Quiz 2, Intro Adv Math. Name:

1. Write down the definition of

(a) The **product** of sets A and B is $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Make sure you are familiar with set notation. The notation $\{x \mid P(x)\}$
(instead of $|$ you may also use a colon) means the set of all x for
which $P(x)$ is true. Spelled out, the answer above is: the set of all
pairs (a, b) for which $a \in A$ and $b \in B$.

(b) A relation R is called **transitive** when:

$$xRy \land yRz \implies xRz$$

(c) Let R be an equivalence relation on a set A. The **equivalence class**
E_x of an element $x \in A$ is:

$$\{y \in A \mid xRy\}$$

Again, make sure you can read and write set notation. If you spell
out this answer in words you get: “the set of all elements of A that
are related to x under the relation R”. However:

You are much better off if you **do not spell things out like that**.
It takes some effort getting used to short notation, but it will save
time during HW and tests, and makes proofs easier to read + write.

2. Let A, B, C be sets and assume that

$$C - A \subseteq B \quad (1)$$

Prove that then

$$C \subseteq A \cup B. \quad (2)$$

I will give part of the proof, then you will finish the proof. First of all,
you **must know** that (2) is equivalent to (for all x):

$$x \in C \implies x \in A \cup B \quad (3)$$

Lets prove (3) with WP#4 which tells us to do this:
Assume $x \in C$ and $\neg (x \in A \cup B)$. \ (*)
To prove: a contradiction.

L1: \ (*) is equivalent to $x \in C$ and $x \notin A \land x \notin B$ \ (to see this, look at
De Morgan’s laws)
So $x \in C$ and $x \notin A$, so $x \in C - A$ and then $x \in B$ by (1) but that
contradicts the last item $x \notin B$ on L1.
Writing Proofs.

1. **Direct proof for** \(p \implies q \).
 - Assume: \(p \). To prove: \(q \).

2. **Proving** \(p \implies q \) **by contrapositive**.
 - Assume: \(\neg q \). To prove: \(\neg p \).

3. **Proving** \(S \) **by contradiction**.
 - Assume: \(\neg S \). To prove: a contradiction.

4. **Proving** \(p \implies q \) **by contradiction**.
 - Assume: \(p \) and \(\neg q \). To prove: a contradiction.

5. **Direct proof for a** \(\forall x \in A P(x) \) **statement**.
 - To ensure you prove \(P(x) \) for all (rather than for some) \(x \) in \(A \), do this:
 - **Start your proof with:** Let \(x \in A \). To prove: \(P(x) \).

6. **Direct proof for** \(\exists x \in A P(x) \) **statement**.
 - Take \(x := \) [write down an expression that is in \(A \), and satisfies \(P(x) \)].

7. **Proving** \(\forall x \in A P(x) \) **by contradiction**.
 - Assume: \(x \in A \) and \(\neg P(x) \). To prove: a contradiction.

8. **Proving** \(\exists x \in A P(x) \) **by contradiction**.
 - Assume: \(\neg P(x) \) for every \(x \in A \). To prove: a contradiction.

9. **Proving** \(S \) **by cases**.
 - Suppose for example a statement \(p \) can help to prove \(S \). Write two proofs:
 - Case 1: Assume \(p \). To prove: \(S \).
 - Case 2: Assume \(\neg p \). To prove \(S \).

10. **Proving** \(p \land q \)
 - Write two separate proofs: To prove: \(p \). To prove: \(q \).

11. **Proving** \(p \iff q \)
 - Write two proofs. To prove: \(p \implies q \) To prove: \(q \implies p \).

12. **Proving** \(p \lor q \)
 - Method (1): Assume \(\neg p \). To prove: \(q \).
 - Method (2): Assume \(\neg q \). To prove: \(p \).
 - Method (3): Assume \(\neg p \) and \(\neg q \). To prove: a contradiction.

13. **Using** \(p \lor q \) **to prove another statement** \(r \).
 - Write two proofs:
 - Assume \(p \). To prove \(r \).
 - Assume \(q \). To prove \(r \).

14. **How to use a for-all statement** \(\forall x \in A P(x) \).
 - You need to produce an element of \(A \), then use \(P \) for that element.

15. If you want to **use an exists statement** like \(\exists x \in A P(x) \) to prove another statement, then you **may not choose** \(x \). All you know is \(x \in A \) and \(P(x) \).