List of definitions and facts.

- 1. We say that p and x are ϵ -close when $|p-x| < \epsilon$. In other words, when the distance between p and x is less than ϵ
- 2. The set of all points that are ϵ -close to x is $(x \epsilon, x + \epsilon)$.
- 3. A set $\mathcal{O} \subseteq \mathbb{R}$ is **open** when $\forall_{x \in \mathcal{O}} \exists_{\epsilon > 0} (x \epsilon, x + \epsilon) \subseteq \mathcal{O}$. In other words, for any $x \in \mathcal{O}$ there is some $\epsilon > 0$ such that all points ϵ -close to x are again in \mathcal{O} .
- 4. \mathbb{R} and \emptyset are open (check this!). We proved in class that (a,b) is open.
- 5. **Any** union of open sets is always open (even infinite unions!). Proof: Let $\mathcal{O} = \bigcup_{i \in I} \mathcal{O}_i$ with \mathcal{O}_i open. To prove: \mathcal{O} is open. [Item 3 and WP#5 tell us that the proof should start like this:] Let $x \in \mathcal{O}$. To Prove: $\exists_{\epsilon > 0} (x \epsilon, x + \epsilon) \subseteq \mathcal{O}$. $x \in \mathcal{O}$ means $x \in \mathcal{O}_i$ for some i. [Read key property of unions]. Then $(x \epsilon, x + \epsilon) \subseteq \mathcal{O}_i$ for some $\epsilon > 0$. [Read item 3.] But $\mathcal{O}_i \subseteq \mathcal{O}$ and so $(x \epsilon, x + \epsilon) \subseteq \mathcal{O}$. Make sure that you can prove this if this were on a test/quiz!
- 6. The intersection of **finitely many** open sets is again open. Proof: Let $\mathcal{O} = \bigcap_{i=1}^n \mathcal{O}_i$ with \mathcal{O}_i open, and let $x \in \mathcal{O}$. [Read key property of intersections]. Then x is also in \mathcal{O}_i which is open so $\exists_{\epsilon_i}(x-\epsilon_i,x+\epsilon_i)\subseteq \mathcal{O}_i$. Now take $\epsilon = \min(\epsilon_1,\ldots,\epsilon_n)$. Then $\epsilon > 0$ and $(x-\epsilon,x+\epsilon)\subseteq \mathcal{O}_i$ for every $i=1,\ldots,n$ and thus $(x-\epsilon,x+\epsilon)\subseteq \mathcal{O}$. **Turn in Exercise:** In this proof we intersected finitely many open sets. Point out exactly which step in the proof is wrong if we intersect infinitely
- 7. Let a_1, a_2, \ldots be a sequence. A **tail** is a subsequence of the form a_{K+1}, a_{K+2}, \ldots So a tail is: all terms beyond some cutoff point K.
- 8. a_1, a_2, \ldots converges to α when $\forall_{\epsilon>0} \exists_K \forall_{j>K} |a_i \alpha| < \epsilon$. In other words, or every $\epsilon > 0$ the sequence has a tail contained in $(\alpha \epsilon, \alpha + \epsilon)$. In this case we call α the **limit** of the sequence a_1, a_2, \ldots
- 9. α is called a **limit point** of V when (i) there is a sequence in $V \{\alpha\}$ that converges to α . This is equivalent to (ii) $\forall_{\epsilon>0} (\alpha \epsilon, \alpha + \epsilon) \cap (V \{\alpha\}) \neq \emptyset$.
 - (i) \Longrightarrow (ii). Let $\epsilon > 0$. Item 8 says that a tail of the sequence in (i) is in $(\alpha \epsilon, \alpha + \epsilon)$, but the sequence is also in $V \{\alpha\}$, so the intersection of those two sets is not empty.
 - (ii) \Longrightarrow (i). Construct a_n as follows. The intersection in (ii) is not empty if $\epsilon = 1/n$, so pick an element and call it a_n . Doing this for every $n \in \mathbb{N}^*$ gives a sequence a_1, a_2, \ldots that meets the requirements in (i).
- 10. A set $V \subseteq \mathbb{R}$ is closed when

many open sets: $\bigcap_{i\in\mathbb{N}} \mathcal{O}_i$.

- (a) The complement of V is open.
- (b) If a sequence a_1, a_2, \ldots in V converges to α then $\alpha \in V$.
- (c) V contains all of its limit points.
- (d) If $(\alpha \epsilon, \alpha + \epsilon) \cap V$ is not empty for every $\epsilon > 0$ then $\alpha \in V$.

- (a) \Longrightarrow (b) is Proposition 7.2.3.
- (b) \Longrightarrow (a) is Proposition 7.2.4.
- (b) and (c) say the same thing.
- (c) and (d) are equivalent because (i) \iff (ii) in the previous item.
- 11. Notation: \overline{S} is called the **closure** of the set S
 - (a) \overline{S} is the union of S and all of its limit points.
 - (b) \overline{S} is the smallest closed set that contains S.
 - (c) \overline{S} is the intersection of all closed sets that contain S.
 - (d) $x \in \overline{S} \iff \forall_{\epsilon > 0}$ there is a point in S that is ϵ -close to x.
 - (e) $x \in \overline{S} \iff \forall_{\epsilon > 0} (x \epsilon, x + \epsilon)$ intersects S.
 - (f) $x \in \overline{S} \iff \exists$ a sequence $a_1, a_2, \ldots \in S$ that converges to x.
- 12. α is a limit point of S if α is in the closure of $S \{\alpha\}$.
- 13. The union of *finitely many* closed sets is again closed.
- 14. The intersection of closed sets (even infinitely many closes sets) is closed. Items 13 and 14 follow immediately from: items 5, 6, 10(a) and

De Morgan's laws: ${}^{c}(\bigcup S_{i}) = \bigcap^{c} S_{i}$ and ${}^{c}(\bigcap S_{i}) = \bigcup^{c} S_{i}$.

Turn in exercise: Give a second proof for item 14 using only item 10(b). Let $V = \bigcap_{i \in I} V_i$ with V_i closed. Let $a_1, a_2, \ldots \in V$ and suppose that it converges to α . Then show directly that $\alpha \in V$.

- 15. **Turn in Exercise:** Prove that a set with one point is closed. Then from item 13 it follows that every finite set is closed!
- 16. An **interior point** of S is a point s for which $\exists_{\epsilon>0} (s-\epsilon, s+\epsilon) \subseteq S$. The definition of open in item 3 tells us that (check this!):

(*) S is open if and only if every element of S is an interior point of S. Denote Int(S) as the set of interior points of S.

Exercise 5 in the book asks: prove that Int(S) is open.

I'll give one proof but there are many others: Let $s \in \operatorname{Int}(S)$. Then $(s-\epsilon,s+\epsilon) \subseteq S$ for some $\epsilon > 0$. But $(s-\epsilon,s+\epsilon)$ is open (item 4) so all of its elements are interior points of $(s-\epsilon,s+\epsilon)$ by (*). Then they are also interior points of S because S contains $(s-\epsilon,s+\epsilon)$. Hence $(s-\epsilon,s+\epsilon) \subseteq \operatorname{Int}(S)$.

Turn in: Prove that Int(S) is the union of all open subsets of S (then we can say that Int(S) is the largest open subset of S).

Hint: You need to prove that if \mathcal{O} is any open subset of S and $s \in \mathcal{O}$ then $s \in \text{Int}(S)$ but that is similar to the proof I just gave.

- 17. If S is the complement of U then \overline{S} is the complement of Int(U). (Use 11(c) and De Morgan's laws).
- 18. Read the definition in Exercise 6. Which of (a)–(f) in item 11 would be most suitable to prove:

The boundary of S is the intersection of \overline{S} and $\overline{^{c}S}$.

19. (Ex 13 in the book). Let L be the set of limit points of S. Prove that L is closed.

Proof: Lets prove that L is closed by using 10(c). Note: in class I tried using 10(b) but then the proof has one more step.

To prove 10(c) for L, take a limit point α of L, then we have to prove that $\alpha \in L$, in other words: to prove that α is a limit point of S. By 9(i) that means to prove: \exists sequence b_1, b_2, \ldots in $S - \{\alpha\}$ that converges to α .

If α is a limit point of L then item 9(i) says that there is a sequence $a_1, a_2, \ldots \in L - \{\alpha\}$ that converges to α . Then $\epsilon_n := |a_n - \alpha| > 0$ converges to 0. Since a_n is in L, it is a limit point of S, so there is a sequence in $S - \{a_n\}$ that converges to a_n . A tail of that sequence will be ϵ_n -close to a_n , see item 8. Take some b_n in that tail. Then $b_n \in S - \{a_n\}$ and b_n is ϵ_n -close to a_n . The distance between b_n, α is at most the distance between b_n, a_n plus the distance between a_n, α (that's called the triangle inequality). So: $|b_n - \alpha| \leq |b_n - a_n| + |a_n - \alpha| < 2\epsilon_n$. So the distance between b_n, α converges to 0, so b_1, b_2, \ldots converges to α .