicts the given statement that there is no injective function from C to A.

Items needed from the "List of facts on cardinal numbers" included in the test:

- 2. $\operatorname{card}(A) \leq \operatorname{card}(B)$ means $\exists f: A \to B$ with f one-to-one [Needed to know this in Ex 3 and Ex 5]
- 7. $\operatorname{card}(A) < \operatorname{card}(P(A))$ [Must use this in Ex 3]
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable [Must use this or item 26 in Ex 4].
- 20. \mathbb{R} is uncountable [Need to know this in Ex 4]
- 21. If $d = \operatorname{card}(D)$ and $e = \operatorname{card}(E)$ then d + e is the cardinality of $D \bigcup E$ if we assume that $D \cap E = \emptyset$ [Must use this in Ex 5].
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$ [Must use this in Ex 5].
- 23. $\operatorname{card}(P(A)) = 2^{\operatorname{card}(A)}$ [Was used in Ex 1]
- 24. $c = \operatorname{card}(\mathbb{R}) = 2^{\aleph_0}$ [Was used in Ex 1]
- 25. $(d_1d_2)^e = d_1^e d_2^e$, $d^{e_1+e_2} = d^{e_1}d^{e_2}$, $(d^e)^f = d^{e_f}$ [Was used in Ex 1]