Computing Puiseux Expansions at Cusps of the Modular Curve $X_{0}(N)$

Mark van Hoeij*
Florida State University, Tallahassee, FL 32306-3027, USA
hoeij@math.fsu.edu

July 8, 2013

1 Notation

The function field of the modular curve $X_{0}(N)$ can be written as $\mathbb{C}\left(x_{1}\right)\left[x_{2}\right] /\left(\phi_{N}\right)$ where $\phi_{N} \in \mathbb{Z}\left[x_{1}, x_{2}\right]$ satisfies $\phi_{N}(j(\tau), j(N \tau))=0$. A place P corresponds to a discrete valuation v_{P} on the function field $\left(v_{P}(g)<0\right.$ means that a function g has a pole at P, and $v_{P}(g)>0$ means a root, of that order). The cusps are the places P where x_{1}, x_{2} have poles.

Goal: An efficient algorithm to compute Puiseux expansions at cusps of $X_{0}(N)$.
A Puiseux expansion at a cusp P of $X_{0}(N)$ can be written as

$$
\begin{equation*}
x_{1}=t^{-d}, \quad x_{2}=c_{0} \cdot t^{-n} \cdot(1+\cdots) \in \mathbb{Z}\left[c_{0}, d^{-1}\right][[t]] . \tag{1}
\end{equation*}
$$

Here n, d are positive integers, c_{0} is a root of unity, t is a local parameter at P, and the dots refer to terms with positive powers of t. To avoid negative exponents, we switch to the variables

$$
x=\frac{1}{x_{1}}=\frac{1}{j(\tau)}, \quad \text { and } \quad h=\frac{1}{x_{2}}=\frac{1}{j(N \tau)}
$$

Now x, h satisfy an algebraic relation $P_{N}(x, h)=0$ that is trivially obtained from ϕ_{N} by substituting $\left(x_{1}, x_{2}\right) \mapsto\left(x^{-1}, h^{-1}\right)$. However, ϕ_{N} and P_{N} are not needed for computing a Puiseux expansion at a cusp.

In terms of x, h the Puiseux expansion (1) looks like

$$
x=t^{d}, \quad h=c \cdot t^{n} \cdot(1+\cdots)
$$

[^0]where $c=1 / c_{0}$. We can rewrite that to (from now on we will use this form):
\[

$$
\begin{equation*}
h=c \cdot x^{q} \cdot(1+\cdots) \in \mathbb{Z}\left[c, d^{-1}\right]\left[\left[x^{1 / d}\right]\right] \tag{2}
\end{equation*}
$$

\]

where $q=\frac{n}{d}$ is a positive rational number. We will call

$$
T:=c \cdot x^{q}
$$

the initial term of h. We are only interested in those h for which $\exists_{N} P_{N}(x, h)=0$. Such h turn out (see Section (3) to be uniquely determined by their initial term. Section 1.2 will explain how to find N from T.

1.1 Puiseux series

Let

$$
\hat{K}:=\bigcup_{d=1}^{\infty} \mathbb{C}\left(\left(x^{1 / d}\right)\right)
$$

denote the field of Puiseux series over \mathbb{C}. If $\alpha \in \hat{K}-\{0\}$, then $v(\alpha) \in \mathbb{Q}$ denotes the exponent of the initial term. So

$$
v(h)=v(T)=q .
$$

Definition 1. Let $a \in \frac{1}{d} \mathbb{Z}$ and h as in (2). By computing h to precision a we mean computing the factor $(1+\cdots) \bmod x^{a}$, and hence $h \bmod x^{q+a}$.

Input and output of our algorithm. Given h up to precision a, we will show that h can be computed quickly to precision $2 a$. Starting with the initial value $c x^{q}\left(1+O\left(x^{1 / d}\right)\right)$, we will thus find $h \bmod x^{q+d^{-1} 2^{k}}$ after k steps.

1.2 The number N

For any monomial $T=c x^{q}$, with c a root of unity, and q a positive rational number, our algorithm will compute a specified number of terms of a Puiseux series $h=T \cdot(1+\cdots)$ for which $P_{N}(x, h)=0$ for one N. We can quickly determine N from T. For instance, if N is prime, then either $(c, q)=(1, N)$ or $(c, q)=\left(\zeta_{N}^{s}, 1 / N\right)$ for some $s \in\{0, \ldots, N-1\}$. The relation between other N 's and their T 's comes from composition, as shown in these examples:

Example 1. Composing $T= \pm x^{1 / 2}$ and $T=x^{2}$ (all belonging to $N=2$) we obtain x and $-x$. Now $T=x$ belongs to $N=1=2 / 2$, but $T=-x$ does not. So it must belong to $N=2 \cdot 2=4$. Similarly, $i x^{2}$ (where $i=\zeta_{4}=\sqrt{-1}$) belongs to $X_{0}\left(2^{k}\right)$ for some k since it can be obtained by repeated compositions of x^{2} and $\pm x^{1 / 2}$. Here k must be 5 since we do not obtain $i x^{2}$ by composing fewer than 5 functions from $\left\{x^{2}, \pm x^{1 / 2}\right\}$. In contrast, $T=i x^{1 / 2}$ belongs to $N=2^{3}$.
Likewise, $-x^{1 / 3}$ and $x^{3 / 4}$ can only belong to $N=3 \cdot 2^{2}=12$, because both require compositions involving 1 element from $\left\{x^{3}, \zeta_{3}^{*} x^{1 / 3}\right\}$ and 2 elements from $\left\{x^{2}, \pm x^{1 / 2}\right\}$. Likewise, $T=x^{5 / 3}$ and $T=\zeta_{3} x^{5 / 3}$ belong to $N=15$, and $T=\zeta_{5} x$ belongs to $N=25$.

2 A relation between x and h

The reciprocals of x and h satisfy the modular equation ϕ_{N}. Since ϕ_{N} can be large when N is large, we will use another relation between x and h, one that is valid for any N. Define $E, F, G \in \mathbb{Z}[[x]]$ as

$$
E:=x \cdot \sqrt{1-1728 x}, \quad F:={ }_{2} \mathrm{~F}_{1}\left(\left.\begin{array}{c}
\frac{1}{12}, \frac{5}{12} \\
1
\end{array} \right\rvert\, 1728 x\right)
$$

and

$$
G:=E \cdot F^{2}=E \cdot{ }_{3} \mathrm{~F}_{2}\left(\left.\begin{array}{c}
\frac{1}{6}, \frac{1}{2}, \frac{5}{6} \\
1,1
\end{array} \right\rvert\, 1728 x\right)
$$

G satisfies a linear homogeneous differential equation L_{3} over $\mathbb{Q}(x)$

$$
L_{3}: \quad G^{\prime \prime \prime}+a_{2} G^{\prime \prime}+a_{1} G^{\prime}+a_{0} G=0
$$

with $a_{0}, a_{1}, a_{2} \in \mathbb{Q}(x)$. The factor E in G was selected to ensure $a_{2}=0$.
The following relation

$$
\begin{equation*}
v(h) \cdot G \circ h=h^{\prime} \cdot G \tag{3}
\end{equation*}
$$

holds for every $h \in \hat{K}$ for which $\exists_{N} P_{N}(x, h)=0$. We computed this relation by reformulating the condition [To Do: Find reference] that $F \circ h$ should be an algebraic function times F. The projective monodromy matrices of F are precisely the famous generators of the modular group $\operatorname{PSL}(2, \mathbb{Z})$.

Section 3 shows that for any positive rational number q and any $c \in \mathbb{C}-\{0\}$ there exists precisely one $h \in \hat{K}$ that satisfies (3) and has $c x^{q}$ as its initial term. This h is algebraic over $\mathbb{C}(x)$ iff c is a root of unity.

3 Computing h from its initial term

Differentiating (3) and dividing by h^{\prime} we find

$$
\begin{equation*}
v(h) \cdot G^{\prime} \circ h=G \cdot\left(\frac{h^{\prime \prime}}{h^{\prime}}+\frac{G^{\prime}}{G}\right)=G \cdot \operatorname{ld}\left(h^{\prime} G\right) \tag{4}
\end{equation*}
$$

where ld denotes the logarithmic derivative, $\operatorname{ld}(u):=\ln (u)^{\prime}=u^{\prime} / u$. Suppose that h_{0} is an approximation of h with $v(\epsilon) \geqslant a+v(h)>a$ where ϵ denotes $h-h_{0}$. Substituting $h=h_{0}+\epsilon$ in (3) and (4) gives

$$
\begin{equation*}
\left(h_{0}^{\prime}+\epsilon^{\prime}\right) \cdot G=v(h) \cdot G \circ\left(h_{0}+\epsilon\right)=v(h) \cdot\left(G \circ h_{0}+\epsilon \cdot\left(G^{\prime} \circ h_{0}\right)+O\left(\epsilon^{2}\right)\right) \tag{5}
\end{equation*}
$$

and, using $v(G)=1$,

$$
\begin{equation*}
v(h) \cdot G^{\prime} \circ h_{0}+O(\epsilon)=G \cdot \operatorname{ld}\left(h_{0}^{\prime} G\right)+O\left(x^{a}\right) \tag{6}
\end{equation*}
$$

[^1]Substituting (6) into (5), dividing by G, then subtracting h_{0}^{\prime}, gives

$$
\epsilon^{\prime}=\frac{v(h) \cdot\left(G \circ h_{0}\right)}{G}+\epsilon \cdot \operatorname{ld}\left(h_{0}^{\prime} G\right)-h_{0}^{\prime}+O\left(x^{v(h)+2 a-1}\right) .
$$

Now $\epsilon^{\prime}=\operatorname{ld}(A) \epsilon+B+O\left(x^{s}\right)$ has a solution $\epsilon=A \int B / A+O\left(x^{s+1}\right)$, applying that gives

$$
\begin{equation*}
\epsilon=h_{0}^{\prime} G \int \frac{1}{G}\left(\frac{v(h) \cdot\left(G \circ h_{0}\right)}{h_{0}^{\prime} G}-1\right) \mathrm{d} x+O\left(x^{v(h)+2 a}\right) . \tag{7}
\end{equation*}
$$

Adding this to h_{0} doubles the precision in the sense of Definition 1

Algorithm PuiseuxX0N.

Input: $T=c x^{q}$ where c is a root of unity and q a positive rational number, and a positive integer k.
Output: An approximation of precision $d^{-1} 2^{k}$ (as in Definition 1) of a Puiseux series h with initial term T that satisfies $P_{N}(x, h)=0$ (with N as in Example 1).

Step 1. $h_{0}:=T$ and $a:=d^{-1}$ where $d=$ denominator (q).
Step 2. Repeat k times:
(a) Compute $\epsilon \bmod x^{q+2 a}$ with formula (7).
(b) $h_{0}:=h_{0}+\epsilon$ and $a:=2 a$.

Step 3. Return h_{0}.

A Maple implementation is given at www.math.fsu.edu/~hoeij/files/XON, in the file PuiseuxXON. The CPU time is dominated by the cost of composing $G \circ h_{0}$. Now G contains F^{2}, so we must compose a ${ }_{2} F_{1}$ function with a truncated power series h_{0}. Brent and Kung [1] described an algorithm that can perform this step efficiently. This, combined with fast arithmetic in $\mathbb{Z}\left[c, d^{-1}\right]$, reduces the computational complexity to quasi-linear time (logarithmic factors times the size of the output).

One could compute ϕ_{N} by (i) computing Puiseux expansions to sufficient precision, and then (ii) reconstructing ϕ_{N} from them. Step (i) is quasi-linear, and so is Step (ii) if N is for example a power of 2 . But if N contains large prime(s), it is not clear if Step (ii) can be done faster than [2].

References

[1] R. P. Brent, H. T. Kung, Fast Algorithms for Manipulating Formal Power Series, J. ACM, 25, No. 4, p. 581-595 (1978).
[2] R. Bröker, K. Lauter, A. Sutherland, Modular polynomials via isogeny volcanoes, Math. Comp. 81, p. 1201-1231 (2012).

[^0]: *Supported by NSF grant 1017880.

[^1]: ${ }^{1}$ The fact that h satisfies some P_{N} when c is a root of unity implies that h can not be algebraic when c is not a root of unity. If c is not a root of unity, and if h were algebraic, then $c \equiv \zeta_{N} \bmod p$ for a large N and a large prime p, and we would get arbitrarily high lower bounds on the algebraic degree of h reduced $\bmod p$, leading to a contradiction.

