Quiz 2, Intro Adv Math. Name:

1. Write down the definition of
 (a) The **product** of sets A and B is $A \times B = \ldots$

 (b) A relation R is called **transitive** when:

 (c) Let R be an equivalence relation on a set A. The **equivalence class** E_x of an element $x \in A$ is:

2. Let A, B, C be sets and assume that

 \[C - A \subseteq B \quad (1) \]

 Prove that then

 \[C \subseteq A \cup B. \quad (2) \]

 I will give part of the proof, then you will finish the proof. First of all, you **must know** that (2) is equivalent to (for all x):

 \[x \in C \implies x \in A \cup B \quad (3) \]

 Let’s prove (3) with WP#4 which tells us to do this:

 Assume $x \in C$ and $\neg (x \in A \cup B)$. \((*)\)

 To prove: a contradiction.

 Now finish this proof. You may want to spell out line \((*)\) with De Morgan’s law and then use another statement.

 (only use assumed/given statements, do not use T.P. statements!)
Writing Proofs.

1. **Direct proof for** \(p \implies q \).
 Assume: \(p \). To prove: \(q \).

2. **Proving** \(p \implies q \) **by contrapositive**.
 Assume: \(\neg q \). To prove: \(\neg p \).

3. **Proving** \(S \) **by contradiction**.
 Assume: \(\neg S \). To prove: a contradiction.

4. **Proving** \(p \implies q \) **by contradiction**.
 Assume: \(p \) and \(\neg q \). To prove: a contradiction.

5. **Direct proof for a** \(\forall x \in A P(x) \) **statement**.
 To ensure you prove \(P(x) \) for all (rather than for some) \(x \) in \(A \), do this:
 Start your proof with: Let \(x \in A \). To prove: \(P(x) \).

6. **Direct proof for** \(\exists x \in A P(x) \) **statement**.
 Take \(x := \) [write down an expression that is in \(A \), and satisfies \(P(x) \)].

7. **Proving** \(\forall x \in A P(x) \) **by contradiction**.
 Assume: \(x \in A \) and \(\neg P(x) \). To prove: a contradiction.

8. **Proving** \(\exists x \in A P(x) \) **by contradiction**.
 Assume: \(\neg P(x) \) for every \(x \in A \). To prove: a contradiction.

9. **Proving** \(S \) **by cases**.
 Suppose for example a statement \(p \) can help to prove \(S \). Write two proofs:
 Case 1: Assume \(p \). To prove: \(S \).
 Case 2: Assume \(\neg p \). To prove: \(S \).

10. **Proving** \(p \land q \)
 Write two separate proofs: To prove: \(p \). To prove: \(q \).

11. **Proving** \(p \iff q \)
 Write two proofs. To prove: \(p \implies q \) To prove: \(q \implies p \).

12. **Proving** \(p \lor q \)
 Method (1): Assume \(\neg p \). To prove: \(q \).
 Method (2): Assume \(\neg q \). To prove: \(p \).
 Method (3): Assume \(\neg p \) and \(\neg q \). To prove: a contradiction.

13. **Using** \(p \lor q \) **to prove another statement** \(r \).
 Write two proofs:
 Assume \(p \). To prove \(r \).
 Assume \(q \). To prove \(r \).

14. **How to use a for-all statement** \(\forall x \in A P(x) \).
 You need to produce an element of \(A \), then use \(P \) for that element.

15. If you want to use an **exists statement** like \(\exists x \in A P(x) \) to prove another statement, then you may not choose \(x \). All you know is \(x \in A \) and \(P(x) \).