Closed Form Solutions

Mark van Hoeij¹

Florida State University

ISSAC 2017

¹Supported by NSF 1618657

What is a closed form solution?

Example: Solve this equation for y = y(x).

$$y' = \frac{4 - x^3}{(1 - x)^2} e^x$$

Definition

A **closed form** solution is an expression for an **exact** solution given with a **finite amount of data**.

This is not a closed form solution:

$$y = 4x + 6x^2 + \frac{22}{3}x^3 + \frac{95}{12}x^4 + \cdots$$

because making it exact requires infinitely many terms.

The Risch algorithm finds a closed form solution:

$$y = \frac{2 + x^2}{1 - x} e^x$$

Risch algorithm (1969)

Previous slide: A **closed form** solution is an **expression** for an exact solution with only a finite amount of data.

Risch algorithm finds (if it exists) a **closed form** solution *y* for:

$$y' = f$$

To make that well-defined, specify **which expressions** are allowed:

Define $E_{\rm in}$ and $E_{\rm out}$ such that:

- Any $f \in E_{in}$ is allowed as input.
- Output: a solution iff \exists solution $y \in E_{out}$.

```
Risch: E_{\mathrm{in}} = E_{\mathrm{out}} = \{ \text{elementary functions} \}
= \{ \text{expressions with } \mathbb{C}(x) \text{ exp log } + - \cdot \div \\ \text{composition and algebraic extensions} \}.
```

Liouvillian solutions

Kovacic' algorithm (1986)

Solves homogeneous differential equations of order 2

$$a_2y'' + a_1y' + a_0y = 0$$

(Risch: inhomogeneous equations of order 1)

2 It finds solutions in a larger class:

$$E_{\text{out}} = \{\text{Liouvillian functions}\} \supseteq \{\text{elementary functions}\}$$

but it is more restrictive in the input:

$$a_0,a_1,a_2 \in \{ \text{rational functions} \} \subsetneq \{ \text{elementary functions} \}$$

Remark

∃ common functions that are not Liouvillian.

Allow those as closed form \infty need other solvers.

A non-Liouvillian example

Let

$$y := \oint_{\gamma} \exp\left(\frac{t^2 + x + 1}{x - t}\right) \frac{t}{x^2 + x + 1} dt$$

Zeilberger's algorithm \rightsquigarrow an equation for y:

$$(x^4 - x)y'' + (4x^4 + 2x^3 - 3x^2 - 7x + 1)y' + (6x^3 - 9x^2 - 12x + 3)y = 0$$

Closed form solutions were thought to be rare.

But (for order 2) **telescoping equations** often (always?) have closed form solutions:

$$\exp(-2x) \cdot \left(I_0 \left(2\sqrt{x^2 + x + 1} \right) - \frac{x + 1}{\sqrt{x^2 + x + 1}} I_1 \left(2\sqrt{x^2 + x + 1} \right) \right)$$

$$\exp(-2x) \cdot \left(K_0 \left(2\sqrt{x^2 + x + 1} \right) + \frac{x + 1}{\sqrt{x^2 + x + 1}} K_1 \left(2\sqrt{x^2 + x + 1} \right) \right)$$

Globally bounded equations

So-called **globally bounded** equations are common in:

- combinatorics (Mishna's tutorial)
- physics (Ising model, Feynman diagrams, etc.)
- Period integrals, creative telescoping, diagonals.

Conjecture

Globally bounded equations (of order 2) have closed form solutions.

In other words: Closed form solutions are common.

Local to global strategy

Risch: Given elementary function *f* , solve:

$$y' = f$$

 $\{\text{poles of } y\} \subseteq \{\text{poles of } f\} = \text{known}$

Kovacic: Given polynomials $a_0, a_1, a_2 \in \mathbb{C}[x]$, solve:

$$a_2y'' + a_1y' + a_0y = 0$$

 $\{\text{poles of }y\}\subseteq \{\text{roots of }a_2\}=\text{known}$

Local to global strategy

 $\{poles\ of\ y\} + \{terms\ in\ polar\ parts\}\ (+\ other\ data) \ \leadsto \ y$

Local data: Classifying singularities

Example:

$$y = \exp(r)$$
 where $r = \frac{1}{x^3} + \frac{5}{x^2} + \frac{3}{x-1} + 5 + 7x$

y has **essential singularities** at the poles of r.

Definition

 $y_1, y_2 \neq 0$ have an **equivalent singularity** at x = p when y_1/y_2 is meromorphic at x = p.

Equivalence class of
$$y$$
 at $x = 0$, $x = 1$, $x = \infty$ (local data)

 \Rightarrow Polar part of r at $x = 0$, $x = 1$, $x = \infty$ (local data)

 $\Rightarrow \frac{1}{x^3} + \frac{5}{x^2} = \frac{3}{x-1}$ 7 x (local data)

 $\Rightarrow r$ (up to a constant term) (global data)

 $\Rightarrow y$ (up to a constant factor) (global data)

Reconstructing solutions from local data

Recall: y_1, y_2 have **equivalent singularity** at x = p if y_1/y_2 is meromorphic at x = p.

Hence:

$$y_1,y_2$$
 equivalent at every $p\in\mathbb{C}\bigcup\{\infty\}$ \iff y_1/y_2 meromorphic at every $p\in\mathbb{C}\bigcup\{\infty\}$ \iff $y_1/y_2\in\mathbb{C}(x)$

Hence:

{Eq. class of y at all p} \iff y up to a rational factor

For a differential equation *L* can compute:

{generalized exponents of L at p} \approx {Eq. classes of solutions}

Choose the right one at each $p \rightsquigarrow$ a solution (up to \approx)

Example: generalized exponents

Example: let L have singularities $\{0,3,4\}$, order 2, and solutions:

$$y_1 = (x^4 - 2x + 2) \cdot \exp\left(\int \frac{e_{0,1}}{x} + \frac{e_{3,1}}{x - 3} + \frac{e_{4,1}}{x - 4}\right)$$
$$y_2 = (x^3 + 3x - 7) \cdot \exp\left(\int \frac{e_{0,2}}{x} + \frac{e_{3,2}}{x - 3} + \frac{e_{4,2}}{x - 4}\right)$$

where $e_{p,i} \in \mathbb{C}[\frac{1}{x-p}]$ encodes the **polar part** $\frac{e_{p,i}}{x-p}$ at x=p.

These $e_{p,i}$ are the **generalized exponents** of L at x=p and can be computed from L:

$$E_0 = \{e_{0,1}, e_{0,2}\}, \quad E_3 = \{e_{3,1}, e_{3,2}\}, \quad E_4 = \{e_{4,1}, e_{4,2}\}$$

To find y_1 we need to **choose the correct element** of each E_p .

The example has $2^3 = 8$ combinations.

One combination $\rightsquigarrow y_1$, another $\rightsquigarrow y_2$, other six \rightsquigarrow nothing.

Can reduce #combinations (e.g. Fuchs' relation)

Generalized exponents → hyper-exponential solutions:

Let
$$a_0, \ldots, a_n \in \mathbb{C}[x]$$
 and $L(y) := a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$.

Hyper-exponential solution: $y = \exp(\int r)$ for some $r \in \mathbb{C}(x)$.

```
{generalized exponent of such y at all singularities p of L} \rightsquigarrow
```

y up to a **polynomial** factor (generalized exponent \approx eq. class)

Algorithm hyper-exponential solutions:

- Compute generalized exponents $\{e_{p,1}, \ldots, e_{p,n}\}$ at each singularity $p \in \mathbb{C} \bigcup \{\infty\}$ of L.
- **2** For each combination $e_p \in \{e_{p,1}, \ldots, e_{p,n}\}$ (for all p) compute polynomial solutions of a related equation.

Same strategy for difference equation

Combine **generalized exponents** \rightsquigarrow hyper-exponential solutions.

To do the same for **difference equations** we need the difference analogue of generalized exponents:

Difference case: $p = \infty$ is similar to the differential case.

But a finite singularity is not an element $p \in \mathbb{C}$.

Instead it is an element of \mathbb{C}/\mathbb{Z} because

$$y(x)$$
 singular at $p \iff y(x+1)$ singular at p is only true for $p=\infty$.

(1997): Generalized exponents

(1999): Difference case analogue:

generalized exponents at $p=\infty$ and

valuation growths at $p \in \mathbb{C}/\mathbb{Z}$

→ Algorithm for hypergeometric solutions.

Closed form solutions of linear differential equations:

Goal: define, then find, **closed form solutions** of:

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$$
 with $a_0, \dots, a_n \in \mathbb{C}(x)$. (1)

The **order** is n (we assume $a_n \neq 0$).

Consider closed form expressions in terms of functions that are:

- well known, and
- **② D-finite**: satisfies an equation of form (1).

D-finite of order 1 = hyper-exponential function.

Well known D-finite functions of order 2:

- Airy functions, Bessel functions, Kummer, Whittaker, . . .
- Gauss hypergeometric function ${}_2F_1(a,b;c\mid x)$ Klein's theorem: Liouvillian solutions are ${}_2F_1$ expressible.

Bessel type solutions:

Idea for constructing a Bessel-solver:

- Bessel functions have an essential singularity at $x = \infty$.
- Just like the function $\exp(x)$.
- So the strategy for hyper-exponential solutions may work for Bessel-type solutions as well.
- It also works for Airy, Kummer, Whittaker, and hypergeometric ${}_pF_q$ functions if $p+1 \neq q$.

Later: Other strategies for Gauss hypergeometric ${}_{2}F_{1}$ function (to solve **globally bounded** equations of order 2).

Question: Which Bessel expressions should the solver look for? Which Bessel expressions are D-finite?

Bessel type closed form expressions

Let $B_{\nu}(x)$ be one of the Bessel functions, with parameter ν .

Bessel type closed form expressions should allow:

- algebraic functions
- exp and log
- composition
- field operations
- differentiation and integration
- and of course $B_{\nu}(x)$.

Example: $B_0(\exp(x))$ is a Bessel type closed form expression but is **not relevant** for (1) since it is **not D-finite**.

Question: which Bessel type expressions are D-finite?

D-finite functions:

A function y = y(x) is **D-finite of order** n if it satisfies a differential equation of order n with rational function coefficients.

Operations that don't increase the order:

- **1** $y(x) \mapsto y(f)$ for some $f \in \mathbb{C}(x)$ called **pullback function**.
- **③** $y \mapsto \exp(\int r) \cdot y$ for some $r \in \mathbb{C}(x)$.

Operations that can increase the order:

- Same as (1),(2),(3) but with algebraic functions f, r_i , r.

Have algorithms to recover any combination of: (2), (3), (5), and part of (6).

Bessel type solutions of second order equations

Let $B_{\nu}(x)$ be one of the Bessel functions.

 $B_{\nu}(\sqrt{x})$ is D-finite of order 2. Transformations (1), (2), (3) \rightsquigarrow

$$\exp(\int r) \cdot \left(r_0 \cdot B_{\nu}(\sqrt{f}) + r_1 \cdot B_{\nu}(\sqrt{f})'\right) \tag{2}$$

is D-finite of order 2 for any $r, r_0, r_1, f \in \mathbb{C}(x)$.

Theorem (Quan Yuan 2012)

Let k be a subfield of \mathbb{C} and let L be a linear homogeneous differential equation over k(x) of **order 2**.

If \exists solution of form (2) with algebraic functions r, r_0, r_1, f then \exists solution with rational functions $r, r_0, r_1, f \in k(x)$.

Bessel-type solutions of higher order equations:

 \rightarrow Add transformations (4),(5),(6).

Finding Bessel type solutions

$$a_2y'' + a_1y' + a_0y = 0$$
 where $a_0, a_1, a_2 \in \mathbb{C}[x]$.

Goal: Find Bessel-type solutions.

Idea: Recover the pullback function f in transformation (1) from data that is **invariant** under transformations (2),(3).

Hyper-exponential solutions:

Generalized exponents \rightsquigarrow {polar parts of f} \rightsquigarrow f

Bessel-type solutions:

Generalized exponents \rightsquigarrow { $\lceil half \rceil$ of terms of polar parts of f} \rightsquigarrow need **more data** to find f.

More data: regular singularities \leadsto roots of order $\notin \operatorname{denom}(\nu) \cdot \mathbb{Z}$

Combine data $\rightsquigarrow f$ except in one case: $denom(\nu) = 2$ that "happens" to be solvable with Kovacic

Local to global strategy for difference equations

Use local data that is **invariant** under the difference analogue of transformations (2),(3):

- Giles Levy (Ph.D 2009)
- Yongjae Cha (Ph.D 2010)

Example: oeis.org/A000179 (Ménage numbers)

Recurrence operator:

$$(\tau+1)\circ (n\tau^2-(n^2+2n)\tau-n-2)$$

where τ is the **shift-operator**.

solver
$$\rightsquigarrow c_1 \cdot n \cdot I_n(-2) + c_2 \cdot n \cdot K_n(2) + c_3 \cdot \epsilon(n)$$

where $I_n(x)$ and $K_n(x)$ are **Bessel** functions and $\epsilon(n)$ is a complicated expression that converges to 0 as $n \to \infty$.

Result:

A000179(n) = round
$$\left(\frac{2n}{e^2} \cdot K_n(2)\right)$$
 (for $n > 0$)

$_2F_1$ -type solutions

The Gauss hypergeometric function is:

$$_{2}F_{1}\left(\begin{array}{c|c} a,b \\ c \end{array} \middle| x\right) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}n!} x^{n}$$

where
$$(a)_n = a \cdot (a+1) \cdot \cdot \cdot (a+n-1)$$
.

If L(y) = 0 is a **globally bounded** equation of order 2 then it conjecturally has algebraic or ${}_{2}F_{1}$ -type solutions:

$$y = \exp(\int r) \cdot \left(r_0 \cdot {}_2F_1 \left(\begin{array}{c} a, b \\ c \end{array} \middle| f \right) + r_1 \cdot {}_2F_1 \left(\begin{array}{c} a, b \\ c \end{array} \middle| f \right)' \right)$$

Problem: The local to global strategy:

invariant local data \rightsquigarrow pullback function $f \rightsquigarrow y$

works for many functions, but ${}_{2}F_{1}$ can be problematic because f can be large even if the amount of local data is small.

$_2F_1$ example

Small equation:

$$4x(x^2 - 34x + 1)y'' + (8x^2 - 204x + 4)y' + (x - 10)y = 0$$

The smallest solution:

$$\frac{\sqrt{3-3x-\sqrt{x^2-34x+1}}}{x+1} \cdot {}_{2}F_{1} \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| f \right)$$

has

$$f = \frac{(x^3 + 30x^2 - 24x + 1) - (x^2 - 7x + 1)\sqrt{x^2 - 34x + 1}}{2(x+1)^3}$$

How to construct f from a **small amount** of **invariant local data**:

- Exponent-differences: $0, 0, \frac{1}{2} \pmod{\mathbb{Z}}$
- at the singularities: x = 0, $x = \infty$, $x^2 34x + 1 = 0$

$_2F_1$ -type solutions and related topics:

- Tingting Fang (Ph.D 2012)
 - Compute *D*-module automorphisms \rightsquigarrow descent. (also useful for non ${}_2F_1$ cases and for order > 2)
- Vijay Kunwar (Ph.D 2014)
 - Small f: Construct from invariant local data.
 - Large f: Build tables and use combinatorial objects (such as dessins d'enfant) to prove completeness.
- Erdal Imamoglu (Ph.D 2017)
 - If transformation (2) is not needed: quotient method.
 - Otherwise: Differential analogue of POLRED
 → simpler equations. Then use quotient method.
- Wen Xu (Ph.D in progress)
 - Multivariate generalizations of ${}_{2}F_{1}$ such as Appell F_{1} .

POLRED: Cohen and Diaz Y Diaz (1991)

Algebraic computations often lead to an equation:

$$f(x) = 0$$

for some irreducible $f \in \mathbb{Q}[x]$. Such f defines a number field:

$$K = \mathbb{Q}[x]/(f)$$

In many computations there is no reason to assume that f is the simplest polynomial that defines K.

Algorithm POLRED

Input: Irreducible $f \in \mathbb{Q}[x]$.

Output: Monic $g \in \mathbb{Z}[x]$ for the same field:

$$K \cong \mathbb{Q}[x]/(g).$$

with near-optimal size for max(abs(coefficients of g)).

Differential analogue of POLRED

The following equation came from lattice path combinatorics \implies **globally bounded**, conjecturally implies $\exists \ _2F_1$ -type solutions

$$\begin{aligned} &x(8x^2-1)(8x^2+1)(896x^5-512x^4+832x^3-127x^2-6x-12)\cdot y''\\ &-(8x^2+1)(71680x^7-36864x^6+46080x^5-3528x^4-5280x^3\\ &+155x^2+24x+36)\cdot y'+(1720320x^8-786432x^7+1078272x^6\\ &-183360x^5+48384x^4-12464x^3-4560x^2-928x-96)\cdot y=0 \end{aligned}$$

www.math.fsu.edu/~eimamogl/hypergeometricsols

Finds smaller equation by imitating POLRED:

- Take the differential module for this equation.
- Compute its integral elements.
- Construct integral element Y with **minimal degree** at infinity.
- Equation for *Y*:

$$x(8x^2-1)(8x^2+1) \cdot Y'' + (320x^4-1) \cdot Y' + 192x^3 \cdot Y = 0$$

Order > 2

If globally bounded equations of order 2 have ${}_2F_1$ -type solutions, what about higher order?

Univariate generalization of ${}_{2}F_{1}$: hypergeometric ${}_{p}F_{q}$ functions.

Globally bounded order 3 equations need not be ${}_pF_q$ -solvable. Can construct a **univariate** example from **multivariate** hypergeometric functions (substitution \rightsquigarrow **univariate**).

There are many multivariate hypergeometric functions. A **particle zoo** of functions?

Fortunately, they have been organized in terms of polytopes:

A-hypergeometric functions

Gelfand, Kapranov, Zelevinsky (1990) Beukers (ISSAC'2012 invited talk and recent papers)

Are globally bounded equations solvable in terms of such functions?

Order 3, Wen Xu (2017)

Trying to solve order > 2 equations in terms of such functions leads to many questions, for instance: how they relate to each other? Do we need reducible A-hypergeometric systems?

Example: The Horn G_3 function satisfies a bivariate system of order 3. In the **reducible case** a = 1 - 2b this function

$$G_3(1-2b,b|x,y)$$

satisfies the same bivariate differential equations as:

$$(1+3y)^{\frac{3}{2}b-1}y^{1-2b} \cdot {}_{2}F_{1}\left(\begin{array}{c} \frac{1}{3}-\frac{b}{2}\,,\,\frac{2}{3}-\frac{b}{2}\\ \frac{1}{2} \end{array} \right| \, \frac{(27xy^{2}-9y-2)^{2}}{4(1+3y)^{3}} \right)$$

Found similar formulas for other reducible order 3 systems.

Thank you