Test 3, Nov 18 2019, Answers

1. For each of the following subsets of \mathbb{R}, mention if it is open, closed, both, or neither. If it is not closed, write down its closure.

- \emptyset: both open and closed.
- \mathbb{R}: both open and closed.
- $(0, \infty)$: open. Closure = $[0, \infty)$.
- $(x - \epsilon, x + \epsilon) \cup (x, x + \epsilon)$: open. Closure = $[x - \epsilon, x + \epsilon]$.
- \mathbb{Q}: neither open nor closed. Closure = \mathbb{R}.

2. Let $S \subseteq \mathbb{R}$ and let P be the statement $\exists_{x \in S} \forall_{\epsilon > 0} (x - \epsilon, x + \epsilon) \nsubseteq S$.

Spell out $\neg P$ (the negation of P). What does $\neg P$ say about S?

The negation of P says $\forall_{x \in S} \exists_{\epsilon > 0} (x - \epsilon, x + \epsilon) \subseteq S$.

In words: S is open. (See item 3, for the final you must memorize basic definitions like that).

3. If $S \subseteq T \subseteq \mathbb{R}$ then show that $\text{Int}(S) \subseteq \text{Int}(T)$.

[You must know that proving \subseteq can be done by starting like this:]
Let $s \in \text{Int}(S)$. To prove $s \in \text{Int}(T)$.
The definition in item 16 says $\exists_{\epsilon > 0} (s - \epsilon, s + \epsilon) \subseteq S$. But $S \subseteq T$ so $\exists_{\epsilon > 0} (s - \epsilon, s + \epsilon) \subseteq S \subseteq T$. Then $s \in \text{Int}(T)$ (again item 16).

Proof #2: $\text{Int}(T)$ is the union of all open subsets of T, one of which is $\text{Int}(S) \subseteq S \subseteq T$.

4. Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Suppose that S is dense.
Show that $S \setminus \{x\}$ is also dense.
Item 19(d) says that every non-empty open set contains infinitely many elements from S. If you delete x then there are still infinitely many left. So every non-empty open set contains infinitely many elements of $S \setminus \{x\}$. Then $S \setminus \{x\}$ is dense by 19(d).

5. Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Suppose that $S \cup \{x\}$ is open. Show that $x \in \overline{S}$.

From item 3 we get $(x - \epsilon, x + \epsilon) \subseteq S \cup \{x\}$ for some $\epsilon > 0$.
Then $(x - \epsilon, x) \cup (x, x + \epsilon)$ is a subset of S.
But recall from Ex 1 that x is a limit point of $(x - \epsilon, x) \cup (x, x + \epsilon)$. Then x is also a limit point of S. Then use item 11(a).

Good news: the quiz to add points to test 2 went very well.
Bad news: test 3 did not go well.
Good news: there is enough time to have a similar quiz for test 3.