3. If \(S \subseteq T \subseteq \mathbb{R} \), then show that \(\text{Int}(S) \subseteq \text{Int}(T) \).

Proof #1: Let \(s \in \text{Int}(S) \). To prove \(s \in \text{Int}(T) \).

The definition in item 16 says \(\exists \epsilon > 0 \) \((s - \epsilon, s + \epsilon) \subseteq S \). But \(S \subseteq T \) so \(\exists \epsilon > 0 \) \((s - \epsilon, s + \epsilon) \subseteq S \subseteq T \). Then \(s \in \text{Int}(T) \) (again item 16).

Proof #2: \(\text{Int}(T) \) is the union of all open subsets of \(T \), one of which is \(\text{Int}(S) \subseteq S \subseteq T \).

4. Let \(S \subseteq \mathbb{R} \) and \(x \in \mathbb{R} \). Suppose that \(S \) is dense.

Show that \(S - \{x\} \) is also dense.

Proof #1: Item 19(d) says that every non-empty open set contains infinitely many elements from \(S \). If you delete \(x \) then there are still infinitely many left. So every non-empty open set contains infinitely many elements of \(S - \{x\} \). Then \(S - \{x\} \) is dense by 19(d).

Proof #2: If we use the definition in item 19 then we are given to that every open interval \((\bar{x} - \epsilon, \bar{x} + \epsilon)\) contains an element of \(S \). That is reworded in 19(c) to say that every non-empty open set contains an element of \(S \) (why is that equivalent? Well, because every non-empty open set contains an open interval!).

Note: we do not know if the \(x \) in Ex 4 is the same as the \(x \) in item 19. We can not use the same symbol for things that might be different. Any time that happens, just use a different letter, or the same letter but with a prime \(x' \) or a tilde \(\bar{x} \) attached to it.

If we want to prove “\(S - \{x\} \) is dense” using the definition then have to show that every open interval \((\bar{x} - \epsilon, \bar{x} + \epsilon)\) contains an element of \(S - \{x\} \). You can’t just say: \((\bar{x} - \epsilon, \bar{x} + \epsilon) \cap S \neq \emptyset \) and \((\bar{x} - \epsilon, \bar{x} + \epsilon) \cap (\mathbb{R} - \{x\}) \neq \emptyset \) because just because two sets are non-empty, it doesn’t imply that their intersection is non-empty too. So the key to the proof is to apply the given statement (that every non-empty open set contains an element of \(S \)) not to this open set: \((\bar{x} - \epsilon, \bar{x} + \epsilon)\) but to this open set: \((\bar{x} - \epsilon, \bar{x} + \epsilon) - \{x\}\). (or to any open interval in there).

Proof #3: If we want to use item 19(b) then we have to show, for any \(\alpha \in \mathbb{R} \), that there exists a sequence \(a_1, a_2, \ldots \in S - \{x\} \) that converges to \(\alpha \). Make sure not to use the same letter for this \(\alpha \) and this \(x \) because we do not know if they are the same. Now there are two cases:

Case 1: \(\alpha = x \). We could choose \(a_n \in (x, x + 1/n) \cap S \) (that intersection is non-empty because \(S \) is dense). Then \(a_1, a_2, \ldots \in S - \{x\} \) and it converges to \(\alpha = x \).

Case 2: \(\alpha \neq x \). Now we could take a sequence \(a_1, a_2, \ldots \) in \(S \) that converges to \(\alpha \). Such a sequence exists because \(S \) is dense, use 19(b).
The problem now is that we do not know if this same sequence is also in \(S - \{ x \} \). To finish the proof, note that a tail of the sequence must be in \(S - \{ x \} \) (apply item 8 with \(\epsilon := |\alpha - x| \)).

5. Let \(S \subseteq \mathbb{R} \) and \(x \in \mathbb{R} \). Suppose that \(S \cup \{ x \} \) is open. Show that \(x \in \overline{S} \).

Proof #1: From item 3 we get \((x - \epsilon, x + \epsilon) \subseteq S \cup \{ x \}\) for some \(\epsilon > 0 \). Then \((x - \epsilon, x) \cup (x, x + \epsilon)\) is a subset of \(S \).

But recall from Ex 1 that \(x \) is a limit point of \((x - \epsilon, x) \cup (x, x + \epsilon)\).
Then \(x \) is also a limit point of \(S \). Then use item 11(a).

Proof #2: If you want to write a proof by contrapositive, you assume \(x \not\in \overline{S} \). By item 11(e) that is the same as saying \((x - \epsilon, x + \epsilon) \cap S = \emptyset\) for some \(\epsilon > 0 \). The To-Prove statement in the proof-by-contrapositive method is: T.P. \(S \cup \{ x \} \) is not open. That means: copy the definition of open from item 3, and negate it.

Warning: there is no guarantee that the \(x \) from item 3 is the same as the \(x \) in Ex 5. It might be the same, but we do not (yet) know that so we must use a different letter! The same goes for the \(\epsilon \) too. Then here is the negation of “\(S \cup \{ x \} \) open”:

\[\exists \tilde{x} \in S \cup \{ x \} \forall \tilde{\epsilon} > 0 (\tilde{x} - \tilde{\epsilon}, \tilde{x} + \tilde{\epsilon}) \not\subseteq S \cup \{ x \} \]

Proof: take \(\tilde{x} := x \)

(How did I know to start like that? Well, WP#6 tells us to write “Take \(\tilde{x} := \ldots \) but the only element in that set \(S \cup \{ x \} \) that I actually know is \(x \) so I don’t see any other options than to write: take \(\tilde{x} := x \).

None of the points in \((x - \epsilon, x + \epsilon)\) are in \(S \), so it is not possible, for any \(\tilde{\epsilon} > 0 \), that all of the infinitely many points in \((\tilde{x} - \tilde{\epsilon}, \tilde{x} + \tilde{\epsilon}) = (x - \epsilon, x + \epsilon)\) would be in \(S \cup \{ x \} \). So I conclude: \(\forall \tilde{\epsilon} > 0 (\tilde{x} - \tilde{\epsilon}, \tilde{x} + \tilde{\epsilon}) \not\subseteq S \cup \{ x \} \).

Good news: the quiz to add points to test 2 went very well.
Bad news: test 3 did not go well.
Good news: there is enough time to have a similar quiz for test 3.