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ABSTRACT

This thesis presents three algorithms each of which returns a transformation from a base

equation to the input using transformations that preserve order and homogeneity (referred to as gt-

transformations). The first and third algorithm are new and the second algorithm is an improvement

over prior algorithms for the second order case.

The first algorithm ‘Find 2F1’ finds a gt-transformation to a recurrence relation satisfied by a

hypergeometric series u(n) = 2F1

(
a+n b

c

∣∣∣ z), if such a transformation exists.

The second algorithm ‘Find Liouvillian’ finds a gt-transformation to a recurrence relation of

the form u(n + 2) + b(n)u(n) = 0 for some b(n) ∈ C(n), if such a transformation exists.

The third algorithm ‘Database Solver’ takes advantage of a large database of sequences, ‘The

On-Line Encyclopedia of Integer Sequences’ maintained by Neil A. J. Sloane at AT&T Labs

Research. It employs this database by using the recurrence relations that they satisfy as base

equations from which to return a gt-transformation, if such a transformation exists.
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CHAPTER 1

INTRODUCTION

There exist many algorithms, implemented in Computer Algebra Systems (CAS), for solving

second order recurrence relations in terms of first order relations, i.e. hypergeometric terms. Un-

fortunately, when no such solution exists the CAS user is frequently left without any information.

This thesis presents three algorithms that provide more information in that event. Common to each

algorithm is a transformation from a base equation to the input using transformations that preserve

order and homogeneity (referred to as gt-transformations).

The third algorithm and the examples below employ ‘The On-Line Encyclopedia of Integer

Sequences’ or OEIS ([1]) maintained by Neil A. J. Sloane at AT&T Labs Research. As its name

implies, the OEIS contains a great deal of information about many sequences beyond just the terms

of the sequence. Some information that may be found for a particular sequence is description,

formulas, references (e.g. to papers, books, and websites), cross references to other sequences,

CAS code, examples, and the author of that entry.

The first algorithm called by our main program is ‘Find 2F1’ from Chapter 4. This al-

gorithm finds a gt-transformation to a recurrence relation satisfied by a hypergeometric series

u(n) = 2F1

(
a+n b

c

∣∣∣ z), if such a transformation exists. For an example, sequence A005572 =

[1, 4, 17, 76, 354, 1704, 8421, . . . ] from the OEIS represents the “Number of walks on cubic lattice

starting and finishing on the xy plane and never going below it.” A005572 has offset 0 (i.e. the first

entry in the list is A005572(0)) and satisfies:

(12n + 12)A005572(n) + (−20 − 8n)A005572(n + 1) + (n + 4)A005572(n + 2) = 0

We don’t get any result from Maple’s recurrence equation solver, ‘rsolve,’ but the output from our

program is:

A005572(n) = − c2n−2hypergeom([1
2 , n + 2], [1], 2

3 ) + 3hypergeom([ 1
2 , n + 1], [1], 2

3 )
n + 2
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The second algorithm is ‘Find Liouvillian’ from Chapter 5. This algorithm finds a gt-

transformation to a recurrence relation of the form u(n + 2) + b(n)u(n) = 0 for some b(n) ∈ C(n),

if such a transformation exists. ‘Find Liouvillian’ is not unique in terms of its purpose but, for

second order recurrence relations, it is faster than prior algorithms. We note here, so that the name

will not be misleading, that if such a transformation exists then both the input and the output are

Liouvillian. This algorithm can be useful because u(n + 2) + b(n)u(n) = 0 is easily solved with

(interlaced) hypergeometric terms, e.g.

2u(n + 2) − (n + 3)u(n) = 0 has solutions:


k1 Γ

(
n + 3

2

)
, if n even

k2 Γ

(
n + 3

2

)
, if n odd

with k1, k2 ∈ C

An example of this algorithm uses A099364 from the OEIS (A099364 is “An inverse Chebyshev

transform of (1−x)2” and has offset 0). When we input the recurrence relation satisfied by A099364

into ‘rsolve’ we don’t get a result, so we enter it into our program and get the solution:

A099364(n) =

(
1
6

n +
5
6

)
v(n) −

(
1
12

n +
1
2

)
v(n + 1), v(n + 2) −

4(n + 2)
n + 7

v(n) = 0

The third algorithm is ‘Database Solver’ from Chapter 6. This algorithm takes advantage

of a large database of sequences, ‘The On-Line Encyclopedia of Integer Sequences’ or OEIS

([1]), by using the recurrence relations that they satisfy as base equations. In addition to these

sequences we use sequences that satisfy third order equations that are the Least Common Left

Multiple of a second order and a first order relation. In order that a search does not take too

much time, we have already searched the database and generated collections such that there

exists a gt-transformation between any two members of a collection. It would still take much

time to search for transformations from representatives from each group so we first check certain

invariants. For each collection we choose two representatives assuming that, after an appropriate

gt-transformation, we have two linearly independent sequences in S (see Definition 2.6). If the

input is a recurrence relation with initial conditions defining a sequence then the output will be a

transformation from one or two representative sequences (if there are matches in our database). The

output could be useful since the representatives are chosen, in large part, for how much information

there is about that sequence (formulas, papers citing the sequence, . . . ).

As an example of this algorithm, suppose we were working on “Coefficients of series whose

square is the weight enumerator of the [8,4,4] Hamming code” (this is actually sequence A108095

2



from the OEIS). This sequence, [1, 7,−24, 168,−1464, 14280, . . . ] has offset 0 and satisfies:

(n − 1)u(n) + (7 + 14n)u(n + 1) + (n + 2)u(n + 2) = 0

Again, ‘rsolve’ does not return a result so we enter the following into our program:

findrel((n − 1)u(n) + (7 + 14n)u(n + 1) + (n + 2)u(n + 2), u(n), u(0) = 1, u(1) = 7);

and we get the following output:

u(n) = 7(−1)n

(
(97n + 49)A084768(n)

7n(n − 1)
−

(n + 1)A084768(n + 1)
n(n − 1)

)
There is a little more information on A084768’s page then there is on the page for A108095, but

we also see that it is related to “Pn(7), where Pn is n’th Legendre polynomial” which is interesting

on its own.

An implementation of the algorithms contained in this thesis, along with a Maple demonstration

worksheet, is available at [11].
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CHAPTER 2

PRELIMINARIES

Definition 2.1. τ will refer to the shift operator acting on C(n) and Mata×b(C(n)) by τ : n 7→ n + 1.

An operator L =
∑

i aiτ
i acts as Lu(n) =

∑
i aiu(n + i).

Definition 2.2. C(n)[τ] is the ring of linear difference operators where ring multiplication is

composition of operators L1L2 = L1◦L2, e.g. (τ−a(n))(τ−b(n)) = τ2−(a(n)+b(n+1))τ+a(n)b(n).

Definition 2.3. A linear recurrence relation is an equation defining a term of a sequence as a linear

combination of previous terms, i.e. u(n + k) = ak−1(n)u(n + k − 1) + · · · + a0(n)u(n), ai(n) ∈ C(n).

We let τ operate on u(n) ∈ CN by u(n) 7→ u(n + 1). We consider homogeneous difference

equations with non-constant coefficients of the form: Lu = 0, L ∈ C(n)[τ], u ∈ CN, i.e. u : N→ C.

(Where N = {0, 1, 2, . . . }.) e.g. for L = τ2 + a(n)τ+ b(n) with a(n), b(n) ∈ C(n) the equation Lu = 0

reads:

u(n + 2) + a(n)u(n + 1) + b(n)u(n) = 0

Our goal is to solve such difference equations in terms of well-known functions or sequences.

Definition 2.4. We define a sequence as a function with domain the non-negative integers (possibly

minus finitely many integers). It is in this sense that we will refer to a function as a sequence.

Definition 2.5. The offset of a sequence will refer to the smallest integer in its domain. If not

specified then offset will be assumed to be 0. For example, the sequence [0, 1, . . . ] refers to

u(0) = 0, u(1) = 1, . . . if the offset = 0, but it refers to u(1) = 0, u(2) = 1, . . . if the offset

= 1.

Preferred offset varies in the literature somewhat. The convention of the On-Line Encyclopedia

of Integer Sequences (OEIS) is offset 1 while Maple (specifically its recurrence equation solver

4



‘rsolve’) mostly uses offset 0. Let L ∈ C(n)[τ], u ∈ CN such that Lu = 0. If L < C[τ] then L and u

are dependent on offset.

A change in offset of k ∈ Z given by v(n) = u(n + k) is a simple example of a gauge

transformation, one of the transformations we will later introduce (see Definition 2.15).

Definition 2.6 (Singer). Let equivalence classes of sequences be defined by S = CN/∼ where

s1 ∼ s2 if there exists N ∈ N such that, for all n > N, s1(n) = s2(n).

The reason for using S is that the dimension of the solution space will be equal to the order of

the recurrence operator (see Theorem 2.1 below).

Remark 2.1. Working in S also enables us to work in C[n][τ] as well as in C(n)[τ]. In particular,

if L ∈ C(n)[τ] and we multiply away the denominators of the coefficients to obtain an element of

C[n][τ] then the solution space does not change when working in S .

Definition 2.7. A unit is a sequence in S that is invertible, i.e. a sequence that only has finitely

many zeros.

Theorem 2.1. [‘A=B’ Theorem 8.2.1] Let L =
∑r

k=0 akτ
k be a linear recurrence operator of order

r on S . If ar and a0 are units, then dim(ker(L)) = r.

We can view C(n) as a subset of S so the theorem applies to L ∈ C(n)[τ] with a0, ar , 0.

Definition 2.8. A function or sequence v(n) such that v(n + 1)/v(n) = r(n) is a rational function

of n will be called a hypergeometric term. Such a v(n) will be called a hypergeometric solution

of any L ∈ C(n)[τ] for which Lv = 0 and will correspond to a first order right hand factor of L,

namely τ − r(n) = τ − v(n + 1)/v(n).

In the literature, hypergeometric function is usually synonymous with a convergent hypergeo-

metric series
∑∞

n=0 v(n)xn where v(n) is a hypergeometric term.

Existing algorithms can solve all second order linear recurrence operators with:

1. first order right hand factors (i.e. operators with hypergeometric solutions).

2. constant coefficients (this will be a subset of (1) when working in an algebraically closed

field of constants).

5



Example 2.1. The operator L = τ2 − τ − 1 satisfied by the Fibonacci numbers, F(n) =

0, 1, 1, 2, 3, 5, 8, 13, . . . , is an example (of both (1) and (2) above) of an operator that is already

solved using existing algorithms:

L =

τ − 1
2
−

√
5

2

 τ − 1
2

+

√
5

2


F(n) =

1
√

5

1
2

+

√
5

2

n

−

1
2
−

√
5

2

n
Definition 2.9. A monic rational function refers to a rational function r = f /g such that f , g are

monic polynomials.

Definition 2.10. Γ will represent the usual gamma function defined as

Γ(z) =

∫ ∞

0
e−ttz−1dt (2.1)

for Re(z) > 0 and, for −z < N, by its analytic continuation to the complex plane (Γ(z) =

Γ(z + n)/(z(z + 1) · · · (z + n − 1)) is used to continue the function analytically).

Remark. The gamma function was defined to be an extension of the factorial function and they

are related by Γ(n) = (n − 1)!, n ∈ N∗. This can be seen from the identity Γ(z + 1) = z Γ(z) which

can be obtained (after ‘integration by parts’) from Equation (2.1).

Definition 2.11. The Pochhammer symbol, (r)n with n ∈ N, will be used to represent the shifted

factorial given by:

(r)n = r(r + 1) · · · (r + n − 1)

(r)0 = 1

In the literature (but not in this thesis) the shifted factorial is also called the rising factorial

and may be denoted r(n) and the Pochhammer symbol is sometimes used to represent the falling

factorial.

Note: For n ∈ C, (r)n can be extended analytically to the complex plane using

(r)n =
Γ(r + n)

Γ(r)

Definition 2.12. A holonomic function is a u(n) ∈ CN such that Lu = 0 for some L ∈ C[n][τ] (i.e.

L is a linear, homogeneous difference operator having polynomial coefficients).

6



Definition 2.13. V(L) refers to the solution space of the operator L, i.e. V(L) = {u ∈ S | Lu = 0},

where S is as in Definition 2.6.

Example 2.2. For L = τ + n + 1 we write V(L) = C · (−1)nΓ(n + 1) or V(L) = C ·

[1,−1, 2,−6, 24,−120, . . . ].

Let D = C(n)[τ]. If L ∈ D with L , 0 then D/DL is a D−module.

Definition 2.14. L1 is gauge equivalent to L2 when D/DL1 and D/DL2 are isomorphic as

D−modules.

Lemma 2.1. L1 is gauge equivalent to L2 if and only if there exists G ∈ D such that G(V(L1)) =

V(L2) and L1, L2 have the same order. Thus G defines a bijection V(L1)→ V(L2).

Note: If D/DL1 � D/DL2 then G in the Lemma corresponds to the image in D/DL1 of the

element 1 ∈ D/DL2.

Definition 2.15. The bijection defined by G in Lemma 2.1 above will be called a gauge transfor-

mation.

Definition 2.16. The sequence obtained by multiplication of the corresponding terms of two

sequences will be called a term product of those sequences (e.g. w(n) = v(n)u(n), n = 0, 1, . . . ).

The term product of a sequence, u(n), with a hypergeometric sequence will be called a t-

transformation of u(n). The term product of two difference operators, represented as L1 ⊗ L2, for

which v(n), u(n) are respective solutions, is defined to be the minimal difference operator satisfied

by w(n) = v(n)u(n). A t-transformation as an operator (a hypergeometric sequence times an, as

yet, unspecified sequence) will be represented as (τ−r)⊗ for some r ∈ C(n), e.g. a t-transformation

operating on L would be represented as (τ− r)⊗ L whose result is the difference operator satisfied

by: s(n)u(n) for s(n) any solution of τ − r and for each solution, u(n), of L.

In the above definition, let the factorization of r over C be given as c(n− r1)e1 · · · (n− rm)em with

c, ri ∈ C and ei ∈ Z. The solution (unique up to multiplication by constants), s(n), of τ − r is given

by

s(n) = cnΠm
i=1(Γ(n − ri))ei

Let L = τ2 + a(n)τ + b(n) then

(τ − r(n)) ⊗ L = τ2 + a(n)r(n + 1)τ + b(n)r(n)r(n + 1)

7



Definition 2.17. A gt-transformation will refer to a gauge transformation followed by a t-

transformation.

Example 2.3. Examples of hypergeometric terms (i.e. solutions of first order operators)

• The solution of τ − 2 is 2n

• The solution of τ − 2n is 2nΓ(n)

• The solution of τ − 5(n − 2)2(n + 1) is 5n(Γ(n − 2))2Γ(n + 1).

Note: Solutions of first order difference operators are unique up to a constant.

Definition 2.18. Let r̂(n) = cp1(n)e1 · · · p j(n)e j ∈ C(n) with C ⊆ C. Let the ei ∈ Z, let the pi(n)

be irreducible in C[n], and let si ∈ C equal the sum of the roots of pi(n). r̂(n) is said to be in

shift normal form if − deg(pi(n)) < Re(si) 6 0, for i = 1, . . . , j. We denote SNF(r(n)) as the shift

normalized form of r(n) which is obtained by replacing each pi(n) by pi(n + ki) for some ki ∈ Z

such that pi(n + ki) is in shift normal form. Two rational functions, r1(n), r2(n) will be called shift

equivalent, r1(n)
SE
≡ r2(n), if SNF(r1(n)) = SNF(r2(n)).

Theorem 2.2. Let Lu(n) = 0 be a monic linear recurrence equation with L ∈ C(n)[τ]. There exists

a basis of solutions in QN/∼ if and only if L ∈ Q(n)[τ]

Example 2.4. A relatively simple example u(n + 2) + 7u(n + 1) − 4u(n) = 0 with initial conditions

{u(0) = 1, u(1) = 1} has solution

u(n) =

−9
√

65
130

+
1
2

 −7
2
−

√
65
2

n

+

9
√

65
130

+
1
2

 −7
2

+

√
65
2

n

The two terms are not over Q, however they are conjugated and hence the sum u(n) is defined over

Q.

u(n) = [1, 1,−3, 25,−187, 1409,−10611, 79913,−601835, . . . ] ∈ QN

8



CHAPTER 3

MAIN ALGORITHM

In this thesis we introduce new algorithms that appear in Chapters 4, 5, and 6. The following

algorithm calls these algorithms along with a short description of each call. As mentioned in

Chapter 2 we focus on order 2. The remainder of this chapter contains material that is used in all

three algorithms.

Algorithm Main:

Input: L ∈ C[n][τ], a linear difference operator of order 2.

Let L = a2(n)τ2 + a1(n)τ + a0(n).

Output: Solution of L, if we can find one from either existing software or one of the three

algorithms introduced in this thesis.

1. Check currently available algorithms in CAS (Computer Algebra System) for a solution in

the form of a factorization (i.e. a first order right hand factor was found) or some other

general term solution. If existing algorithms find a solution then return that solution.

Note: if no solutions were found then L is irreducible as existing software finds first order

factors, if they exist ([2], [5], and [6]).

If a complicated solution, other than a first order factor, is found by the CAS it may still be

worthwhile to call steps 2, 3, and 4 to see if a simpler solution can be found.

2. Call Algorithm Find 2F1 from Chapter 4.

If we can find a gt-transformation L → L2, for L2 a difference operator satisfied by a

hypergeometric series u(n) = 2F1

(
a+n b

c

∣∣∣ z) then return L2 and the transformation.

3. Call Algorithm Find Liouvillian from Chapter 5.

9



If we can find a gt-transformation L → L2, for L2 = τ2 + b̂(n) for some b̂(n) ∈ C(n) then

return L2 and the transformation.

4. Call Algorithm Database Solver from Chapter 6.

If we can find a gt-transformation L→ L2, for L2 a difference operator satisfied by a sequence

from the Sloane database (OEIS) then return L2 and the transformation.

In each of the introduced algorithms we need to be able to check if potential matches are

related to the input by a gt-transformation. The remainder of this chapter will show that such a

transformation (it will not be unique) will be found, if it exists.

Notation. Given a polynomial r(n) and a rational function f (n) = p(n)/q(n), where we assume

p(n), q(n) to be relatively prime polynomials, we use notation r(n) | f (n) or r(n) - f (n) to mean

that r(n) | p(n)q(n) or r(n) - p(n)q(n) respectively.

Definition 3.1. The companion matrix of a monic difference operator

L = τk + ak−1τ
k−1 + · · · + a0, ai ∈ C(n)

which is satisfied by u(n) will refer to the matrix:

M =


0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
−a0 −a1 . . . −ak−2 −ak−1


(3.1)

The equation Lu = 0 is equivalent to the system τ(Y) = MY where

Y =


u(n)
...

u(n + k − 1)

 (3.2)

Definition 3.2. Let L = akτ
k + ak−1τ

k−1 + · · · + a0, ai ∈ C(n). The determinant of L, det(L) :=

(−1)ka0/ak, i.e. the determinant of its companion matrix.

Definition 3.3. The gauge transformation G = ck−1τ
k−1 + · · · + c0, ci ∈ C(n) operating on

u(n) ∈ V(L) is represented by the system:

Z =


Gu(n)
τ(Gu(n))

...
τk−1(Gu(n))

 (3.3)

10



Which we can rewrite, using Lu = 0, as

Z = ĜY (3.4)

with Ĝ a k−dimensional square matrix.

Lemma 3.1. A gauge transformation G : L1 → L2 maps:

det(L1) 7→ det(L1)
τ(det(Ĝ))

det(Ĝ)

Proof. Let the companion matrix of L1u(n) = 0 be M (so τ(Y) = MY). The gauge transformation

Z = ĜY sends M 7→ τ(Ĝ)MĜ−1 by substituting

Y = Ĝ−1Z and τ(Y) = τ(Ĝ−1Z) = τ(Ĝ−1)τ(Z) = τ(Ĝ)−1τ(Z)

in τ(Y) = MY to obtain

τ(Ĝ)−1τ(Z) = MĜ−1Z → τ(Z) = τ(Ĝ)MĜ−1Z

and the result follows. �

Lemma 3.2. A gauge transformation G takes a second order irreducible recurrence equation to a

second order irreducible recurrence equation.

The proof of the Lemma follows from Definition 2.14.

Lemma 3.3. If L1, L2 ∈ C(n)[τ] are gauge equivalent of order k then there exist gauge equivalent

R, S ∈ C(n)[τ] of order < k such that L1R = S L2.

For a proof of the lemma in the differential case, which is adaptable to the difference case, see

[9].

Lemma 3.4. A t-transformation takes a second order irreducible recurrence equation to a second

order irreducible recurrence equation.

Proof. Let f = a2(n)u(n + 2) + a1(n)u(n + 1) + a0(n)u(n) = 0, ai(n) ∈ C(n). Let a t-transformation

be defined by v(n) = h(n)u(n), h(n) a hypergeometric sequence, then â2(n)v(n + 2) + â1(n)v(n +

1) + â0(n)v(n) = 0 where âi(n) = ai(n)/h(n + i) ∈ C(n) so it just remains to show that v(n) does not

satisfy a first order recurrence equation, i.e. that v(n) is not a hypergeometric solution. Suppose it

is, i.e. suppose there exists r1(n) ∈ C(n) such that

r1(n) =
v(n + 1)

v(n)
=

h(n + 1)u(n + 1)
h(n)u(n)

.

11



Then r1(n) = r2(n)u(n+1)
u(n) , r2(n) ∈ C(n) ⇒ r̂(n) = u(n + 1)/u(n), r̂(n) ∈ C(n) contradicting the

irreducibility of f . �

Lemma 3.5. If there exists a gauge transformation L1 −→ L2 with L1 irreducible then there exists a

gauge transformation L2 −→ L1

The Lemma follows from the isomorphism between D/DL1 and D/DL2.

Lemma 3.6. Let τ(Y) = MY, Y =


u(n)
...

u(n + k − 1)

.
Under the gauge transformation given by Z = ĜY :

M 7→ τ(Ĝ)MĜ−1 (3.5)

Under the term product v(n)u(n) with v(n + 1) − αv(n) = 0, α ∈ C(n) :

M 7→ τ(H)M(det(H)H−1), H =

(
1 0
0 α

)
(3.6)

Lemma 3.7. For any gauge transformation s1 and t-transformation s2 such that f
s2◦s1
−−−→ g there

exists a gauge transformation t1 and a t-transformation t2 such that g
t1◦t2
−−−→ f

Proof. Let S 2,T2 =

(
1 0
0 τ(α)

)
,

(
1 0
0 1

τ(α)

)
respectively, α , 0 (i.e. T2 = S −1

2 ) and let M,N be the

matrix representations for f , g respectively. From Equation (3.5):

N = τ(S 2)τ(S 1)MS −1
1 (αS −1

2 )

τ(T2)N(
1
α

T−1
2 ) = τ(T2)τ(S 2)τ(S 1)MS −1

1 (αS −1
2 )(

1
α

T−1
2 )

= τ(S 1)MS −1
1

By Lemma 3.5, there exists T1 such that

M = τ(T1)τ(T2)N(
1
α

T−1
2 )T−1

1

�

Lemma 3.8. For h(n) a hypergeometric term (i.e. h(n + 1)/h(n) ∈ C(n)), h(n + k)/h(n) ∈ C(n) for

any k ∈ Z.
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Proof. For h(n) ∈ C(n) the result is trivial so assume h(n) < C(n). For k = 0 we have 1 ∈ C(n). For

k > 0 we have

h(n + k)
h(n)

=
h(n + k)

h(n + k − 1)
h(n + k − 1)
h(n + k − 2)

· · ·
h(n + 1)

h(n)
= rkrk−1 · · · r1, ri ∈ C(n)

For k < 0 we have

h(n)
h(n + k)

=
h(n)

h(n − 1)
h(n − 2)
h(n − 1)

· · ·
h(n + k − 1)

h(n + k)
= s1s2 · · · sk, si ∈ C(n)

and so its reciprocal h(n + k)/h(n) ∈ C(n) �

Theorem 3.1. If there exists a gauge transformation L1 −→ L2 ⊗ (τ + a1(n)), a1(n) ∈ C(n) then for

any a2(n) shift equivalent to a1(n) there exists a gauge transformation L1 −→ L2 ⊗ (τ + a2(n))

Proof. Let g(n) be a solution of L2 and let g1(n) = h1(n)g(n), g2(n) = h2(n)g(n) with h1(n), h2(n)

solutions of τ − a1(n), τ − a2(n), respectively, then g(n) = g2(n)/h2(n). For some non-negative

integer k, a1(n + k) = a2(n) or a1(n) = a2(n + k) Without loss of generality, assume the former.

h1(n + k) satisfies τ − a1(n + k) (= τ − a2(n)).

Therefore h2(n) = αh1(n + k), α ∈ C.

Given gauge transformation g1(n) 7→ f (n) :

f (n) = c0(n)g1(n) + c1(n)g1(n + 1)

= c0(n)h1(n)
g2(n)
h2(n)

+ c1(n)h1(n + 1)
g2(n + 1)
h2(n + 1)

= c0(n)
h1(n)
h2(n)

g2(n) + c1(n)
h1(n + 1)
h2(n + 1)

g2(n + 1)

= c0(n)
h1(n)

αh1(n + k)
g2(n) + c1(n)

h1(n + 1)
αh1(n + k + 1)

g2(n + 1)

= r0(n)g2(n) + r1(n)g2(n + 1), r0(n), r1(n) ∈ C(n)

�

Theorem 3.2. Let the subscripts 1, 2 or 2, 1 denote g-transformations and t-transformations,

respectively. Given s1, s2 there exist t1, t2 such that the following holds:

Any gt-transformation f
s2◦s1
−−−→ g can be written as f

t1◦t2
−−−→ g

Proof.

v(n) = c0(n)(Γ(h(n))u(n)) + c1(n)(Γ(h(n + 1))u(n + 1))

= Γ(h(n))(c0(n)u(n) + h(n)c1(n)u(n + 1))

= Γ(h(n))(r0(n)u(n) + r1(n)u(n + 1)), r0(n), r1(n), h(n) ∈ C(n)

13
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Corollary 3.1. Let notation be the same as in Theorem 3.2 and let s2 = (τ − s(n))⊗ and

t2 = (τ − t(n))⊗, then it follows that s(n)
SE
≡ ±t(n).

Proof. Let d = det( f ) then f
s2◦s1
−−−→ g gives det(g)

SE
≡ s(n)s(n + 1)d

SE
≡ (s(n))2d.

Also f
t1◦t2
−−−→ g gives det(g)

SE
≡ t(n)t(n + 1)d

SE
≡ (t(n))2d.

Therefore t(n)
SE
≡ ±s(n) �

Theorem 3.3. Let s1, . . . , sm be some combination of gauge transformations and t-transformations.

A transformation f
s1◦...◦sm
−−−−−−→ g can be written f

t2◦t1
−−−→ g for some gauge transformation t1 and some

t-transformation t2.

Proof. By Theorem 3.2 we may assume that s1, . . . , s j are gauge transformations and s j+1, . . . , sm

are t-transformations and then all that is left to show is:

1. The composition of any number of gauge transformations can be written as a single gauge

transformation:

Consider gauge transformations of the form Z = GY where τ(Y) = MY . The composition of

j gauge transformations is given by the product of matrices:

Y2 = G1Y1, Y3 = G2Y2, . . . , Y j = G j−1Y j−1, Gi ∈ GL2(C(n))

therefore Y j = GY1, G ∈ GL2(C(n))

Note: Given Z = GY, f 7→ h : if G ∈ MATα×α(C(n)) and G < GLα(C(n)) then f is reducible

(see proof of Lemma 3.5).

2. The composition of any number of successive t-transformations can be written as a single

t-transformation:

um(n) = hm−1(n)um−1(n)

...

u3(n) = h2(n)u2(n)

u2(n) = h1(n)u1(n)

⇒ um(n) = h(n)u1(n) with h(n) = hm−1(n) · · · h1(n) and so h(n+1)
h(n) ∈ C(n)

14
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Theorem 3.4. If there exists a gt-transformation L1 −→ L2 then there exists a gauge transformation

L1 ⊗ (τ − r) −→ L2, where r = ±
√

SNF(det(L2)/ det(L1))

Proof. L2 and L1 ⊗ (τ − r) have the same determinant up to shift equivalence. The result follows

from the proof of Corollary 3.1. �

We summarize how we find a gt-transformation between two operators L1 and L2 :

Theorem 3.4 reduces the problem of finding a gt-transformation to the problem of finding a

gauge transformation (we try both the ± cases: r = ±
√

SNF(det(L2)/ det(L1)) from Theorem 3.4).

We next employ the following two algorithms:

Algorithm Find gt-Transformation:

Input: L1, L2 ∈ C[n][τ] linear difference operators of order 2.

Output: Operator of the form H(n)(c1(n)τ + c0(n)) mapping V(L1) to V(L2).

1. Calculate r̂ = SNF(det(L2)/ det(L1)).

2. If r̂ is a square in C(x) then let r =
√

r̂ else return ‘FAIL’ and stop.

3. Calculate Lneg = L1 ⊗ (τ − r) and Lpos = L1 ⊗ (τ + r).

4. Call Algorithm Find Gauge Transformation with arguments L2, Lneg.

(a) If result is not ‘FAIL’ then return H(n)· result and exit, where H(n) is a solution of

(τ − r).

5. Call Algorithm Find Gauge Transformation with arguments L2, Lpos.

(a) If result is not ‘FAIL’ then return H(n)· result and exit, where H(n) is a solution of

(τ + r).

(b) If result is ‘FAIL’ then return ‘FAIL.’
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It is known that finding a gauge transformation can be reduced to finding rational solutions

of a system and the latter can be done using e.g. the EG-elimination algorithm from [10]. For

completeness, we outline the steps taken.

Note: The procedure from [10] that we use limits us to working over Q(n) (see Theorem 2.2).

Algorithm Find Gauge Transformation:

Input: La, Lb ∈ C[n][τ] linear difference operators of order 2. Let u(n) ∈ V(La), v(n) ∈ V(Lb).

Output: Operator of the form c1(n)τ + c0(n) mapping V(Lb) to V(La).

1. Write u(n) = c0(n)v(n) + c1(n)v(n + 1) (where c0, c1 are to be determined) and make

appropriate substitutions (from Lb(v(n) = 0) so that u(n), u(n + 1), u(n + 2) ∈ Q(n)[v(n), v(n +

1)].

2. Substitute u(n) = c0(n)v(n) + c1(n)v(n + 1) and its shifts (τ and τ2) into La, set the coefficients

of v(n), v(n + 1) equal to zero and solve for c0(n + 2), c1(n + 2). Assign to c0(n + 2), c1(n + 2)

these solutions.

3. c0(n + 2), c1(n + 2) ∈ Q(n)[G], for G = [c0(n), c1(n), c0(n + 1), c1(n + 1)]. Let the coefficients

of G in c0(n + 2) be α1, α2, α3, α4, respectively and β1, β2, β3, β4, respectively, for c1(n + 2).

4. Call [10] to solve the system τ(Y) = MY for Y where:

Y =


c0(n)

c0(n + 1)
c1(n)

c1(n + 1)

 , M =


0 1 0 0
α1 α2 α3 α4

0 0 0 1
β1 β2 β3 β4

 (3.7)

5. If the trivial solution is returned for Y then return ‘FAIL’ otherwise return Y[3]τ + Y[1].
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CHAPTER 4

GENERALIZED HYPERGEOMETRIC SERIES

4.1 Preliminaries

Definition 4.1. The generalized hypergeometric series mFn is a power series in z with m upper

parameters and n lower parameters:

mFn

(
a1 . . . am

b1 . . . bn

∣∣∣∣∣∣ z
)

=
∑
k>0

(a1)k · · · (am)k

(b1)k · · · (bn)k

zk

k!
(4.1)

(Recall the Pochhammer symbol from Definition 2.11.)

Proposition 4.1. mFn is undefined when any lower parameter is a non-positive integer without

the existence of a corresponding upper parameter that is a non-positive integer of lesser or equal

absolute value.

Proposition 4.2. If mFn is defined and m = n + 1 then Equation (4.1) converges for all |z| < 1.

(This case and convergence for the cases m < n + 1, m > n + 1 are seen upon application of the

ratio test.)

Note: mFn is considered a generalized hypergeometric series (i.e. if m = 2, n = 1 then omit the

word “generalized”). When a hypergeometric series is convergent it will define a hypergeometric

function.

Example 4.1. 3F2

(
−3 9/5 −1
−2 −4

∣∣∣ 1
2

)
is defined, but 2F1

(
2/3 −3
−1

∣∣∣ 1
2

)
is not defined.

2F1 hypergeometric series are used to represent many elementary functions. As an example

consider the following hypergeometric series:

2F1

(
n 1

1

∣∣∣ z) = 1 + nz +
(n)2

2!
z2 +

(n)3

3!
z3 +

(n)4

4!
z4 + O(z5)
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We replace n, z by −n,−z respectively to make the right hand side look more familiar:

2F1

(
−n 1

1

∣∣∣ − z
)

= 1 + nz +
(n − 1)2

2!
z2 +

(n − 2)3

3!
z3 +

(n − 3)4

4!
z4 + O(z5)

We see that the right hand side is the series expansion of (1 + z)n and so:

(1 + z)n = 2F1

(
−n 1

1

∣∣∣ − z
)
, z ∈ C

In this case we notice that the 2F1 function can trivially be represented as a 1F0 function.

4.1.1 Contiguous Relations

Following are identities due to Gauss, Pfaff, and Euler respectively:

a(z − 1) 2F1

(
a+1 b

c

∣∣∣ z) + (a(2 − z) + bz − c) 2F1

(
a b

c

∣∣∣ z) + (c − a) 2F1

(
a−1 b

c

∣∣∣ z) = 0 (4.2)

2F1

(
a b

c

∣∣∣ z) = (1 − z)−a
2F1

(
a c−b

c

∣∣∣ z
z−1

)
, z < [1,∞) (4.3)

2F1

(
a b

c

∣∣∣ z) = (1 − z)c−a−b
2F1

(
c−a c−b

c

∣∣∣ z) (4.4)

Note: Equation (4.3) is equivalent to:

2F1

(
a b

c

∣∣∣ z) = (1 − z)−b
2F1

(
c−a b

c

∣∣∣ z
z−1

)
, z < [1,∞) (4.5)

Definition 4.2. Two 2F1 hypergeometric series are contiguous when their corresponding upper

and lower parameters differ by integers.

Example 4.2.
bz
c 2F1

(
a+n+1 b+1

c+1

∣∣∣ z) = 2F1

(
a+n+1 b

c

∣∣∣ z) − 2F1

(
a+n b

c

∣∣∣ z) (4.6)

This identity is proved with straightforward calculations which we include as an example.

Proof.

2F1

(
a+n+1 b

c

∣∣∣ z) = 1 +
(a + n + 1)b

c
z +

(a + n + 1)(a + n + 2)b(b + 1)
c(c + 1)

z2

2
+ · · ·

2F1

(
a+n b

c

∣∣∣ z) = 1 +
(a + n)b

c
z +

(a + n)(a + n + 1)b(b + 1)
c(c + 1)

z2

2
+ · · ·

After subtracting we obtain, for the j’th non-zero term:

(a + n + j − a − n)
(a + n + 1) · · · (a + n + j)b · · · (b + j)

c · · · (c + j)
z j

j!
=

bz
c

(a + n + 1) j−1(b + 1) j−1

(c + 1) j−1

z j−1

( j − 1)!

and the result follows. �
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Other relations we will use follow (after replacement of a with a + n) and may be obtained in

the same manner, from sources such as http://functions.wolfram.com, or, using Equation (4.7) as

an example, by entering the command ‘Contiguous2 f 1([0, 0, 0], [0, 1, 0], [1, 0, 0]);’ into the Maple

package for computing contiguous relations of Gauss hypergeometric 2F1 series written by R.

Vidunas [8].

(a − b) 2F1

(
a b

c

∣∣∣ z) + b 2F1

(
a b+1

c

∣∣∣ z) − a 2F1

(
a+1 b

c

∣∣∣ z) = 0 (4.7)

(b − c) 2F1

(
a b−1

c

∣∣∣ z) − a(z − 1) 2F1

(
a+1 b

c

∣∣∣ z) + (c − a − b) 2F1

(
a b

c

∣∣∣ z) = 0 (4.8)

c(a + (b − c)z) 2F1

(
a b

c

∣∣∣ z) + (a − c)(b − c)z 2F1

(
a b

c+1

∣∣∣ z) + ac(z − 1) 2F1

(
a+1 b

c

∣∣∣ z) = 0 (4.9)

(c − 1) 2F1

(
a b

c−1

∣∣∣ z) − a 2F1

(
a+1 b

c

∣∣∣ z) + (a − c + 1) 2F1

(
a b

c

∣∣∣ z) = 0 (4.10)

Theorem 4.1. For any integers k, l,m there exist unique functions Pklm,Qklm ∈ Q(a, b, c, z) such

that

2F1

(
a+k b+l

c+m

∣∣∣ z) = Pklm 2F1

(
a b

c

∣∣∣ z) + Qklm 2F1

(
a+1 b

c

∣∣∣ z) (4.11)

An algorithm to compute these Pklm and Qklm as well as a proof of the theorem is given in [8].

4.1.2 Solutions of the base equation

In Equation (4.2), we substitute a + n + 1 for a and find the operator of minimal order satisfied by

the sequence u(n) = 2F1

(
a+n b

c

∣∣∣ z).
Lbase = (a + n + 1)(z − 1)τ2 + ((a + n + 1)(2 − z) + bz − c)τ + (c − a − n − 1) (4.12)

Lbase will be the base equation in the chapter; subsection 4.2 will give an algorithm to decide

if an equation is solvable in terms of solutions of Lbase for some a, b, c, z ∈ C. Subsection 4.3 will

then spell out the solution of L in terms of 2F1 hypergeometric series.

Definition 4.3. The Casoratian determinant of n operators is the determinant of the Casoratian

matrix, C, which is the matrix that has entries ci, j = τi( f j)i=0..n−1
j=1..n .

Remark 4.1. Irreducibility of Equation (4.12) is not implied, e.g. u(n) = 2F1

(
a+n −1

c

∣∣∣ z) =

(c − za − zn)/c satisfies a first order recurrence operator (similarly, the result is a polynomial

for any non-positive integer b). Since our aim is to solve irreducible equations, the cases

b ∈ [0,−1,−2, . . . ] are therefore not of interest to this program.
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4.2 Algorithm Find 2F1

Algorithm Find 2F1:

Input: L ∈ C[n][τ] a second order, irreducible, homogeneous recurrence relation. Let L =

a2(n)τ2 + a1(n)τ + a0(n)

Output: gt-transformation from Lbase = (a+n+1)(z−1)τ2+((a+n+1)(2−z)+bz−c)τ+(c−a−n−1)

to L, if such a transformation exists.

1. If 2 · deg(a1(n)) > deg(a2(n)) + deg(a0(n)) or deg(a2(n)) − deg(a0(n)) is not even

then return ‘FAIL’ and stop.

2. Write the shift normalized determinant of L as kd
(
d̂
)2

with d a square free polynomial,

d̂ ∈ C(n), k ∈ C, and d, d̂ monic.

(a) If d is quadratic then let the roots of d be α1, α2 and let c = α2 − α1.

(b) If d = 1 then let c = 1.

(c) If d , 1 and d is not quadratic then return ‘FAIL’ and stop.

3. Let L̂ = L ⊗
(
τ + 1/d̂

)
= τ2 + b1(n)τ + b0(n), b0(n), b1(n) ∈ C(n) and let b̂1(n) = SNF(b1(n)).

4. If c , 1 then let a = −α1 and continue at Step 5.

If c = 1 then let dt = the denominator of b̂1(n). For r a root of dt, let a = −r, and continue at

Step 5.

5. Let y1, y2 ∈ C ((1/n)) equal the solutions of y2 + b1(n)y + b0(n) = 0 and, since b0(n) , 0,

{y1/y2, y2/y1} =
{∑∞

i=0 ci1 (1/n)i ,
∑∞

i=0 ci2 (1/n)i
}
.

Compute c01, c11, c02, c12 and for each j ∈ {1, 2} do the following:

(a) Let z = 1 − c0 j and let b̂ = 1
2

(
c + c1 j/c0 j

)
.

(b) For b ∈ {b̂, b̂ + 1/2} search for a gauge transformation from Lbase to L̂ and, if

successful, calculate the gt-transformation from Lbase to L (i.e. call Algorithm Find

Gauge Transformation).
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6. If c , 1 and Step 5 is unsuccessful then return ‘FAIL’ and stop. (See Remark 4.3.)

If c = 1 and Step 5 is unsuccessful then repeat Step 4 with r = the next untested root of dt.

If Step 5 is unsuccessful after all roots of dt have been tested then return ‘FAIL’ and stop.

7. Call Algorithm Find Independent Solutions in section 4.3 and, if successful, return the gt-

transformation obtained in Step 5 along with the basis of solutions obtained from the call. If

the call is unsuccessful then return the gt-transformation with the solution 2F1

(
a+n b

c

∣∣∣ z).
4.2.1 Algorithm Step 1

Idea: Rule out candidates that cannot be transformations of 2F1 functions. A series of the form

2F1

(
a+n b

c

∣∣∣ z) satisfies Equation (4.12).

Lemma 4.1. Given a sequence u(n), for which u(n + 1)/u(n) is not a rational function, there exists

at most one (up to equivalence, see Remark 2.1) second order homogeneous recurrence relation

satisfied by u(n).

Proof. Suppose there exist two such recurrence equations, divide each by their respective leading

coefficients (coeff(u(n + 2)) :

f1 : u(n + 2) = p1(n)u(n + 1) + q1(n)u(n)

f2 : u(n + 2) = p2(n)u(n + 1) + q2(n)u(n)

If p1(n) = p2(n) then it must also be that q1(n) = q2(n) (from f1 − f2) and so f1 = f2.

If p1(n) , p2(n) then (p1(n) − p2(n))u(n + 1) = (q2(n) − q1(n))u(n) leading to

u(n + 1)/u(n) = (q2(n) − q1(n))/(p1(n) − p2(n)) ∈ C(n), a contradiction of the assumption. �

Definition 4.4. Let v∞ be the valuation on C(n) such that:

1. v∞(0) = ∞

2. v∞( f ) = deg(denominator( f ), n) − deg(numerator( f ), n), for f , 0

Remark. When working modulo squares g(n) ≡ 1/g(n), for g(n) ∈ C(n) − {0}. So, modulo

squares, roots are equivalent to poles and only roots/poles of odd multiplicity count. Consider

the determinant of our operator:

L = τ2 +
a1(n)
a2(n)

τ +
a0(n)
a2(n)

21



det(L) =
a0(n)
a2(n)

≡
a2(n)
a0(n)

≡ a0(n)a2(n) modulo squares

The use of Newton Polygons, starting from Equation (4.12), explains the first condition of

Step 1, the second condition can be explained either by Newton Polygons or by the determinant

being invariant under gauge transformations modulo shift equivalence and being invariant under

t-transformations modulo shift equivalence and modulo squares.

Definition 4.5. Let L ∈ C[n][τ], L =
∑

aiτ
j. The Newton polygon of L, is defined as

N(L) = Convex Hull({(i, j) ∈ Z2 | j > v∞(ai)})

Properties:

1. N(L1L2) = N(L1) + N(L2) = {(x, y) + (x̃, ỹ) | (x, y) ∈ N(L1), (x̃, ỹ) ∈ N(L2)}

2. N(L1) + N(R) = N(L2) + N(R)⇒ N(L1) = N(L2)

Lemma 4.2. Let L1, L2 ∈ C(n)[τ], L1 =
∑d

k=0 ak(n)τk, L2 =
∑d

k=0 bk(n)τk, ao, b0, ad, bd , 0. If L1, L2

are gauge equivalent then N(L1) = N(L2) + {(0, v∞(ad) − v∞(bd))},

i.e. N(L1) ≡ N(L2) modulo an up or down shift of the convex hull.

Proof. We prove the Lemma by induction.

The Lemma is true for the case d = 0, we assume the case d = k is true and show that it is then

true for the case d = k + 1.

Let L1, L2 be gauge equivalent of order k + 1. Consider L1R = S L2 for R, S of order < k. Such

R, S exist and are gauge equivalent by the gauge equivalence of L1, L2 (see Corollary 3.3). Then:

N(L1) + N(R) = N(S ) + N(L2)⇒ N(L1) + N(R) = N(R) + {(0, c)} + N(L2), c ∈ Z

(by the induction assumption) and so N(L1) = N(L2) + {(0, c)} by Property 2 above. �

Idea: Under gt-transformations the determinant, modulo shift equivalence and modulo squares, is

invariant, i.e. our transformations cannot introduce new factors into the determinant. This invariant

helps determine the parameters a and c. Under certain conditions the roots of a quadratic equation

obtained from Lbase will give information that is invariant under our transformations and will help

determine the parameters b and z.

22



4.2.2 Algorithm Steps 2-4

Proposition 4.3. Assume a gt-transformation from the input relation to one satisfied by a

2F1

(
a+n b

c

∣∣∣ z) exists. This 2F1 satisfies Equation (4.12) and:

• Under gauge transformations the determinant is invariant modulo shift equivalence.

• Under term products the determinant modulo squares is invariant modulo shift equivalence.

The Proposition is a restatement of Lemmas 3.1 and 3.6.

Lemma 4.3. Lbase is gauge equivalent to each of the following:

1. substitute a + k for a in Lbase (k ∈ Z)

2. substitute b + k for b in Lbase (k ∈ Z)

3. substitute c + k for c in Lbase (k ∈ Z)

Proof. We prove the case k = 1 and the general case k ∈ Z follows immediately from induction

and from the invertibility of gauge transformations (for when k < 0). Let f (n) = 2F1

(
a+n b

c

∣∣∣ z).
Gauge equivalence of Lbase with 1 follows from the definition of gauge equivalence, i.e.

2F1

(
a+1+n b

c

∣∣∣ z) = f (n + 1)

To show gauge equivalence of Lbase with 2 we use the identities Equation (4.7) and Equation (4.8).

After substituting a + n for a we obtain

2F1

(
a+n b+1

c

∣∣∣ z) =
b − a − n

b
f (n) +

a + n
b

f (n + 1) (4.13)

To show gauge equivalence of Lbase with 3 we use the identities Equation (4.9) and Equation (4.10).

After substituting a + n for a we obtain

2F1

(
a+n b

c+1

∣∣∣ z) = −
c(a + n + (b − c)z)
(a + n − c)(b − c)z

f (n) +
(a + n)c(1 − z)

(a + n − c)(b − c)z
f (n + 1) (4.14)

�

Let there exist a gt-transformation from L ∈ C[n][τ] to an operator of the form:

L̃ = (ã + n + 1)(z̃ − 1)τ2 + ((ã + n + 1)(2 − z̃) + b̃z̃ − c̃)τ + (c̃ − ã − n − 1)
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We show that we can recover parameters a, b, c, z ∈ C such that there is a gt-transformation to L

from:

(a + n + 1)(z − 1)τ2 + ((a + n + 1)(2 − z) + bz − c)τ + (c − a − n − 1) (4.15)

(i.e. another, not necessarily distinct, operator of the form Lbase) by examining the two possible

cases:

1. c̃ < Z, i.e. modulo shift equivalence the determinant of L has two root(s)/pole(s) with odd

multiplicity

2. c̃ ∈ Z, i.e. modulo shift equivalence the determinant of L has no roots or poles with odd

multiplicity

Up to shift equivalence and modulo squares, det(L) = det(L̃) =
c̃ − ã − n

ã + n
and so the above list

is a complete list of possible cases (see Proposition 4.3). Note that the root and pole of det(L̃) are

n = c̃ − ã and n = −ã modulo shift equivalence.

Case 1: (c̃ < Z)

Let d = SNF(det(L)) modulo squares. If d is quadratic (modulo squares we write f /g as f̂ ĝ

with f̂ , ĝ monic) then let d = (n + a)(n + a− c). Taking the difference of the roots leads to a choice,

for a, c, of:

Case 1a:
{

a = ã + na

c = c̃ + nc

}
with na, nc ∈ Z.

or

Case 1b:
{

a = ã − c̃ + na

c = −c̃ + nc

}
with na, nc ∈ Z.

These cases are considered after Theorem 4.3.

Case 2: (c̃ ∈ Z) Let c = 1. After the term product in Step 3 let dt = the denominator of the

coefficient of τ in L. We show that, modulo shift equivalence, n + a is a factor of dt. Now proceed

as in Case 1a for each a corresponding to a factor of dt.

4.2.3 Algorithm Step 5

Idea: We look at power series about n = ∞ of the ratio of solutions of Lbase. We use the

property that the first two terms in the expansion are invariant modulo shifts of n to find invariants
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from which we recover the parameters b, z. The power series can get more complicated with t-

transformations so we avoid this problem with the t-transformation in Step 3.

Definition 4.6. Given two polynomials A, B with v∞(A) = v∞(B) we say that A k
∼ B when

v∞(A − B) > v∞(A) + k.

Definition 4.7. Let L,M ∈ C(n)[τ] each have order k and let aL
i , a

M
i be their respective coefficients

of τi. We say that L 2
∼ M when v∞(aL

i − aM
i ) > v∞(aL

i ) + 2, i = 0..k.

Notation. ♦ refers to commutative product, e.g. (τ+r(n))♦(τ+ s(n)) = τ2 + (r(n)+ s(n))τ+r(n)s(n).

Lemma 4.4. Let y1, y2 ∈ C[[n−1]] with v∞(y1) = v∞(y2) = v∞(y1 − y2) = 0 and let

L1 = (τ − y1)♦(τ − y2)

L2 = (τ − y1)(τ − y2)

L3 = LCLM(τ − y1, τ − y2)

then L1
2
∼ L2

2
∼ L3.

The Lemma can be proved with straightforward computations.

Remark 4.2. Solving

(a + n + 1)(z − 1)y2 + ((a + n + 1)(2 − z) + bz − c)y + (c − a − n − 1) = 0 (4.16)

produces y1, y2 ∈ C[[n−1]] such that Lbase = (τ − y1)♦(τ − y2). The discriminant of Equation (4.16),

up to one equivalence, is z2 and the case of z = 0 is already excluded (the hypergeometric series is

reduced to the constant 1) thus y1
1
/ y2 and, up to interchanging y1, y2, we have

y1

y2
= 1 − z +

(1 − z)(c − 2b)
n

+ o
(
n−2

)
y2

y1
=

1
1 − z

+
2b − c

(1 − z)n
+ o

(
n−2

) (4.17)

Theorem 4.2. Let L = (τ− y1)♦(τ− y2). There exist ỹ1, ỹ2 ∈ C[[n−1]] with y1
2
∼ ỹ1 and y2

2
∼ ỹ2 such

that L = LCLM(τ − ỹ1, τ − ỹ2).
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Proof. Let L̃ 2
∼ (τ − y1)(τ − y2). Hensel lifting gives yk

1, y
k
2 ∈ C[[n−1]] such that L̃ k

∼ (τ − yk
1)(τ − yk

2)

for k = 3, 4, 5, . . .

Let ỹ2 = lim
k→∞

yk
2.

We also have L̃ 2
∼ (τ− y1)♦(τ− y2) = (τ− y2)♦(τ− y1) 2

∼ (τ− y2)(τ− y1) by Lemma 4.4. Hensel

lifting now gives ŷk
1, ŷ

k
2 ∈ C[[n−1]] such that L̃ k

∼ (τ − ŷk
2)(τ − ŷk

1) for k = 3, 4, 5, . . .

Let ỹ1 = lim
k→∞

ŷk
1. �

Lemma 4.5. Let L, ỹ1, ỹ2 be as in Theorem 4.2. If there exists a gauge transformation from L to

Lbase then applying the gauge transformation to τ− ỹ1 and τ− ỹ2 gives z̃1, z̃2 ∈ C[[n−1]] with z̃1
2
/ z̃2

such that

L = LCLM(τ − z̃1, τ − z̃2)

and thus

L 2
∼ (τ − z̃1)♦(τ − z̃2)

The proof of the Lemma follows from Lemma 4.4 and from y1
1
/ y2 (see Remark 4.2).

Theorem 4.3. Let

• y1, y2, z1, z2 ∈ C[[n−1]].

• Lbase = LCLM(τ − y1, τ − y2)

• there exists a gt-transformation Lbase → L = LCLM(τ − z1, τ − z2)

•
y1
y2

= c0 + c1
n + o

(
n−2

)
Then, up to multiplicative inverse,

y1

y2
7→

z1

z2
= c0 +

c1 + kc0

n
+ o

(
n−2

)
, k ∈ Z

under gt-transformations.

Proof. A term product L⊗ (τ−a) is equal to LCLM(τ− z1a, τ− z2a) and so z1/z2 is invariant under

term products. The proof is now reduced to considering z1/z2 under gauge transformations where

τ − y1
GE
∼ τ − z1 and τ − y2

GE
∼ τ − z2.
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Consider the gauge transformation r0 + r1τ with r0, r1 ∈ C(n) sending u(n) → v(n) where

u(n + 1)−g(n)u(n) = 0 and v(n + 1)−h(n)v(n) = 0. Note that g(n), h(n) ∈ C[[n−1]]. Let ĝ(n) ∈ C(n)

with ĝ(n) 2
∼ g(n) and substitute:

v(n) = r0(n)u(n) + r1(n)u(n + 1) and v(n + 1) = r0(n + 1)u(n + 1) + r1(n + 1)u(n + 2)

into

v(n + 1) − h(n)v(n) = 0

and solve for h(n):

h(n) =
g(n)(r0(n + 1) + r1(n + 1)g(n + 1))

r0(n) + r1(n)g(n)
2
∼ g(n)

r0(n + 1) + r1(n + 1)ĝ(n + 1)
r0(n) + r1(n)ĝ(n)

2
∼ g(n)

τ(s(n))
s(n)

, s(n) ∈ C(n) (4.18)

and so, up to interchanging y1, y2:

y1
2
∼ z1

s1

τ(s1)
= z1

(
1 +

k1

n
+ o

(
n−2

))
, k1 ∈ Z

y2
2
∼ z2

s2

τ(s2)
= z2

(
1 +

k2

n
+ o

(
n−2

))
, k2 ∈ Z

thus,
y1

y2

2
∼

z1

z2

(
1 +

k
n

+ o
(
n−2

))
, k = k1 − k2

and the conclusion follows. �

Note, from the right hand sides of Equations (4.17), that the integer shifts b 7→ b + k, c 7→ c + k

or b 7→ b − k, c 7→ c − k send c1 → c1 + kc0, i.e. in practice, other than realizing that b, c can be

shifted by an integer in this step, we may disregard k when searching for b, c

Recall that L̃ = (ã + n + 1)(z̃ − 1)τ2 + ((ã + n + 1)(2 − z̃) + b̃z̃ − c̃)τ + (c̃ − ã − n − 1).

Let y1, y2 be the solutions of (ã+n+1)(z̃−1)y2 + ((ã+n+1)(2− z̃)+ b̃z̃− c̃)y+ (c̃− ã−n−1) = 0.

Let
{
s, 1

s

}
=

{
y1
y2
, y2

y1

}
and calculate their series expansions in C[[n−1]]:{

s,
1
s

}
=

{
1 − z̃ +

(c̃ − 2b̃)(1 − z̃)
n

+ o
(
n−2

)
,

1
1 − z̃

+
2b̃ − c̃

(1 − z̃)n
+ o

(
n−2

)}
For [s1, s2] = [s, 1

s ] and [s1, s2] = [ 1
s , s] we calculate:

• 1 − coeff(s1, n0) =


1 − (1 − z̃) = z̃

1 −
1

1 − z̃
=

z̃
z̃ − 1
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• 1
2

(
c +

coeff(s2,n−1)
coeff(s2,n0)

)
=


1
2

(
c + (c̃ − 2b̃)

)
1
2

(
c + (2b̃ − c̃)

)
Giving us two subcases for each of Case 1a and Case 1b:

Case 1a:



a = ã + j1

b = c̃ − b̃ + j2/2

c = c̃ + j3

z = z̃/(z̃ − 1)

or



a = ã + j4

b = b̃ + j5/2

c = c̃ + j6

z = z̃

with ji ∈ Z.

Case 1b:



a = ã − c̃ + k1

b = −b̃ + k2/2

c = −c̃ + k3

z = z̃/(z̃ − 1)

or



a = ã − c̃ + k4

b = b̃ − c̃ + k5/2

c = −c̃ + k6

z = z̃

with ki ∈ Z.

(Note that an integer shift of parameters a, b, or c is just a g-transformation and so we need

only be concerned with the half-integer shifts, i.e. we need to check both b̃ and b̃ + 1/2.)

Remark 4.3. Theorem 4.4 shows that the map

abc
 7→

a + 1 − c
b + 1 − c

2 − c

 sends L̃ from Equation (4.12) to

a term product of L̃ and so

abc
 7→

a − c
b − c
−c

 sends L̃ to a gt-transformation of L̃. Thus working in

either case 1a or case 1b is sufficient.

4.3 Algorithm Find Independent Solutions

For the theorem below we exclude certain cases when considering f1(n) = 2F1

(
a+n b

c

∣∣∣ z) and

f2(n) =
Γ(a+n+1−c)

Γ(a+n) 2F1

(
a+n+1−c b+1−c

2−c

∣∣∣ z).
• If b ∈ {0,−1,−2, . . . } then Lbase is reducible (see Remark 4.1).

• If c = 1 then f1(n) = f2(n). The remaining cases of c ∈ Z are considered:

– If c ∈ {0,−1,−2, . . . } and b < {0,−1, . . . , c} then f1(n) is undefined.

(If c ∈ {0,−1,−2, . . . } and b ∈ {0,−1, . . . , c} then Lbase is reducible.)
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– If c ∈ {2, 3, 4, . . . } and b < {1, 2, . . . , c − 1} then f2(n) is undefined.

(If c ∈ {2, 3, 4, . . . } and b ∈ {1, 2, . . . , c − 1} then Lbase is reducible.)

Note: We did not consider cancellation with a + n because, for large enough n, there will still

be division by zero.

In Summary, if c < Z, z , 1, and b < [0,−1,−2, . . . ] then the theorem will provide two

independent solutions.

Theorem 4.4. Let f1(n) = 2F1

(
a+n b

c

∣∣∣ z) , f2(n) =
Γ(a+n+1−c)

Γ(a+n) 2F1

(
a+n+1−c b+1−c

2−c

∣∣∣ z). If f1(n), f2(n)

are defined1 and c, z , 1 then f1(n) and f2(n) are linearly independent solutions of Equation (4.12).

Proof. f1, f2 are seen to be solutions after application of Equation (4.2).

To prove linear independence, consider the Casoratian determinant, C, of { f1(n), f2(n)} :

C =

∣∣∣∣∣∣ f1(n) f2(n)
f1(n + 1) f2(n + 1)

∣∣∣∣∣∣ =
2F1

(
a+n b

c

∣∣∣ z) Γ(a + n + 2 − c) 2F1

(
a+n+2−c b+1−c

2−c

∣∣∣ z)
Γ(a + n + 1)

−

Γ(a + n + 1 − c) 2F1

(
a+n+1−c b+1−c

2−c

∣∣∣ z) 2F1

(
a+n+1 b

c

∣∣∣ z)
Γ(a + n)

Let r = dC
dz /C. Using contiguous relations we can simplify r to a+b+n+1−c

1−z . Let Ĉ = (1 − z)c−a−b−n−1

then Ĉ′/Ĉ = r = C′/C so C/Ĉ must be independent of z, hence

C = C|z=0Ĉ =
(1 − c)Γ(a + n + 1 − c)

Γ(a + n + 1)
(1 − z)c−a−b−n−1

From this form of C it is clear, for c, z , 1, that C , 0. (The case z = 1 defines a first order

recurrence equation and so f1 = f2 defines the solution space of L.) �

For a discussion on the use of the Casoratian determinant to check for linear independence in

the difference case see Appendix A in [7].

Definition 4.8. The Greatest Common Right Divisor of two operators, GCRD(L1, L2), is the

operator whose solution space is equal to V(L1) ∩ V(L2). It can be found with the right Euclidean

algorithm.

Definition 4.9. The Least Common Left Multiple of two operators, LCLM(L1, L2), is the operator

whose solution space is equal to V(L1) + V(L2). It can be found by solving C−linear equations.
1We need a + n + 1 − c and a + n < {0,−1,−2, . . . } so that the Γ functions are defined; see Proposition 4.1 for

conditions on mFn
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Algorithm Find Independent Solutions:

Input: Parameters a, b, c, z from Lbase = (a+n+1)(z−1)τ2+((a+n+1)(2−z)+bz−c)τ+(c−a−n−1) ∈

C[n][τ]

Output: Linearly independent solutions (given explicitly in Theorem 4.4).

1. Compute f2(n) from Theorem 4.4, if it exists (see explanation preceding theorem and the

conditions of the theorem).

2. Use identities (on both f1(n) and f2(n) simultaneously, if previous step was successful) to try

to obtain ‘nicer’ function(s) f̂i(n) (see Remark 4.4).

3. Return f̂1(n) and, if the first step was successful, f̂2(n).

Remark 4.4. We make minor efforts to return a ‘nicer’ output by trying Pfaff transformations (if

allowed) as well as trying shifts of ±1 and ±2 for each parameter repeatedly until we no longer

decrease character count (e.g. using Maple’s length command). Recall that any integer shift(s) of

the parameter(s) will be a gauge transformation as evidenced by the identities we use:

param shift identity : 2F1

(
a+n b

c

∣∣∣ z) =

a −1 −2a+az−2n+nz+2−z−bz+c
(z−1)(a+n−1) 2F1

(
a+n−1 b

c

∣∣∣ z) + −c+a+n−1
(z−1)(a+n−1) 2F1

(
a+n−2 b

c

∣∣∣ z)
a +1 −−2a+az−2n+nz−2+z−bz+c

1−c+a+n 2F1

(
a+n+1 b

c

∣∣∣ z) +
(z−1)(a+n+1)

1−c+a+n 2F1

(
a+n+2 b

c

∣∣∣ z)
b −1 b−1−a−n

b−1 2F1

(
a+n b−1

c

∣∣∣ z) + a+n
b−1 2F1

(
a+n+1 b−1

c

∣∣∣ z)
b +1 (a+n)(z−1)

b+1−c 2F1

(
a+n+1 b+1

c

∣∣∣ z) − c−a−n−b−1
b+1−c 2F1

(
a+n b+1

c

∣∣∣ z)
c −1 −

(c−1)(a+n+(b−c+1)z)
(a+n−c+1)(b−c+1)z 2F1

(
a+n b

c−1

∣∣∣ z) +
(c−1)(a+n)(1−z)

(a+n−c+1)(b−c+1)z 2F1

(
a+n+1 b

c−1

∣∣∣ z)
c +1 a+n

c 2F1

(
a+n+1 b

c+1

∣∣∣ z) − a+n−c
c 2F1

(
a+n b

c+1

∣∣∣ z)
z − (1 − z)−a−n

2F1

(
a+n c−b

c

∣∣∣ z
z−1

)
, z < [1,∞)

z − (1 − z)−b
2F1

(
c−a−n b

c

∣∣∣ z
z−1

)
, z < [1,∞)

The above identities were obtained from Equations (4.7)-(4.10), (4.3), and Lbase. The identities

for shifts of the parameters by ±2 are then easily obtained using Lbase.

Example 4.3. We input Lbase with parameters a, b, c, z = 3/2,−11/7,−6/5, 1/4. Before using these

identities the output, for k constant, is:

u(n) = k(4/3)n
(
−21(17 + 10n) 2F1

(
1/2+n 13/35

−1/5

∣∣∣ − 1/3
)
+

5(42n − 1) 2F1

(
3/2+n 13/35

−1/5

∣∣∣ − 1/3
))

(4.19)
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and after trying to find a nicer output:

u(n) = k 2F1

(
3/2+n −11/7

−6/5

∣∣∣ 1/4)
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CHAPTER 5

LIOUVILLIAN

Definition 5.1 (Definition 6 in [3]). Let L1, L2 ∈ C(n)[τ]. The symmetric product of L1 and L2 is

defined as the monic operator L ∈ C(n)[τ] of smallest order such that L(u1u2) = 0 for all u1, u2 ∈ S

with L1u1 = 0 and L2u2 = 0.

Notation. The symmetric square of L, denoted Ls2, will refer to the symmetric product of L and L

(i.e. with itself).

Liouvillian solutions are defined in [7] Section 3.2. For irreducible operators they are

characterized by the following theorem (see Propositions 31-32 in [4]).

Theorem 5.1. An irreducible k’th order operator L has Liouvillian solutions if and only if its

companion matrix is gauge equivalent to one that can be written as

M =


0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
−a 0 . . . 0 0

 , a ∈ C(n)

In other words, L is gauge equivalent to τk + a.

Remark. u2, uv will both refer to the term by term commutative product.

Lemma 5.1. Let L = a2τ
2 + a1τ + a0, ai ∈ C[n], a0, a2 , 0.
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1. If a1 , 0 then

Ls2 = c3τ
3 + c2τ

2 + c1τ + c0,

where: c3 = a1(n)a2(n + 1)2a2(n)

c2 = a1(n + 1)a2(n)(−a1(n + 1)a1(n) + a0(n + 1)a2(n))

c1 = −a0(n + 1)a1(n)(−a1(n + 1)a1(n) + a0(n + 1)a2(n))

c0 = −a1(n + 1)a0(n + 1)a0(n)2

(5.1)

2. If a1 = 0 then

Ls2 = a2
2τ

2 − a2
0 (5.2)

Ls2 has order:

 2, if a1 = 0

3, if a1 , 0

Proof. 1. (For the case a1 = 0 we solve Lu(n) = 0 for u(n + 2) and square both sides.)

For the case a1 , 0 we solve Lu(n + 1) = 0 for u(n + 3), expand its square, and for any term

not containing u(n + 2)2 make the substitution u(n + 2) = −a1
a2

u(n + 1) − a0
a2

u(n) if possible.

Ls2(u(n)2) (from Equation (5.1)) is obtained after the further substitution

u(n)u(n + 1) =
u(n + 2)2 − a(n)2u(n + 1)2 − b(n)2u(n)2

2a(n)b(n)
(5.3)

(Equation (5.3) comes from the expansion of u(n + 2)2 = (−a(n)u(n + 1) − b(n)u(n))2.)

If Lu1 = 0, Lu2 = 0 then it is easy to check that u1u2 satisfies Equation (5.1) (or Equation

(5.2) if a1 = 0). To prove that Equation (5.1) respectively (5.2) is indeed Ls2 we need to

prove that their orders are minimal, i.e. we need to prove the second part of the Lemma.

2. Let a1 = 0. We can find u1, u2 ∈ C
N such that for some q ∈ N and q larger than any integer

root of a0an :(
u1(q) = 0 u1(q + 1) = 1
u2(q) = 1 u2(q + 1) = 0

)
With these u1, u2 we see that u2

1, u
2
2 are linearly independent and so V(Ls2) ⊆ V(a2

2τ
2 − a2

0) is

an equality.

Let a1 , 0. For u1, u2 ∈ V(L) :

L = r

u1(n) u1(n + 1) u1(n + 2)
u2(n) u2(n + 1) u2(n + 2)

1 τ τ2

 , r =
a2

M3,3
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(M3,3 is the (3, 3) minor.)

After expansion and factoring it can be seen that the following determinant equals a0a1a2 , 0

up to some nonzero constant:

D =

∣∣∣∣∣∣∣∣
u1(n)2 u1(n + 1)2 u1(n + 2)2

u2(n)2 u2(n + 1)2 u2(n + 2)2

u1(n)u2(n) u1(n + 1)u2(n + 1) u1(n + 2)u2(n + 2)

∣∣∣∣∣∣∣∣ (5.4)

Therefore u2
1, u

2
2, u1u2 are C−linearly independent which implies that the order of Ls2 is at

least 3 and hence equal to 3.

�

Remark. The proof of the below Lemma illustrates computations in Step 4 of the following

Algorithm. Using difference modules the proof of a more general lemma follows from the

isomorphism between the difference modules defined by L, L̂.

Lemma 5.2. Let a , 0. Given a gauge transformation from L = τ2 + a(n)τ + b(n) to L̂ = τ2 + r(n)

one can compute a difference operator mapping V(Ls2) onto V(L̂s2).

Proof. Let u(n) ∈ V(L) and v(n) = g0(n)u(n) + g1(n)u(n + 1) ∈ V(L̂)

then v(n)2 = g0(n)2u(n)2 + 2g0(n)g1(n)u(n)u(n + 1) + g1(n)2u(n + 1)2.

The substitution (obtained by squaring u(n + 2) = −a(n)u(n + 1) − b(n)u(n)):

u(n)u(n + 1) =
u(n + 2)2 − a(n)2u(n + 1)2 − b(n)2u(n)2

2a(n)b(n)

yields:

v(n)2 =
g0(n)(−g1(n)b(n) + g0(n)a(n))

a(n)
u(n)2

−
g1(n)(−g1(n)b(n) + g0(n)a(n))

b(n)
u(n + 1)2 +

g0(n)g1(n)
a(n)b(n)

u(n + 2)2 (5.5)

�
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Algorithm Find Liouvillian:

Input: L ∈ C[n][τ] a second order, irreducible, homogeneous recurrence operator.

Let L = a2(n)τ2 + a1(n)τ + a0(n).

Output: A two-term recurrence operator, L̂, with a gauge transformation from L̂ to L, if it exists.

1. If a1 = 0 then return L̂ = L and stop.

2. Let u(n) be an indeterminate function. Impose the relation Lu(n) = 0, i.e.

u(n + 2) = −
1

a2(n)
(a0(n)u(n) + a1(n)u(n + 1)) (5.6)

3. Let R be a non-zero rational solution of Ls2 ⊗ (τ + 1/ det(L)), if such a solution exists, else

return ‘FAIL’ and stop.

4. Let g be an indeterminate and let v(n) = gu(n) + u(n + 1). Compute d0, d1, d2 ∈ C(n)[g] such

that

v(n)2 = d0u(n)2 + d1u(n + 1)2 + d2u(n + 2)2 (5.7)

(To compute d0, d1, d2 first substitute Equation (5.6) into Equation (5.7).)

5. Let S denote a non-zero solution of τ + det(L), so τ(S ) = − det(L)S . Then u(n)2 and RS

satisfy Ls2, see steps 2 and 3. Substitute the following

u(n)2 = RS

u(n + 1)2 = −R(n + 1) det(L)S

u(n + 2)2 = R(n + 2)τ(det(L)) det(L)S

(5.8)

into Equation (5.7) to get v(n)2 = S A for some A ∈ C(n)[g].

6. Solve A = 0 for g and choose one solution. A is a quadratic equation so this solution is in

C(n) or in a quadratic extension of C(n). If g < C(n) then return an error message and stop.

7. Return L̂ as well as the transformation V(L̂)→ V(L) :

L̂ = τ2 + b(n)
τ(δ)
δ

(5.9)

u(n) =
1
δ

((g(n + 1) − a(n))v(n) − v(n + 1)) (5.10)

where a(n) = a1/a2, b(n) = a0/a2, δ = g(n)g(n + 1) − g(n)a(n) + b(n), and v(n) denotes a

solution of L̂.
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Idea: Assume that L = τ2 +a1τ+a0, a1 , 0 is Liouvillian and irreducible, then there exists a gauge

transformation L → L̂ for some L̂ of the form τ2 + r (see Theorem 5.1). dim(V(Ls2)) = 3 and

dim(V(L̂s2)) = 2 so the transformation Ls2 → L̂s2 has a 1−dimensional kernel corresponding

to a right hand factor of Ls2 (i.e. Ls2 has a hypergeometric solution, namely RS in Step 5).

This gives us the gauge transformation from V(L) to V(L̂). In order that Step 3 only needs to

search for a solution ∈ C(n) (which is easier than computing a more general hypergeometric

solution) we work with the term product of Ls2 and τ− 1/ det(L) and use Theorem 5.2. The gauge

transformation given in Step 7 was found by computing the inverse of the gauge transformation

v(n) = gu(n) + u(n + 1) introduced in Step 4 (where the value of g is computed in Steps 5 and 6).

Example 5.1. Consider Sloane sequence A081123 = floor(n/2)!. Algorithm Find Liouvillian will

return the relationship A081123(n) = 2
n−1v(n) + 2

nv(n + 1) for a v(n) ∈ V(τ2 −
(n+1)2

2(n−1) ).

5.1 Algorithm Step 3

Let L be from Input and let L̂ be a two-term operator.

Remark 5.1. A t-transformation of a two-term operator is again a two-term operator. It follows

that if there exists a gt-transformation from L to L̂ then we may disregard the t-transformation, i.e.

we need only search for a gauge transformation.

Lemma 5.3. Let A1, A2,Gs ∈ C(n)[τ], ord(A1) = 3, ord(A2) = 2, and assume that Gs(V(A1)) =

V(A2), i.e. V(A1)
Gs
� V(A2). Then A1 has a first order right hand factor, as well a a second order

left hand factor that is gauge equivalent to A2.

Proof. V(GCRD(A1,Gs)) = V(A1) ∩ V(Gs) = ker(Gs : V(A1) � V(A2)) which has dimension

3−2 = 1 and so A1 has a first order right hand factor, L1 = GCRD(A1,Gs). Write A1 = L2L1, Gs =

G̃L1 then G̃ : V(L2)→ V(A2) shows that L2 is gauge equivalent to A2. �

(We now substitute Ls2, L̂s2 for A1, A2, respectively, from the preceding Lemma.)

Theorem 5.2. Let L̂ = r2τ
2 + r0 and let L = a2τ

2 + a1τ + a0, ai , 0. Suppose there exists a

gauge transformation G : V(L) → V(L̂) then by Lemma 5.2 there is Gs : V(Ls2) � V(L̂s2). Let

L1 = GCRD(Gs, Ls2) (which has order 1 by Lemma 5.3) and write Ls2 = L2L1. Then

det(L1)
SE
≡ − det(L)
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Proof. 1. det(L)
SE
≡ det(L̂), see Lemma 3.1.

2. det(Ls2)
SE
≡ det(L)3, see the formula for Ls2 in Lemma 5.1.

3. det(L̂s2) = − det(L̂)2 SE
≡ − det(L)2, see Lemma 5.1 with a1 = 0 and Item 1, respectively.

4. det(Ls2) = det(L2L1)
SE
≡ det(L2) det(L1).

5. L2 is gauge equivalent to L̂s2, see Lemma 5.3.

6. det(L2)
SE
≡ det(L̂s2) = − det(L̂)2 SE

≡ − det(L)2, see Items 5,3,1.

7. det(L1)
SE
≡ − det(L), see Items 4,2,6.

�

Corollary 5.1. Let L, L̂,G be as in Theorem 5.2 so that Ls2 = L2L1 then there exists a rational

solution of Ls2 ⊗ (τ + 1/ det(L)).

Step 3 computes this rational solution.

5.2 Algorithm Step 4

Lemma 5.4. If T1 : g1τ + g0 with g1 , 0 defines a gauge transformation from L to a two-term

operator then T2 : τ + g0/g1 is also a gauge transformation from L to a two-term operator.

The two transformations differ by the t-transformation u 7→ g1u and so the Lemma’s claim

follows from Remark 5.1. (The case g1 = 0 defines a t-transformation.)

5.3 Algorithm Step 5

Equation (5.7) defines the map Ls2 → L̂s2 and RS is in the kernel. (RS is the hypergeometric

solution of Ls2 that we computed using Corollary 5.1.)

5.4 Algorithm Step 6

It can be proven that if there exists a gauge transformation from L ∈ C(n)[τ] to an operator of

the form τ2 + ã where ã is algebraic over C(n) then there also exists a gauge transformation

G : L → L̃ = τ2 + a with G, L̃ ∈ C(n)[τ]. Note that if L ∈ C(n)[τ], C ⊂ C then an algebraic

extension of C may occur, see the following example.
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Example 5.2. L1 = τ2 − τ − (n2 + 1) and L2 = τ2 − (n + i)(n + 1 − i) are gauge equivalent with

L1 ∈ Q(n)[τ] and L2 ∈ Q(n)[τ,
√
−1]. Both 1

n−iτ + 1, which sends L2 to L1, and its inverse are

∈ C(n)[τ].
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CHAPTER 6

DATABASE SOLVER

Idea: The On-Line Encyclopedia of Integer Sequences (OEIS) maintained by Neil J. A. Sloane

(see [1]) contains more than 140, 000 sequences and gives many pieces of information about these

sequences such as references, formulas, related sequences, etcetera. When output is given in terms

of a sequence from Sloane’s database, e.g. for the sequence named A000085, the user will find in-

formation about this sequence at World-Wide Web URL www.research.att.com/∼njas/sequences/A000085.

We only use those that satisfy second order irreducible operators.

Algorithm Database: Try to solve in terms of a known sequence.

Input: L ∈ C[n][τ], a linear difference operator of order 2 and, optionally, a solution in CN of L.

Let L = a2(n)τ2 + a1(n)τ + a0(n)

Output: Solutions of the form H(n)(c0(n)u(n) + c1(n)u(n + 1)) such that

c0(n), c1(n),H(n + 1)/H(n) ∈ C(n), u(n) a sequence from the Sloane database (OEIS) if such a

solution exists.

1. Compute the p-curvature constants (see Definition 6.1) for a pre-determined number of

primes p and check for matches among representatives of all groupings of Sloane sequences.

2. For each match, L̂, compute the ratio (of the input to the potential match) of shift normalized

determinants until the following subitems are true (pass the first such match along or return

Fail if there are no matches):

(a) The ratio is a square in C(n) − {0}.

(b) There exists a gauge transformation from the input to L̂ ⊗ (τ ± r), where r is a square

root of the ratio (i.e. call Algorithm Find gt-Transformation).
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3. If input includes a solution (i.e. a difference equation with initial conditions defining a

sequence)

then check that the match is a Sloane sequence or a linear combination of two Sloane se-

quences (a second order difference equation has two linearly independent solutions/sequences).

If no such match exists then return ‘FAIL’

else return result with arbitrary constants.

6.1 Algorithm Step 1

Definition 6.1. The p-curvature1 of a matrix M is given by τp−1(M) · · · τ(M)M. The p-curvature of

a difference operator will refer to the p-curvature of its companion matrix M (see Definition 3.1).

Definition 6.2. For a kth order difference operator the p-curvature constant will refer to ak
k−1/a0

where the ai come from the characteristic polynomial, λk + ak−1λ
k−1 + · · ·+ a0λ

0, of the p-curvature

modulo p for each p of a predetermined set (in our case {2, 3, 5}).

Theorem 6.1. The characteristic polynomial (charpoly) of the p-curvature of a difference operator

modulo p is invariant under gauge transformations.

Proof. Let a gauge transformation of τ(Y) = MY with p-curvature M̃ be given by Ŷ = AY .

Then τ(Ŷ) = τ(A)τ(Y) = τ(A)MY = τ(A)MA−1Ŷ

and so the p-curvature after a gauge transformation is

τp(A)τp−1(M)τp−1(A−1)τp−1(A)τp−2(M) · · · τ(A−1)τ(A)MA−1 =

τp(A)τp−1(M)τp−2(M) · · · τ(M)MA−1 ≡

AM̃A−1 mod p

and therefore

charpoly
(
(AM̃)A−1

)
= charpoly

(
A−1AM̃

)
= charpoly

(
M̃

)
�

Theorem 6.2. The p-curvature constant is invariant under t-transformations.

1See [6] for more on the use of p-curvature
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Proof. Under a t-transformation Y 7→ Ŷ with τ(Y) = MY and p-curvature (of Y) M̃

M 7→ ατ(H)MH−1, H =

(
1 0
0 α

)
see Equation (3.6).

So the p-curvature after a t-transformation is

τp−1(α)τp(H)τp−1(M)τp−1(H−1)τp−2(α)τp−1(H)τp−2(M) · · · τ(H−1)ατ(H)MH−1 =

(α)pτ
p(H)τp−1(M)τp−2(M) · · · τ(M)MH−1 ≡

(α)pHM̃H−1 mod p

and therefore

charpoly
(
(α)pHM̃H−1

)
= charpoly

(
(α)pHH−1M̃

)
= charpoly

(
(α)pM̃

)
λk + (α)pak−1λ

k−1 + · · · + (α)k
pa0

�

The field of constants of Fp(n) under the automorphism T given by T f = τ( f )T is Fp(np − n)

([6]).

Remark 6.1. Since a shift is a gauge transformation, Theorem 6.1 tells us that the ai are constants

(i.e. invariant under the action of τ).

Coefficients of the characteristic polynomial of the p-curvature modulo p are in Fp(np−n). For

each equation/operator there will be some finite number of such p that give us trouble and so we

will use a few different primes p to better distinguish equations/operators. (We found that after

three primes the extra computation time was not worth the extra resolution gained.)

6.2 Algorithm Step 2

It is necessary to check both the positive and negative square roots because, in general, there is no

gauge transformation from L to L ⊗ (τ + 1). The term product performed in this step is sufficient

by Theorem 3.4.
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6.3 Algorithm Step 3

We search the Sloane database for sequences satisfying second order, irreducible, homogeneous,

recurrence equations and sequences satisfying third order equations that are the Least Common

Left Multiple of such a second order equation and a first order equation. The results are

separated into collections such that there exists a gt-transformation between any two members

of a collection. One or two representatives of each collection are chosen depending on whether,

after an appropriate gt-transformation, we have one or two linearly independent sequences in S

(see Definition 2.6).
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