Answers to sample questions, Intro Advanced Math

• Suppose that A is a set and that for every set B we have $A \subseteq B$. Then prove that $A = \emptyset$.

Lets follow the idea in WP#14 and choose $B = \emptyset$. Since $A \subseteq B$ is true for every B, it is also true for our choice. So $A \subseteq \emptyset$ and we showed in a previous exercise that then $A = \emptyset$.

 \bullet Consider the statement S:

use induction.

$$S: \quad \forall_{p \in \mathbb{R}} \ p > 0 \implies 10^{11} \times p > 1$$

Write down $\neg S$, the negation of statement S.

$$\neg S: \quad \exists_{p \in \mathbb{R}} \ p > 0 \land 10^{11} \times p \leq 1$$

For which of the following statements can you give a proof, S or $\neg S$? WP#6 says that we can prove an exists-statement by writing down an example. So here is a 1-line proof of $\neg S$:

Take $p := 10^{-20}$. Then p > 0 and $10^{11} \times p \le 1$.

(Don't worry if your example is different. As long as you: **gave an example**, your example is > 0, and 10^{11} times your example is ≤ 1 , then your proof is correct.)

• Prove that $n^2 + n$ is even for any integer n.

There are a numerous valid proofs. Here is a proof by cases: Case n is even. Then $n^2 + n$ is even+even which is even. Case n is odd. Then $n^2 + n$ is odd+odd which is even.

• If n is odd then prove that $n^2 - 1$ is divisible by 8.

If n is odd then (note: these are the types of things you need to memorize!) we can write n=2k+1 for some integer k. Then $n^2-1=(2k)^2+2(2k)+1-1=4(k^2+k)$. But by k^2+k is even by the previous exercise, so $n^2-1=4(k^2+k)$ must be divisible by $4\cdot 2=8$.

• Let $S(n) = 1 + 2 + 2^2 + \dots + 2^n = \sum_{k=0}^n 2^k$. Prove that $S(n) = 2^{n+1} - 1$. Note: there are several ways to prove this, but the intended proof is to

Task one: Prove the formula for n = 1. In this case $S(n) = 1 + 2^1$ while the right-hand-side is $2^2 - 1$ which is the same number.

Task two: Prove the following: $S(n) = 2^{n+1} - 1 \Longrightarrow S(n+1) = 2^{n+1+1} - 1$. Assume $S(n) = 2^{n+1} - 1$ (this assumption is the "induction hypothesis"). To Prove: $S(n+1) = 2^{n+1+1} - 1$.

The left-hand-side is $S(n+1) = 1 + 2 + 2^2 + \dots + 2^n + 2^{n+1} = S(n) + 2^{n+1}$ which is $2^{n+1} - 1 + 2^{n+1}$ by the induction hypothesis.

The right-hand-side $2^{n+1+1}-1=2^{n+1}+2^{n+1}-1$ equals the left-hand-side.