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1 Notation

The function field of the modular curveX0(N) can be written as C(x1)[x2]/(φN )
where φN ∈ Z[x1, x2] satisfies φN (j(τ), j(Nτ)) = 0. A place P corresponds to
a discrete valuation vP on the function field (vP (g) < 0 means that a function
g has a pole at P , and vP (g) > 0 means a root, of that order). The cusps are
the places P where x1, x2 have poles.

Goal: An efficient algorithm to compute Puiseux expansions at cusps of X0(N).

A Puiseux expansion at a cusp P of X0(N) can be written as

x1 = t−d, x2 = c0 · t−n · (1 + · · · ) ∈ Z[c0, d
−1][[ t ]]. (1)

Here n, d are positive integers, c0 is a root of unity, t is a local parameter at
P , and the dots refer to terms with positive powers of t. To avoid negative
exponents, we switch to the variables

x =
1

x1
=

1

j(τ)
, and h =

1

x2
=

1

j(Nτ)
.

Now x, h satisfy an algebraic relation PN (x, h) = 0 that is trivially obtained
from φN by substituting (x1, x2) 7→ (x−1, h−1). However, φN and PN are not
needed for computing a Puiseux expansion at a cusp.

In terms of x, h the Puiseux expansion (1) looks like

x = td, h = c · tn · (1 + · · · )
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where c = 1/c0. We can rewrite that to (from now on we will use this form):

h = c · xq · (1 + · · · ) ∈ Z[c, d−1][[x1/d ]] (2)

where q = n
d is a positive rational number. We will call

T := c · xq

the initial term of h. We are only interested in those h for which ∃NPN (x, h) = 0.
Such h turn out (see Section 3) to be uniquely determined by their initial term.
Section 1.2 will explain how to find N from T .

1.1 Puiseux series

Let

K̂ :=
∞
⋃

d=1

C((x1/d))

denote the field of Puiseux series over C. If α ∈ K̂−{0}, then v(α) ∈ Q denotes
the exponent of the initial term. So

v(h) = v(T ) = q.

Definition 1. Let a ∈ 1
dZ and h as in (2). By computing h to precision a we

mean computing the factor (1 + · · · ) mod xa, and hence h mod xq+a.

Input and output of our algorithm. Given h up to precision a, we will
show that h can be computed quickly to precision 2a. Starting with the initial

value cxq(1 + O(x1/d)), we will thus find h mod xq+d−12k after k steps.

1.2 The number N

For any monomial T = cxq, with c a root of unity, and q a positive rational
number, our algorithm will compute a specified number of terms of a Puiseux
series h = T · (1 + · · · ) for which PN (x, h) = 0 for one N . We can quickly
determine N from T . For instance, if N is prime, then either (c, q) = (1, N) or
(c, q) = (ζsN , 1/N) for some s ∈ {0, . . . , N − 1}. The relation between other N ’s
and their T ’s comes from composition, as shown in these examples:

Example 1. Composing T = ±x1/2 and T = x2 (all belonging to N = 2) we
obtain x and −x. Now T = x belongs to N = 1 = 2/2, but T = −x does not. So
it must belong to N = 2 · 2 = 4. Similarly, ix2 (where i = ζ4 =

√
−1) belongs to

X0(2
k) for some k since it can be obtained by repeated compositions of x2 and

±x1/2. Here k must be 5 since we do not obtain ix2 by composing fewer than 5
functions from {x2,±x1/2}. In contrast, T = ix1/2 belongs to N = 23.
Likewise, −x1/3 and x3/4 can only belong to N = 3 · 22 = 12, because both
require compositions involving 1 element from {x3, ζ∗3x

1/3} and 2 elements from
{x2,±x1/2}. Likewise, T = x5/3 and T = ζ3x

5/3 belong to N = 15, and T = ζ5x
belongs to N = 25.
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2 A relation between x and h

The reciprocals of x and h satisfy the modular equation φN . Since φN can be
large when N is large, we will use another relation between x and h, one that
is valid for any N . Define E,F,G ∈ Z[[x]] as

E := x ·
√
1− 1728x, F := 2F1

( 1
12 ,

5
12

1

∣

∣

∣

∣

1728 x

)

and

G := E · F 2 = E · 3F2

( 1
6 ,

1
2 ,

5
6

1, 1

∣

∣

∣

∣

1728x

)

.

G satisfies a linear homogeneous differential equation L3 over Q(x)

L3 : G′′′ + a2G
′′ + a1G

′ + a0G = 0

with a0, a1, a2 ∈ Q(x). The factor E in G was selected to ensure a2 = 0.
The following relation

v(h) ·G ◦ h = h′ ·G (3)

holds for every h ∈ K̂ for which ∃NPN (x, h) = 0. We computed this relation
by reformulating the condition [To Do: Find reference] that F ◦ h should be
an algebraic function times F . The projective monodromy matrices of F are
precisely the famous generators of the modular group PSL(2,Z).

Section 3 shows that for any positive rational number q and any c ∈ C−{0}
there exists precisely one h ∈ K̂ that satisfies (3) and has cxq as its initial term.
This h is algebraic over C(x) iff1 c is a root of unity.

3 Computing h from its initial term

Differentiating (3) and dividing by h′ we find

v(h) ·G′ ◦ h = G · (h
′′

h′
+

G′

G
) = G · ld(h′G) (4)

where ld denotes the logarithmic derivative, ld(u) := ln(u)′ = u′/u. Suppose
that h0 is an approximation of h with v(ǫ) > a + v(h) > a where ǫ denotes
h− h0. Substituting h = h0 + ǫ in (3) and (4) gives

(h′

0 + ǫ′) ·G = v(h) ·G ◦ (h0 + ǫ) = v(h) · (G ◦ h0 + ǫ · (G′ ◦ h0) +O(ǫ2)) (5)

and, using v(G) = 1,

v(h) ·G′ ◦ h0 +O(ǫ) = G · ld(h′

0G) +O(xa). (6)

1The fact that h satisfies some PN when c is a root of unity implies that h can not be

algebraic when c is not a root of unity. If c is not a root of unity, and if h were algebraic,

then c ≡ ζN mod p for a large N and a large prime p, and we would get arbitrarily high lower

bounds on the algebraic degree of h reduced mod p, leading to a contradiction.
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Substituting (6) into (5), dividing by G, then subtracting h′

0, gives

ǫ′ =
v(h) · (G ◦ h0)

G
+ ǫ · ld(h′

0G)− h′

0 +O(xv(h)+2a−1).

Now ǫ′ = ld(A)ǫ +B +O(xs) has a solution ǫ = A
∫

B/A +O(xs+1), applying
that gives

ǫ = h′

0G

∫

1

G

(

v(h) · (G ◦ h0)

h′

0G
− 1

)

dx +O(xv(h)+2a). (7)

Adding this to h0 doubles the precision in the sense of Definition 1.

Algorithm PuiseuxX0N.

Input: T = cxq where c is a root of unity and q a positive rational number,
and a positive integer k.

Output: An approximation of precision d−12k (as in Definition 1) of a Puiseux
series h with initial term T that satisfies PN (x, h) = 0 (with N as in Example 1).

Step 1. h0 := T and a := d−1 where d = denominator(q).
Step 2. Repeat k times:
(a) Compute ǫ mod xq+2a with formula (7).
(b) h0 := h0 + ǫ and a := 2a.

Step 3. Return h0.

A Maple implementation is given at www.math.fsu.edu/∼hoeij/files/X0N,
in the file PuiseuxX0N. The CPU time is dominated by the cost of composing
G◦h0. Now G contains F 2, so we must compose a 2F1 function with a truncated
power series h0. Brent and Kung [1] described an algorithm that can perform
this step efficiently. This, combined with fast arithmetic in Z[c, d−1], reduces
the computational complexity to quasi-linear time (logarithmic factors times
the size of the output).

One could compute φN by (i) computing Puiseux expansions to sufficient
precision, and then (ii) reconstructing φN from them. Step (i) is quasi-linear,
and so is Step (ii) if N is for example a power of 2. But if N contains large
prime(s), it is not clear if Step (ii) can be done faster than [2].
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