Quiz 2, Intro Adv Math.

Name:

- 1. Write down the definition of
 - (a) The **product** of sets A and B is $A \times B =$
 - (b) A relation R is called transitive when:
 - (c) Let R b an equivalence relation on a set A. The **equivalence class** E_x of an element $x \in A$ is:
- 2. Let A, B, C be sets and assume that

$$C - A \subseteq B \tag{1}$$

Prove that then

$$C \subseteq A \bigcup B. \tag{2}$$

I will give part of the proof, then you will finish the proof. First of all, you $must\ know$ that (2) is equivalent to (for all x):

$$x \in C \implies x \in A \bigcup B$$
 (3)

Lets prove (3) with WP#4 which tells us to do this:

Assume $x \in C$ and $\neg (x \in A \cup B)$. (*)

To prove: a contradiction.

Now finish this proof. You may want to spell out line (*) with De Morgan's law and then use another statement.

(only use assumed/given statements, do not use T.P. statements!)

Writing Proofs.

1. Direct proof for $p \Longrightarrow q$.

Assume: p. To prove: q.

2. Proving $p \Longrightarrow q$ by contrapositive.

Assume: $\neg q$. To prove: $\neg p$.

3. Proving S by contradiction.

Assume: $\neg S$. To prove: a contradiction.

4. Proving $p \Longrightarrow q$ by contradiction.

Assume: p and $\neg q$. To prove: a contradiction.

5. Direct proof for a $\forall_{x \in A} P(x)$ statement.

To ensure you prove P(x) for all (rather than for some) x in A, do this:

Start your proof with: Let $x \in A$. To prove: P(x).

6. Direct proof for $\exists_{x \in A} P(x)$ statement.

Take x := [write down an expression that is in A, and satisfies <math>P(x)].

7. Proving $\forall_{x \in A} P(x)$ by contradiction.

Assume: $x \in A$ and $\neg P(x)$. To prove: a contradiction.

8. Proving $\exists_{x \in A} P(x)$ by contradiction.

Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.

9. Proving S by cases.

Suppose for example a statement p can help to prove S. Write two proofs:

Case 1: Assume p. To prove: S.

Case 2: Assume $\neg p$. To prove S.

10. Proving $p \wedge q$

Write two separate proofs: To prove: p. To prove: q.

11. Proving $p \iff q$

Write two proofs. To prove: $p \Longrightarrow q$ To prove: $q \Longrightarrow p$.

12. Proving $p \vee q$

Method (1): Assume $\neg p$. To prove: q.

Method (2): Assume $\neg q$. To prove: p.

Method (3): Assume $\neg p$ and $\neg q$. To prove: a contradiction.

13. Using $p \lor q$ to prove another statement r.

Write two proofs:

Assume p. To prove r.

Assume q. To prove r.

14. How to use a for-all statement $\forall_{x \in A} P(x)$.

You need to produce an element of A, then use P for that element.

15. If you want to use an exists statement like $\exists_{x \in A} P(x)$ to prove another statement, then you may not choose x. All you know is $x \in A$ and P(x).