Test 2 sample questions, with answers

1. Let R be a relation on a set S. Give the definition: R is a partial ordering when: Answer:

(a) $\forall x \in S \ x Rx$ [Reflexive]
(b) $\forall x, y \in S \ x Ry \land y Rx \implies x = y$ [Anti-symmetric]
(c) $\forall x, y, z \in S \ x Ry \land y Rz \implies x Rz$ [Transitive]

2. If R is a partial ordering, then R is a total ordering if it has one more property, namely:

$\forall x, y \in S \ x \neq y \implies x Ry \lor y Rx$

3. Line 1. Suppose that R is a partial ordering, but not a total ordering.
Line 2. To prove: there exists a non-empty subset $A \subseteq S$ for which A does not have a minimal element.

Given in Line 1: items (a),(b),(c) in Exercise 1 and the negation of the statement in Exercise 2 which is: (d) $\exists x, y \in S \ x \neq y \land (\neg x Ry \land \neg y Rx)$.

[T.P.: There is a set $A \subseteq S$ with certain properties. The Writing Proofs handout tells us that we have to write: Take $A := \ldots$ This A needs to be a subset of S so what we fill in on those dots must be: {some element(s) of S}. Did we encounter any? Well, yes, (d) says that there are x, y in S with some properties. This gives the idea for the next line:]

Take $A := \{x, y\}$ with x, y as in statement (d).
Remains to prove: A does not have a minimal element. Proof: x is not minimal because $\neg x Ry$ and y is not minimal because $\neg y Rx$.

4. Give the definition of an equivalence relation:

A relation that is: Reflexive (Ex 1(a)), Symmetric ($x Ry \implies y Rx$), and Transitive (Ex 1(c)).

5. Let $f : A \rightarrow B$ be a function. We now define a relation R on A as follows: $x Ry$ is true if and only if $f(x) = f(y)$. Is this relation:

(a) Reflexive? Yes. $x Rx$ means $f(x) = f(x)$ which is always true.
(b) Symmetric? Yes. $x Ry$ means $f(x) = f(y)$ which implies $f(y) = f(x)$ which is the same as $y Rx$.
(c) Transitive? Yes. $x Ry$ and $y Rz$ means $f(x) = f(y)$ and $f(y) = f(z)$ but then $f(x) = f(z)$ so $x Rz$.
(d) An equivalence relation? Yes.
(e) If R is a partial ordering then prove that f is injective.

Given: R is a partial ordering, i.e. R is reflexive, anti-symmetric, and transitive. Note that we already proved that R is reflexive and transitive, so the only new information we get here is that R is antisymmetric, i.e. $x Ry \land y Rx \implies x = y$ (1).
To prove: \(f \) is injective, i.e. \(f(x) = f(y) \implies x = y \).

Assume \(f(x) = f(y) \). T.P. \(x = y \).

Proof: \(f(x) = f(y) \) means \(xRy \) but \(R \) is symmetric so \(yRx \).

Then \(x = y \) by (1).

6. Suppose that \(f : A \to B \) is not injective. Show that \(\text{card}(A) \geq 2 \).

[Know the definition of injective! Know how to compute negations!]

\(f \) is not injective means: \(\exists a_1, a_2 \in A \) \(f(a_1) = f(a_2) \land a_1 \neq a_2 \).

Take such \(a_1, a_2 \). Then \(a_1, a_2 \in A \) and \(a_1 \neq a_2 \) so \(A \) has at least 2 elements.

7. Give a function \(f : \mathbb{N}^* \to \mathbb{N}^* \) that is injective but not surjective.

There are many correct answers. The first story in the hotel infinity handout gives this function \(f(n) = n + 1 \).

Give a function \(g : \mathbb{N}^* \to \mathbb{N}^* \) that is surjective but not injective.

Attempt #1. Let's do the opposite of \(f \) and take \(g(n) := n - 1 \). This does not work because then \(g(1) \notin \mathbb{N}^* \).

Attempt #2. Let's modify this and take \(g(n) = 1 \) if \(n = 1 \) and \(g(n) = n - 1 \) if \(n > 1 \). This \(g \) is surjective but not injective.

8. If \(A \) is any countably infinite set (item 5 in the handout) then show that there exists a function from \(A \) to \(A \) that is injective but not surjective.

\(A \) is countably infinite when there exists a bijection \(f : \mathbb{N}^* \to A \). Then \(A = f(\mathbb{N}^*) = \{ f(1), f(2), f(3), \ldots \} \). We can now do the same as in Hotel Infinity, namely, we can take a function \(A \to A \) that sends \(f(n) \) to \(f(n+1) \).

9. If \(S \) is any infinite set, then use items 17 and 5 from the handout to show that there exists a function from \(S \) to \(S \) that is injective but not surjective.

If \(S \) is infinite then \(S \) has a countably infinite subset \(A \subseteq S \). As in the previous question, we can write \(A = \{ f(1), f(2), f(3), \ldots \} \). Now make a function \(h : S \to S \) as follows. Let \(s \in S \). If \(s \in A \) then \(s = f(n) \) for some \(n \), then we define \(h(s) = f(n+1) \). If \(s \notin A \) then we define \(h(s) = s \).

Let's end this handout with a puzzle: Suppose that

(a) \(S \) and \(T \) are subsets of \(\mathbb{R} \)

and

(b) For every \(s \in S \) and every \(t \in T \) we have \(s > t^2 \).

Can we conclude from this:

(c) Every element of \(S \) is positive?

If yes, then prove (a) \(\land \) (b) \(\implies \) (c).

If not, explain why.