GRV I, answers test 1, Monday September 28, 2020.

1. Let σ be the following element of S_{10} .

$$\sigma = (1\ 2\ 3\ 4\ 5\ 6\ 7)(6\ 7\ 8\ 9\ 10).$$

Compute a disjoint cycle notation for this permutation σ : (1 2 3 4 5 6)(7 8 9 10).

Compute the order of σ : lcm(6,4) = 12.

2. Let G be a group with n elements, and suppose that gcd(k, n) = 1. Prove that for every $g \in G$ there exists $h \in G$ for which $h^k = g$.

|G|=n and so $g^n=e$ for any $g\in G$. Bezout's equation says sk+tn=1 for some integers s,t. Then $g=g^1=g^{sk+tn}=g^{sk}g^{tn}=(g^s)^k(g^n)^t=(g^s)^ke=h^k$ where $h:=g^s$.

- 3. Suppose that a, b, and ab each have order 2. Show that a and b commute. ab has order 2, so $abab = (ab)^2 = e$. Since a and b also have order 2, we have aabb = e. So abab = aabb. By the cancellation law, we can cancel the left-a and right-b and get ba = ab.
- 4. Let G be a group and let H be a subgroup of index 2 (so G/H has 2 elements, H and G-H). Show that H is a normal subgroup of G.

The left-cosets form a partition, and the index of H is the number of parts in this partition, so there are two parts. Since H is one of those parts, the other part in this partition can only be G-H. Thus $G/H=\{\text{left cosets}\}=\{H,G-H\}$. For the same reason, the right-cosets are also H and G-H. But then every left-coset is a right-coset, and thus H is a normal subgroup.

Proof #2: Let A := G/H. The group G acts on A by left-multiplication, this action is not trivial, and thus this gives a non-trivial homomorphism from G to $S_A \cong S_2 \cong Z_2$. If K is the kernel, then $G/K \cong Z_2$ and thus K has index 2. If $k \in K$ then ka = a for each $a \in A$, including a = H, and thus $k \in H$, proving that $K \leq H \leq G$. But K and K both have index 2 in K, so the index of K in K must be 1, and so K = H.

- 5. Let G is a group. Let A = G and let G act on A by conjugation, so $g \cdot a = gag^{-1}$. Now fix one element $a \in A$. Let $\mathcal{O} := \{g \cdot a \mid g \in G\} = \{gag^{-1} \mid g \in G\}$.
 - (a) If $g_1 \cdot a = g_2 \cdot a$ then show that $g_1 \in g_2 C_G(a)$.

Assume $g_1 \cdot a = g_2 \cdot a$. Then $g_2^{-1}g_1 \cdot a = a$. By the definition of \cdot this means $g_2^{-1}g_1$ commutes with a, so $g_2^{-1}g_1 \in C_G(a)$. Multiplying by g_2 this becomes: $g_1 \in g_2 C_G(a)$.

Remark: the converse is true as well, if $g_1 \in g_2 C_G(a)$ then $g_1 = g_2 c$ for some $c \in C_G(a)$, but then $c \cdot a = a$ and thus $g_1 \cdot a = g_2 c \cdot a = g_2 \cdot a$.

(b) Show $|\mathcal{O}| = |G : C_G(a)|$.

The map $G \to \mathcal{O}$ given by $g \mapsto g \cdot a$ is surjective, and by part (a), the fibers of this map are the left-cosets of $C_G(a)$. The number of elements of \mathcal{O} is the number of fibers, which is the number of left-cosets, which is $|G:C_G(a)|$.