Test 2 sample questions, with answers

- 1. Let R be a relation on a set S. Give the definition: R is a partial ordering when: Answer:
 - (a) $\forall_{x \in S} xRx$ [Reflexive]
 - (b) $\forall_{x,y \in S} \ xRy \land yRx \implies x = y$ [Anti-symmetric]
 - (c) $\forall_{x,y,z\in S} \ xRy \land yRz \implies xRz$ [Transitive]
- 2. If R is a partial ordering, then R is a total ordering if it has one more property, namely:

$$\forall_{x,y \in S} \ x \neq y \implies xRy \lor yRx$$

3. Line 1. Suppose that R is a partial ordering, but not a total ordering. Line 2. To prove: there exists a non-empty subset $A \subseteq S$ for which A does not have a minimal element.

Given in Line 1: items (a),(b),(c) in Exercise 1 and the negation of the statement in Exercise 2 which is: (d) $\exists_{x,y \in S} \ x \neq y \land (\neg xRy \land \neg yRx)$.

[T.P.: There is a set $A \subseteq S$ with certain properties. The Writing Proofs handout tells us that we have to write: Take $A := \ldots$ This A needs to be a subset of S so what we fill in on those dots must be: {some element(s) of S}. Did we encounter any? Well, yes, (d) says that there are x, y in S with some properties. This gives the idea for the next line:]

Take $A := \{x, y\}$ with x, y as in statement (d).

Remains to prove: A does not have a minimal element. Proof: x is not minimal because $\neg xRy$ and y is not minimal because $\neg yRx$.

4. Give the definition of an equivalence relation:

A relation that is: Reflexive (Ex 1(a)), Symmetric ($xRy \implies yRx$), and Transitive (Ex 1(c)).

- 5. Let $f: A \to B$ be a function. We now define a relation R on A as follows: xRy is true if and only if f(x) = f(y). Is this relation:
 - (a) Reflexive? Yes. xRx means f(x) = f(x) which is always true.
 - (b) Symmetric? Yes. xRy means f(x) = f(y) which implies f(y) = f(x) which is the same as yRx.
 - (c) Transitive? Yes. xRy and yRz means f(x) = f(y) and f(y) = f(z) but then f(x) = f(z) so xRz.
 - (d) An equivalence relation? Yes.
 - (e) If R is a partial ordering then prove that f is injective.

Given: R is a partial ordering, i.e. R is reflexive, anti-symmetric, and transitive. Note that we already proved that R is reflexive and transitive, so the only new information we get here is that R is anti-symmetric, i.e. $xRy \wedge yRx \implies x = y$ (1).

To prove: f is injective, i.e. $f(x) = f(y) \implies x = y$. Assume f(x) = f(y). T.P. x = y. Proof: f(x) = f(y) means xRy but R is symmetric so yRx. Then x = y by (1).

6. Suppose that $f: A \to B$ is not injective. Show that $\operatorname{card}(A) \geq 2$.

[Know the definition of injective! Know how to compute negations!]

f is not injective means: $\exists_{a_1,a_2\in A}\ f(a_1)=f(a_2)\wedge a_1\neq a_2$. Take such a_1,a_2 . Then $a_1,a_2\in A$ and $a_1\neq a_2$ so A has at least 2 elements.

7. Give a function $f: \mathbb{N}^* \to \mathbb{N}^*$ that is injective but not surjective.

There are many correct answers. The first story in the hotel infinity handout gives this function f(n) = n + 1.

Give a function $g: \mathbb{N}^* \to \mathbb{N}^*$ that is surjective but not injective.

Attempt #1. Lets do the opposite of f and take g(n) := n - 1. This does not work because then $g(1) \notin \mathbb{N}^*$.

Attempt #2. Lets modify this and take g(n) = 1 if n = 1 and g(n) = n - 1 if n > 1. This g is surjective but not injective.

8. If A is any countably infinite set (item 5 in the handout) then show that there exists a function from A to A that is injective but not surjective.

A is countably infinite when there exists a bijection $f: \mathbb{N}^* \to A$. Then $A = f(\mathbb{N}^*) = \{f(1), f(2), f(3), \ldots\}$. We can now do the same as in Hotel Infinity, namely, we can take a function $A \to A$ that sends f(n) to f(n+1).

9. If S is any infinite set, then use items 17 and 5 from the handout to show that there exists a function from S to S that is injective but not surjective.

If S is infinite then S has a countably infinite subset $A \subseteq S$. As in the previous question, we can write $A = \{f(1), f(2), f(3), \ldots\}$. Now make a function $h: S \to S$ as follows. Let $s \in S$. If $s \in A$ then s = f(n) for some n, then we define h(s) = f(n+1). If $s \notin A$ then we define h(s) = s.

Lets end this handout with a puzzle: Suppose that

- (a) S and T are subsets of \mathbb{R} and
 - (b) For every $s \in S$ and every $t \in T$ we have $s > t^2$.

Can we conclude from this:

(c) Every element of S is positive?

If yes, then prove $(a) \land (b) \implies (c)$. If not, explain why.