List of facts on cardinal numbers, shortened version.

Note: During the actual test, basic definitions that everyone must know (such as items 1–7) may be deleted!

- 1. $\operatorname{card}(A) = \operatorname{card}(B)$ means $\exists f : A \to B$ with f bijection.
- 2. $\operatorname{card}(A) \leq \operatorname{card}(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for card(\mathbb{N}^*).
- 4. c is short notation for card(\mathbb{R}).
- 5. The set A is countably infinite when: $\operatorname{card}(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. $\operatorname{card}(A) < \operatorname{card}(P(A))$.
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $\operatorname{card}(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f: A \to B$ is onto then $card(B) \le card(A)$.
- 10. A is countable when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $card(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $card(A) \le card(B)$.
- 14. The ordering \leq on cardinal numbers is a partial ordering. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. The proof is not easy! (Schroeder-Bernstein theorem on p 88–89).
- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.
- 16. Set A is uncountable when $\operatorname{card}(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $\operatorname{card}(A) > \aleph_0$.

- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
- 20. \mathbb{R} is uncountable. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*))$.
- 21. If $d = \operatorname{card}(D)$ and $e = \operatorname{card}(E)$ then d + e is the cardinality of $D \bigcup E$ if we assume that $D \cap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{\text{all functions from } E \text{ to } D\}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$.

If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \max$ are the same!

- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $\operatorname{card}(P(A)) = \operatorname{card}(\{0,1\}^A) = \operatorname{card}(\{0,1\})^{\operatorname{card}(A)} = 2^{\operatorname{card}(A)}$.
- 24. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*)) = \operatorname{card}(\{0,1\}^{\mathbb{N}^*}) = 2^{\operatorname{card}(\mathbb{N}^*)} = 2^{\aleph_0}.$
- 25. $(d_1d_2)^e = d_1^e d_2^e$, $d^{e_1+e_2} = d^{e_1}d^{e_2}$, $(d^e)^f = d^{ef}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $\operatorname{card}(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by $\max(d,e)$, see item 22.
- 27. So far we have encountered these increasing cardinals:

$$0, 1, 2, 3, \dots \aleph_0, c = 2^{\aleph_0}, 2^c, 2^{2^c}, \dots$$

and we can wonder if there are any cardinals in between. Specifically, the *continuum hypothesis* asks if there is a cardinal d with $\aleph_0 < d < c$.

From the axioms of set theory (= the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.