
Factoring polynomials and the knapsack problem.

Mark van Hoeij*

Department of Mathematics
Florida State University

Tallahassee, FL 32306-3027, USA
E-mail: hoeij@math.fsu.edu

For two decades the standard algorithm for factoring polynomials f with
rational coefficients has been the Berlekamp-Zassenhaus algorithm. The com-
plexity of this algorithm depends exponentially on n, where n is the number
of modular factors of f . This exponential time complexity is due to a combi-
natorial problem; the problem of choosing the right subsets of these n factors.
In this paper this combinatorial problem is reduced to a type of knapsack
problem that can be solved with lattice reduction algorithms. The result is a
practical algorithm that can factor polynomials that are far out of reach for
previous algorithms.

The presented solution to the combinatorial problem is different from previ-
ous lattice based factorizers; these algorithms avoided the combinatorial prob-
lem by solving the entire factorization problem with lattice reduction. This
led to lattices of large dimension and coefficients, and thus poor performance.
This is why lattice based algorithms, despite their polynomial time complexity,
did not replace Berlekamp-Zassenhaus as the standard method. That is now
changing; new versions of computer algebra systems such as Maple, Magma,
NTL and Pari have already switched to the algorithm presented here.

1. INTRODUCTION

Let f be a polynomial of degree N with integer coefficients,

f =
N∑
i=0

cix
i

where ci ∈ ZZ. Assume that f is square-free (no multiple roots), so the gcd
of f and f ′ equals 1. Until section 2.3 we will also assume that f is monic
(i.e. cN = 1). Let p be a prime number and let Fp = ZZ/(p) be the field
with p elements. Let ZZp denote the ring of p-adic integers. If we take a

* Partially supported by NSF grant DMS-9805983.

1

2 M. VAN HOEIJ

prime number p such that f mod p in Fp[x] is still square-free then one
can factor f in ZZp[x] by factoring f mod p in Fp[x] and applying Hensel
lifting.

f = f1f2 · · · fn
Here fi are monic irreducible polynomials in ZZp[x]. To distinguish between
factors in ZZp[x] and (what we are aiming to find) factors in ZZ[x] we will call
f1, . . . , fn the p-adic factors of f , and factors of f in Q[x] will be referred
to as a rational factors. Note that by Gauss’ lemma any monic rational
factor automatically has integer coefficients. Of course on a finite computer
we can only compute approximations Ca(fi) ∈ ZZ[x] of the p-adic factors fi
with some finite accuracy a. These approximations Ca(fi) are called the
modular factors. They are close to fi in the p-adic valuation norm. The
rational factors and p-adic factors (but not the modular factors) divide f
in characteristic 0.

Definition 1.1. Let c ∈ ZZp be a p-adic integer and let 0 ≤ b ≤ a
be integers. The symmetric remainder Ca(c) of c modulo pa is the unique
integer −pa/2 < Ca(c) ≤ pa/2 that is congruent to c modulo pa.
Now define Cab (c) as Ca−b((c − Cb(c))/pb). The definitions extend to poly-
nomials by applying Ca or Cab to each coefficient. Now Ca(c) is also called
an approximation of c with accuracy a, and Cab (c) is called a two-sided cut
of c.

If one thinks of c as an infinite power series in p then Ca(c) is what
remains after removing the i’th powers of p for all i ≥ a. To find Cab (c),
remove i’th powers of p for all i ≥ a as well as i < b, and divide by pb.

Now for every monic rational factor g ∈ ZZ[x] of f there exists a subset
of the p-adic factors S ⊆ {f1, f2, . . . , fn} such that

g =
∏
fi∈S

fi.

Conversely, if S is a subset of {f1, f2, . . . , fn} then g =
∏
fi∈S fi is a rational

factor of f if and only if g ∈ ZZ[x], so if and only if the coefficients of g
(which a priori are p-adic numbers) are integers.

The combinatorial problem is now the following: how to find the subsets
S of

{f1, f2, . . . , fn} (1)

for which the product of the elements of S is a polynomial with integer co-
efficients. The Berlekamp-Zassenhaus algorithm [14], implemented in most
computer algebra systems, essentially tries all subsets, so the complexity is
proportional to 2n.

THE KNAPSACK FACTORIZATION ALGORITHM 3

Given one such S, one may wonder how a computer can decide if the
product g has integer coefficients, considering the fact that only approxi-
mations of f1, f2, . . . , fn with finite accuracy a can be computed, which is
enough to find Ca(g) but not enough to find g. This problem is handled as
follows (see [14]). One computes a bound Blm, the Landau-Mignotte bound
[7], such that one can prove that the coefficients of any rational factor have
absolute values < Blm. Then take the integer a such that pa > 2Blm. Then
the following three are equivalent:

1) g ∈ ZZ[x],
2) g = Ca(g)
3) Ca(g) divides f in ZZ[x]

Note that 3) implies that the coefficients of Ca(g) are bounded by Blm. For
each of the 2n subsets S ⊆ {f1, f2, . . . , fn}, or 2n−1 subsets if one skips
complements of sets that have already been tried, one has to test if the
product Ca(g) modulo pa divides f in ZZ[x]. Using ideas from [1, 4], in
particular section 3.1.1 in [1], testing one such S can be done in a nearly
constant, extremely small, amount of time. However, because the number
of subsets to be tested is exponentially large, it is clear that the Berlekamp-
Zassenhaus algorithm has exponential time complexity. So at first sight one
might expect it to be slow. But in practice it works well because the com-
plexity is not exponential in the degree N , it is only exponential in the
number of p-adic factors n, a number that is usually much smaller than
N . In fact, it is almost always much faster than other algorithms such
as [6] and (see below) variations on [6], which is why computer algebra
systems use this “exponential time” algorithm. But in some applications,
such as resolvent polynomials for Galois group computations, n can indeed
be large. For such polynomials this algorithm really does take exponential
time.

The first polynomial time algorithm was given by Lenstra, Lenstra and
Lovász in [6]. Instead of taking all subsets of (1), they take only 1 element,
say f1, and then determine (if it exists, in other words if f is reducible) a
polynomial g ∈ ZZ[x] of degree1 N−1 such that f1 divides g. Then gcd(f, g)
is a non-trivial rational factor of f because f and g have a non-trivial p-
adic factor in common. This way the combinatorial problem and thus the
exponential complexity are avoided; instead of trying all combinations of
all p-adic factors f1, . . . , fn, the construction of a rational factor is based
on just one p-adic factor. This idea of constructing a rational factor from
just one local factor can be used for other factorization problems as well,
even for a non-commutative case such as differential operators, c.f. [3].

The method given by Lenstra, Lenstra and Lovász to construct g is as
follows. First they construct a lattice which contains a vector of which the

1this is slightly different from the original algorithm

4 M. VAN HOEIJ

entries are the coefficients of g, and then they apply their lattice reduction
algorithm, also called LLL algorithm. This strategy turned out to have
many applications in a wide variety of topics; the LLL algorithm solves
many problems that could not be handled before.

The method of [6] essentially computes the minimum polynomial over
Q of a p-adic root (a root of f1). There exist several variations, all of
which are polynomial time. One may replace a p-adic root by a complex
root [10], and/or replace LLL by PSLQ [2]. An interesting improvement
is given in [8], instead of one root, all complex roots are used, to compute
not a factor but an idempotent e. If e is a non-trivial idempotent then
gcd(e, f) is a non-trivial factor of f in ZZ[x].

Multiplying modular factors is a very fast way to construct rational fac-
tors. But in (variations of) [6], this construction is replaced by something
else, which explains why [14] performs much better in practice.

In this paper we will reduce the above mentioned combinatorial problem
to a different combinatorial problem (see theorem 2.1), a type of knapsack
problem that can be solved by lattice reduction algorithms such as [5, 6, 10,
11, 12, 13]. So instead of (as in [6]) using LLL to avoid the combinatorial
problem by constructing g in a completely different way, we will use LLL
to solve the combinatorial problem, and construct g in the same efficient
way as in [14], by multiplying a set S of p-adic factors. Lattice reduction
will only be used to find subsets of (1), and not to construct any other
information about g (such as coefficients of g).

This approach has two advantages. A subset S of (1) can be encoded
by a 0–1 vector, whereas a vector of coefficients of g can have much larger
entries. So the vectors we construct by LLL are much shorter, making it
easier to find them. A second advantage is that the dimension in the lattice
problem in our method is not proportional to N but to n which is usually
much smaller. These advantages mean that cost of the lattice reduction in
our method depends only on n, it does not depend on N , nor on the size
of the coefficients of f .

I would like to thank Arne Storjohann and the referees for pointing out
errors in a previous version of this paper.

2. THE KNAPSACK FACTORIZATION ALGORITHM

Definition 2.1. The i’th trace Tri(g) of a polynomial g is defined as
the sum of the i’th powers of the roots (counted with multiplicity) of g.

This is also called the i’th Newton sum (the name i’th trace refers to
the fact that if g is irreducible then Tri(g) is the trace of αi, taken over the

THE KNAPSACK FACTORIZATION ALGORITHM 5

field extension given by a root α of g). It is clear that

Tri(f1) + Tri(f2) = Tri(f1f2)

for any two polynomials f1, f2. Consider the polynomial

g = (x− x1)(x − x2) · · · (x− xd).

We can write g as

g = xd + Ẽ1x
d−1 + Ẽ2x

d−2 + · · ·+ Ẽdx
0

where Ẽi = (−1)iEi and Ei = Ei(x1, . . . , xd) is the i’th elementary sym-
metric polynomial in the variables x1, . . . , xd. The i’th power polynomial
Pi(x1, . . . , xd) is defined as xi1 + xi2 + . . . xid. Note that

Tri(g) = Pi.

It is a classical result in invariant theory that

Q[E1, . . . , Ed] = Q[P1, . . . , Pd]

in other words E1, . . . , Ed can be expressed as polynomials of P1, . . . , Pd
and vice versa. For example, E1 = P1 and E2 = (P 2

1 − P2)/2. As a
consequence

Lemma 2.1. A monic polynomial g of degree d has rational numbers as
coefficients if and only if Tri(g) ∈ Q for all i ∈ {1, . . . , d}.

We can use the first of the following two relations (the Newton identities)

Pi = −iẼi −
i−1∑
k=1

PkẼi−k iẼi = −Pi −
i−1∑
k=1

PkẼi−k (2)

to recursively compute Pi = Tri(g) for any monic polynomial g and any
positive integer i. Note that the second relation can be used to calculate
the coefficients Ẽi = (−1)iEi of g from the Tri(g). However, we will not
need this because once we find the right set S of p-adic factors we can also
calculate g by multiplication. Both conversions, Ẽi to Pi and vice versa,
can be done very quickly, especially since we are computing modulo pa.

Let Tr1..d = (Tr1, . . . ,Trd)T , so

Tr1..d(g) =


Tr1(g)
Tr2(g)

...
Trd(g)

 .

6 M. VAN HOEIJ

Lemma 2.2. Let f be a monic polynomial of degree N in ZZ[x] and let
d = bN/2c, the largest integer ≤ N/2. Let F be a field of characteristic 0,
such as the field of p-adic numbers. Then for any monic factor g ∈ F [x] of
f the following are equivalent

1. g ∈ ZZ[x]
2. Tr1..d(g) ∈ ZZd

3. Tr1..d(g) ∈ Qd

Proof. The Newton identities show that 1) implies 2). It is clear that 2)
implies 3). Now assume 3). If the degree of g is ≤ d then g must be in Q[x]
because of lemma 2.1. Then 1) follows from Gauss’ lemma. Now assume
that the degree of g is larger than d and assume 3). Take h = f/g, so f =
gh. Since f ∈ ZZ[x] we have Tr1..d(f) ∈ ZZd and by 3) we have Tr1..d(g) ∈ Qd.
Then Tr1..d(h) must also be in Qd because Tr1..d(f) = Tr1..d(g)+Tr1..d(h).
Now we can apply the lemma on h, so h ∈ ZZ[x] and hence g = f/h is in ZZ[x]
as well.

Every monic factor g in ZZp[x] of f can be encoded by a 0–1 vector
v = (v1 · · · vn) with vi ∈ {0, 1} as follows

g =
n∏
i=1

fvii . (3)

In lemma 2.2 the values of the vi were restricted to 0 and 1, but a similar
result can be given for any values of v1, . . . , vn ∈ ZZ:

Lemma 2.3. Let Vi = Tr1..N (fi) ∈ QNp . These vectors V1, . . . , Vn are
linearly independent over Qp. Furthermore, if v1, . . . , vn ∈ ZZ and we take
g =

∏n
i=1 fvii and V =

∑n
i=1 viVi then

g ∈ Q(x)⇐⇒ V ∈ QN ⇐⇒ V ∈ ZZN (4)

Proof. Let α1, . . . , αN be the roots of f = f1 · · · fn in the algebraic
closure of Qp. Then the Tr1..N(x − αj) = (α1

j , . . . , α
N
j)T are linearly inde-

pendent because these vectors divided by αj form a Vandermonde matrix.
The vectors Vi are sums of disjoint sets of the Tr1..N(x−αj) and are there-
fore linearly independent as well.

We can define Tri for a quotient of polynomials g = g1/g2 as Tri(g1) −
Tri(g2). Then V = Tr1..N (g) so if g ∈ Q(x) then V must also be defined
over Q, in fact V must be in ZZN because the αj are algebraic integers (we

THE KNAPSACK FACTORIZATION ALGORITHM 7

assumed f ∈ ZZ[x] to be monic). Conversely, if V ∈ QN then g must also
be defined over Q because

Tr1..N : {
n∏
i=1

fvii |v1, . . . , vn ∈ ZZ} → ZZV1 + · · ·+ ZZVn

is one to one due to the linear independence of the Vi.

We will now weaken lemma 2.2, instead of necessary and sufficient con-
ditions for g ∈ ZZ[x] we will now consider just necessary conditions. Let
s and d be positive integers and let A be an s by d matrix with integer
entries. Then denote

TA = ATr1..d TA(g) = A


Tr1(g)
Tr2(g)

...
Trd(g)

 .

The purpose of matrix A is that in the algorithm, instead of using a vector
Tr1..d(g) with d entries (d could be very large) we will use a vector TA(g)
with a small number of entries (s will be small in comparison to n).

If during the computation it turns out that the converse of statement (5)
below does not hold then the algorithm will increase s, thereby using more
Tri’s in TA. This way the algorithm will always reach a point where the
converse of (5) will hold. For some polynomials this point will already be
reached with the first matrix A, for other polynomials it will take more
steps. In the implementation we start with a very small value of s and a
sparse matrix A, hoping that more than one step is needed before the con-
verse of (5) will hold. That turns out to be beneficial for the performance
as it tends to lead to easier lattice reductions.

Lemma 2.4. If g ∈ ZZp[x] is a monic factor of f then

g ∈ ZZ[x] =⇒ TA(g) ∈ ZZs. (5)

If the following condition holds: “the row space of A contains the first
bN/2c standard basis elements (1 0 · · · 0), (0 1 0 · · · 0), . . .” then the con-
verse of statement (5) holds as well.

Proof. If Tr1..d(g) ∈ ZZd then ATr1..d(g) ∈ ZZs. Conversely, if the condi-
tion on the row space of A holds, then TA(g) ∈ ZZs implies Tr1..d(g) ∈ Qd

and so the lemma follows from lemma 2.2.

8 M. VAN HOEIJ

Let S be a subset of the p-adic factors and let g be the product of S.
Then

TA(g) =
∑
fi∈S

TA(fi).

So a necessary condition for g to be a rational factor is that the sum of
the TA(fi), fi ∈ S has integer entries. However, how can this be decided
considering that the TA(fi) can only be determined up to some finite accu-
racy a? This question is similar to a problem in the Berlekamp-Zassenhaus
algorithm (see section 1), and will be handled in a similar way. If Brt is a
bound on the absolute value of the complex roots of f then dBi

rt is a bound
for |Tri(g)| for any rational factor g of f of degree ≤ d. Bounds for the
entries of TA(g) can be computed from this. Given S, one can calculate
Ca(TA(g)), the symmetric remainder modulo pa of

∑
fi∈S TA(fi), and a

necessary condition for g ∈ ZZ[x] is that this symmetric remainder satisfies
the bound in each row (different rows may have different bounds).

If g ∈ ZZ[x], then from Ca(TA(g)) we could say something about the
coefficients of g; if for example TA = Tr1..s then the first s coefficients of
g can be computed from TA(g) using the Newton identities (2). However,
this will not be needed because g can also be computed by multiplying the
fi in S. Because of that, there is no good reason to compute the precise
value (modulo a power of p) of TA(g), all we need to know is if it satisfies
the bound or not. For this purpose T bA will be defined below.

Compute a bound Bi for the i’th entry of TA, i.e. the absolute value
of the i’th entry of TA(g) must be < Bi for any rational factor g of f .
Choose a list of positive integers b = (b1 · · · bs) such that Bi < 1

2pbi (it is
not necessary to take the smallest possible bi). Then define

Definition 2.2. For any monic polynomial g ∈ ZZp[x] define T bA(g) ∈
ZZsp as follows. Let r be the i’th entry of TA(g). Let r be the symmetric
remainder of r modulo pbi . Then r− r is divisible by pbi , so u = (r− r)/pbi

is a p-adic integer. Then the i’th entry of T bA(g) is defined as u.

If g is a rational factor of f then the i’th entry of TA(g) is bounded by Bi,
hence smaller in absolute value than 1

2pbi , and so it equals its symmetric
remainder modulo pbi . Then T bA(g) will be zero, which proves the first part
of the following lemma.

Lemma 2.5. Let g ∈ ZZp[x] be a monic factor of f . Then

g ∈ ZZ[x] =⇒ T bA(g) = 0.

Furthermore, if A satisfies the condition in lemma 2.4 then the converse
implication is true as well.

THE KNAPSACK FACTORIZATION ALGORITHM 9

Proof. Assume that A satisfies the condition in lemma 2.4. The en-
tries of T bA(g) can only be zero if the entries of TA(g) (which a priori are
p-adic integers) are integers. The Tri(g), 1 ≤ i ≤ N/2 can be deter-
mined from TA(g) when A satisfies the condition in lemma 2.4. So these
Tri(g) must be rational numbers. Then g ∈ ZZ[x] because of lemma 2.2.

We note that if fj was approximated with accuracy a then the i’th entry
of T bA(fj) can be computed modulo pa−bi . So a should be greater than
bi, in particular a needs to be larger than log(2Bi)/log(p). If not, more
Hensel lifting is required in order to increase a. If we take the value a
to be the same as in the Berlekamp-Zassenhaus algorithm then additional
Hensel lifting is rarely needed. In fact, for large irreducible polynomials,
a smaller value for a than what is needed in Berlekamp-Zassenhaus often
suffices to prove irreducibility. This way, to compute an irreducibility proof
for a polynomial, one may reduce the amount of Hensel lifting which is
worthwhile because Hensel lifting dominates the memory usage and often
dominate the computation time as well.

The main difference between TA and T bA is the following. Recall that
TA(g) gives some partial (or complete, if the condition in lemma 2.4 on A
holds) information on the coefficients of a rational factor g. That informa-
tion has been cut away in the definition of T bA; everything that is smaller
than the bound Bi has been rounded off to 0. Additivity is lost due to this
round off, T bA(f1f2) need not be equal to T bA(f1) + T bA(f2). But T bA is still
almost additive.

Lemma 2.6. Let S be a subset of {f1, . . . , fn} and let g be the product
of the elements of S. Then

T bA(g) = ε +
∑
fi∈S

T bA(fi) (6)

where ε = (ε1 · · · εs)T ∈ ZZs. Furthermore,

|εi| ≤
|S|
2

where |εi| denotes the absolute value of εi and |S| denotes the number of
elements of S.

Proof. Notations as in definition 2.2, r is the symmetric remainder of r
mod pbi and u = (r − r)/pbi . It is the difference between r/pbi and u that
causes T bA to be no longer additive, and this difference is r/pbi which is a
rational number with absolute value < 1/2, if p 6= 2. And the only possible
denominator is a power of p. With |S| + 1 polynomials (the fi and g),

10 M. VAN HOEIJ

these differences add up to a rational number εi ∈ Q with absolute value
< (|S|+ 1)/2. Now ε is the difference of T bA(g) and the sum of the T bA(fi)
with fi in S, and all of these have p-adic integers as entries. So εi must
also be a p-adic integer, as well as a bounded rational number with only a
power p as a possible denominator, so it must be an integer. Its absolute
value is < (|S|+ 1)/2, hence ≤ |S|/2 and the lemma follows.
If p = 2 we have |r/pbi | ≤ 1/2 instead of < 1/2. However, the lemma still
holds because εi = (|S| + 1)/2 is still not possible, because all the r/pbi

would need to be equal to 1/2. But then we would have −1/2 = εi + |S| ·
(−1/2) so εi = (|S| − 1)/2 and the lemma still holds.

Lemma 2.7. Let S be a subset of {f1, . . . , fn} and let g be the product
of S. If g ∈ ZZ[x] then

ε +
∑
fi∈S

T bA(fi) = 0 (7)

for some vector ε ∈ ZZs with entries bounded in absolute value by |S|/2.
If A satisfies the condition in lemma 2.4 then the converse is true as well.

Proof. If g ∈ ZZ[x] then T bA(g) = 0 by lemma 2.5, so the result follows
from lemma 2.6. Conversely, if equation (7) holds, then by lemma 2.6 it fol-
lows that there is a vector ε′ ∈ ZZs such that T bA(g) = ε′+

∑
T bA(fi) = ε′−ε ∈

ZZs. So the entries of T bA(g), which are a priori p-adic integers, are integers.
Then TA(g) must be in ZZs as well. If A satisfies the condition in lemma 2.4
then the Tri(g) can be computed from TA(g) and must be in Q. Then g ∈
ZZ[x] by lemma 2.2.

Choose integers ai such that bi < ai. Let cj,i be the i’th entry of TA(fj)
and let c̃j,i be the i’th entry of T bA(fj). Now let

cj,i = Caibi (cj,i) = Cai−bi(c̃j,i) (8)

and let Cj ∈ ZZs be defined as

Cj = (cj,1 · · · cj,s).

So the i’th entry of Cj is an approximation of the i’th entry of T bA(fj) with
accuracy ai − bi, and is a two-sided cut of the i-th entry of TA(fj). It can
be calculated from Ca(fj) provided that a ≥ ai.

The computational cost for determining Cj is small compared to the cost
of Hensel lifting up to accuracy a. We can now reformulate lemma 2.7 as
follows. Let e1, . . . , es be the standard basis of ZZs. Note that, although

THE KNAPSACK FACTORIZATION ALGORITHM 11

column notation was used for TA(fj), we will use row notation for the
vectors Cj and ei.

Theorem 2.1. The factorization knapsack problem. Let f be a
monic squarefree polynomial in ZZ[x] and f1, . . . , fn the irreducible p-adic
factors. For every S ⊆ {f1, . . . , fn}, if the product g of the elements of S
is a rational factor of f then

s∑
i=1

(εi + γip
ai−bi)ei +

n∑
i=1

viCi = 0 (9)

for some integers εi and γi with absolute value at most |S|/2, and where

vi =
{

1 if fi ∈ S
0 otherwise.

The proof that the γi are bounded integers is similar to the proof that
the εi are bounded integers in lemma 2.7. However, this bound is not
needed when using LLL to solve the knapsack problem in equation (9).

Equation (9) in the theorem converges (in the p-adic valuation norm) to
equation (7) in lemma 2.7 when the ai tend to infinity and the bi are kept
constant. This implies that if A satisfies the condition in lemma 2.4 then
for sufficiently large ai the converse of the theorem holds as well.

2.1. The knapsack lattice
Denote W as the set of all v = (v1 · · · vn) ∈ ZZn for which

∏
fvii is

defined over Q. Note that if g1, . . . , gr are the irreducible monic factors
of f in ZZ[x] then {w1, . . . , wr} is a basis of W in reduced echelon form,
where wk is defined as the 0–1 vector (v1 · · · vn) for which gk =

∏
fvii .

Finding this reduced echelon basis {w1, . . . , wr} of W is the same as solving
the combinatorial problem (equation (1) in section 1) in the Berlekamp-
Zassenhaus algorithm.

We will use the following notations: If L ⊂ ZZn is a lattice, then BL is
a basis of L. The matrix whose rows are the elements of BL is denoted
by (BL), and the reduced row echelon form of this matrix is denoted by
rref(BL). If any basis BW of W is known, then the combinatorial problem
is solved because {w1, . . . , wr} are the rows of rref(BW).

Lemma 2.8. Let L be a lattice such that

W ⊆ L ⊆ ZZn. (10)

Let R = rref(BL). Then L = W if and only if the following two conditions
hold:

12 M. VAN HOEIJ

A) Each column of R contains precisely one 1, all other entries are 0.
B) If (v1 · · · vn) is a row of R then g =

∏
fvii ∈ ZZ[x].

Proof. If L = W then {w1, . . . , wr} are the rows of R, and thus con-
ditions A) and B) hold. Conversely, if A) and B) hold, and if W ⊆ L
then {w1, . . . , wr} must be linear combinations of the rows of R. But then
{w1, . . . , wr} must be the rows of R because ZZ[x] has unique factorization.
So L, the row space of R, must be equal to W , the span of {w1, . . . , wr}.

If we have a lattice L that satisfies equation (10) then we can test if
L = W by checking if conditions A) and B) hold. Condition B) can be
checked in exactly the same way as in the Berlekamp-Zassenhaus algorithm;
by computing the symmetric remainder of the product modulo pa and
checking if the result divides f in ZZ[x].

Initially we take L = ZZn in the algorithm, so that we can be certain that
equation (10) holds. If we make sure that (10) continues to hold throughout
the algorithm, then at each step, we can test if L = W with lemma 2.8.
Suppose L 6= W . The goal is to calculate a new lattice L′ such that

W ⊆ L′ ⊆ L

so that L′ satisfies equation (10) as well. Then L is replaced by L′. The
algorithm keeps repeating this until L = W , i.e. until conditions A) and
B) hold. Once these conditions hold, testing that they hold gives as a
byproduct all irreducible factors of f in ZZ[x] because that is how B) is
tested. These irreducible factors are then the output of the algorithm.

1. Algorithm terminates? To prove that the algorithm terminates,
we must prove that eventually conditions A) and B) hold.

2. Output correct? To prove that the output is correct (i.e. irreducible
and complete) if there is an output at all (i.e. if it terminates), we do
not need to prove that A) and B) will eventually hold, we only need to
prove that equation (10) continues to hold during each step, because if
W ⊆ L then the algorithm can not terminate unless L = W . So it can not
terminate unless the factors of f it produced are irreducible and complete.

Choose an s by d matrix A and choose integers ai and bi (recall that
one must have a ≥ ai > bi > log(2Bi)/log(p)). We will show how the
algorithm can compute a new lattice L′ ⊆ L, hopefully of smaller dimension
than L, that contains all solutions (v1 · · · vn) of equation (9). This implies
correctness of the algorithm because w1, . . . , wr satisfy equation (9) and
hence W ⊆ L′.

If dim(L′) = dim(L) then we need to use a different matrix A and try
again, or if that does not work we need higher values for ai− bi (if at some

THE KNAPSACK FACTORIZATION ALGORITHM 13

point ai > a then this means that more Hensel lifting needs to be done to
increase a). Eventually this must be successful (lemma 2.10) and we find
L′ with smaller dimension. Then replace L by L′, check conditions A) and
B) to see if W = L, and after finitely many steps the algorithm is done.

Let

M =
√

C2n + s(n/2)2

where C is a positive integer chosen in such a way that neither one of
the two terms under the square root is much larger than the other one.
Let BL be a basis for L. Initially L = ZZn and BL is the standard basis
(everything is now in row notation). To solve the knapsack-like problem
given in equation (9) we will construct the knapsack lattice, a lattice Λ such
that the vector

vS = (Cv1 · · ·Cvn ε1 · · · εs) (11)

is an element of Λ for every solution S of equation (9). The γi from (9)
are not used. A vector v in Λ will be called M -short if the length |v| of
v is ≤ M . Note that vS is M -short for every solution S of the knapsack
problem (9),

|vS |2 ≤ C2|S|+ s(|S|/2)2 ≤M2.

Let {e1, . . . , es} be the standard basis of ZZs. The 0 element of ZZn will
be denoted by 0n. All of these vectors are in row notation. The notation
(v, w) ∈ ZZn+s refers to the vector obtained by concatenating v and w.
The knapsack lattice Λ ⊆ ZZn+s is defined by the following basis: BΛ =
BC
⋃

Bp∗ where

Bp∗ = {(0n, pai−biei)|i ≤ s}, BC = {(Cv, vm)|v ∈ BL} , m =

 C1...
Cn

 .

In the first step, L = ZZn. Then BL has n elements, BΛ has n+ s elements,
and the matrix of the basis of Λ is

(BΛ) =



C 0 · · · 0 c1,1 · · · c1,s

0 C · · · 0 c2,1 · · · c2,s

...
...

...
...

...
0 0 · · · C cn,1 · · · cn,s
0 0 · · · 0 pa1−b1 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · pas−bs


,

14 M. VAN HOEIJ

where cj,i was defined in equation (8). In this case the matrix is square, so
the determinant of the lattice Λ is then

D = Cnp(a1−b1)+···+(as−bs).

The number l of elements of BΛ equals s plus the number of elements of
BL. We can use LLL to compute an LLL-reduced basis V1, . . . , Vl of Λ.
Let V ∗1 , . . . , V ∗l be the Gram-Schmidt basis for V1, . . . , Vl. We can compute
approximations V

∗
k of V ∗k by floating point arithmetic. Let r ≤ l be the

smallest integer such that |V ∗k| > M ′ for all r < k ≤ l, where M ′ is M plus
a bound on the round-off errors in the V

∗
k. So |V ∗k | > M for all k > r. Now

define Λ′ ⊆ Λ as the span of {Vk|k ≤ r}, and let L′ ⊆ L be the projection
of 1

CΛ′ on the first n coordinates.

Lemma 2.9. W ⊆ L′, so if the algorithm terminates, then the output is
correct.

Proof. It follows from the proof of (1.11) in [6] that if |V ∗k | > M
for all k > r then all M -short vectors are in the span of {Vk|k ≤ r}.
If S is a solution of the knapsack problem (9), then the vector vS from
equation (11) is M -short, and thus in Λ′. If S corresponds to an irreducible
factor gk and 0–1 vector wk, then wk is 1

C times the projection of vS on
the first n coordinates, and vS ∈ Λ′ hence wk ∈ L′, and the lemma fol-
lows.

If r < dim(L) then the algorithm makes progress because then dim(L′) ≤
r < dim(L). The LLL-reduction of BΛ is essential, because without it, it
would be nearly certain that r ≥ dim(L). If the number p(a1−b1)+···+(as−bs)

is too small then one can expect r ≥ dim(L) as well, see remark 3. in
section 2.3.

Lemma 2.10. The algorithm terminates.

Proof. We have to show that if L 6= W then eventually dim(L′) <
dim(L), so that after finitely many steps the algorithm reaches L = W .
It will be convenient for the notation (although the proof also works in
general) to assume that matrix A has only one row, with the i’th entry
equal to 1 and other entries 0. So then s = 1, TA(fj) = Tri(fj), and
Cj = Ca1

b1
(Tri(fj)) which is an integer whose value depends on a1 (in the

proof a1 will vary and b1 will be constant). Denote

U(v) =
n∑
j=1

vjTri(fj) ∈ ZZp for v = (v1 · · · vn) ∈ L

THE KNAPSACK FACTORIZATION ALGORITHM 15

and let U(v, a1) be the symmetric remainder mod pa1−b1 of the integer
v1C1 + · · ·+ vnCn. Denote M̃ = n2n/2M , Soli(L) = {v ∈ L|U(v) ∈ ZZ}, and
B(L, a1) as the set of all v ∈ L for which |Cv|2 + U(v, a1)2 ≤ M̃2. Since
M̃ ≥M it follows that W is contained in the span of B(L, a1).

If a1 ≥ a′1 then B(L, a1) ⊆ B(L, a′1), and since this is a finite set there
exists a positive integer a′1 such that B(L, a1) = B(L, a′1) for all a1 ≥ a′1.
If a vector v is an element of B(L, a1) for all a1 ≥ a′1, then U(v, a1) is
bounded when a1 → ∞, hence U(v) ∈ ZZ and so v ∈ Soli(L). Therefore,
B(L, a1) ⊆ Soli(L) whenever a1 ≥ a′1.

It is possible that L = Soli(L), even if the i’th trace had not been used
before in the algorithm. For example, one could think of a polynomial f
for which Tr1(g) ∈ ZZ =⇒ Tr2(g) ∈ ZZ happens to be true for all monic
factors g ∈ ZZp[x] of f . For such f , if L = Sol1(ZZn) then L = Sol2(L). Such
cases, although they are of course not very common, must be dealt with.
Fortunately, these cases can be detected at negligible computational cost,
because if L = Soli(L) then U(v, a1) is already small (without doing any
lattice reduction) for every v ∈ BL. And when this occurs, the remedy is
trivial, just take the next value for i (in step 6 in section 2.2 the remedy is
to go back to step 5). After a finite number of times we may assume that
L 6= Soli(L). This implies that dim(Soli(L)) < dim(L) because L/Soli(L)
can not have torsion elements: If k > 1 and U(kv) ∈ ZZ then U(v) ∈ Q, but
then U(v) ∈ ZZ because the Tri(fj) are algebraic integers.

Now, for more notational convenience, assume that L = ZZn. Then l =
n + 1 and the matrix (BΛ) is then the l by l matrix from section 2.1,
with determinant D = Cnpa1−b1 . Let V1, . . . , Vl be the LLL-basis and
V ∗1 , . . . , V ∗l the Gram-Schmidt basis, and let r ≤ l be minimal such that
|V ∗k | > M for all k > r. Now |D| =

∏
k |V ∗k | so there exists k′ such that

|V ∗k′ | ≥ |D|1/l. If a1 is sufficiently large, then |V ∗k′ | > 2n/2M . It follows
from the properties of an LLL-basis that then |V ∗k | > M for all k ≥ k′,
and hence r < l = n + 1. So we make progress, i.e. dim(L′) < dim(L),
except when r = n = l − 1 and the projection of V1, . . . , Vn on the first n
coordinates is linearly independent. To complete the proof we will show
that this case is not possible whenever a1 ≥ a′1.

If r = n then |V ∗n | ≤ M , and the properties of an LLL-reduced basis
then imply that |V ∗k | ≤ 2n/2M for all k ≤ n. This in turn implies that
|Vk| ≤ M̃ = n2n/2M for all k ≤ n. Then 1

C times the projection of
V1, . . . , Vn on the first n coordinates is in B(L, a1), but if a1 ≥ a′1 then
B(L, a1) is contained in Soli(L) which has dimension < n, which implies
that the projection of V1, . . . , Vn on the first n coordinates is dependent.

2.2. The algorithm

16 M. VAN HOEIJ

Input: A monic square-free polynomial F ∈ ZZ[x].
Output: A factorization of F into irreducible factors.

Step 1 Apply the Berlekamp-Zassenhaus algorithm but search only for
the rational factors that consist of at most three p-adic factors. Whenever
a rational factor is found, remove the corresponding p-adic factors from the
list.

Step 2 Let f1, . . . , fn be the remaining p-adic factors and let f be the
polynomial F divided by the rational factors that were found in step 1. If
n is small then use Berlekamp-Zassenhaus to do the rest of the work as
well.

Step 3 At this point n is not small, the p-adic factors f1, . . . , fn have
been computed modulo pa where the prime p was chosen to minimize n,
and a was chosen using the Landau-Mignotte bound. Now the knapsack
factorization algorithm begins.

Step 4 Let BL = {e1, . . . , en}, the standard basis for ZZn.
Step 5 Choose a matrix A, see also remark 2. in section 2.3.

Compute an upper bound Bi for the i’th entry of TA(g) for any rational
factor g. Choose the integers ai > bi > log(2Bi)/log(p), see also remark 3.
for this choice. If ai > a then do additional Hensel lifting to increase a.

Step 6 Compute the basis Bp∗
⋃

BC for lattice Λ like in section 2.1. If
the last s entries of the elements of BC reduced modulo Bp∗ are already
small then go back to step 5 and choose a different matrix A.

Step 7 Apply the LLL algorithm to compute a reduced basis V1, . . . , Vl
for Λ. Do a floating point Gram-Schmidt computation (see section 2.1) to
determine an as small as possible integer r such that all M -short vectors
in Λ are in Λ′ = ZZV1 + · · ·+ ZZVr. Let L′ be 1

C times the projection of Λ′

on the first n coordinates. Then replace BL by a basis of L′. If |BL| did
not decrease then return to step 5 and use larger values for ai − bi.

Step 8 Let r = |BL| be the number of elements of the new BL. Note
that dim(W) ≤ n/4 because all rational factors consisting of < 4 p-adic
factors have been removed in step 1.
If r = 1 then f must be irreducible and the computation ends.
If r > n/4 then go to step 5, otherwise proceed to step 9.

Step 9 Compute R = rref(BL). If R does not satisfy condition A) in
lemma 2.8 then go to step 5, otherwise proceed to step 10.

Step 10 Check condition B) in lemma 2.8 as follows. Do step 10a for
k ∈ {1, . . . , r}.

Step 10a Let (v1 · · · vn) be the k’th row of R. Let gk = Ca(
∏

fvii). If
gk does not divide f in ZZ[x] then go back to step 5.

Step 11 Now f = g1 · · · gr, the irreducibility of the monic polynomials
g1, . . . , gr in ZZ[x] has been proven, so the computation is done.

THE KNAPSACK FACTORIZATION ALGORITHM 17

2.3. Remarks on the algorithm

1. In step 1 we should try all combinations of 1, 2 and 3 p-adic factors
because that takes little time. Four is on the edge, it may or may not be
worthwhile to check combinations of four p-adic factors. Combining five
p-adic factors is too much, at that point it is most likely better to proceed
to step 3 unless n is small (say n < 15) because then 2n−1 is so small that
it is best to use only Berlekamp-Zassenhaus.

2. There are different strategies for choosing matrix A in step 5. The
first is to take d = s and to take A as the s by s identity matrix. Then
TA = Tr1..s. A second strategy is to take d > s and to use small random
integers as entries. This way several Tri’s can be combined in one entry of
TA(g). If we take a small integer s, take d = bN/2c (usually a much smaller
d will do) and take a random s by d matrix A then it is very likely that
the converse of statement (5) in lemma 2.4 will hold because f has only
finitely many monic factors g ∈ ZZp[x], namely 2n. The advantage of the
second strategy is that the number of rows that is needed is small because
several Tri’s are combined into one row of A.

We use a variation on the first strategy, starting with a very small value
for s = d, so using only few Tri’s. Then for each next lattice reduction we
use only few new Tri’s at the same time. This way we decrease L more
gradually. The advantage of this approach is that it tends to lead to faster
lattice reductions because we do not try to solve everything in one lattice
reduction.

3. We measure the amount of information that is put into the lattice Λ
by the number

I = ((a1 − b1) + · · ·+ (as − bs))log(p)

This number is roughly the logarithm of the determinant D in section 2.1
(the factor Cn is ignored). The computation time of one lattice reduction
depends mainly on the following two quantities: the number of vectors (in
the first step this is n+s where s is much smaller than n) and the number I.
We found experimentally that increasing I by a factor 2 causes the lattice
reduction to take roughly 6 times longer.

The value for I can be chosen. To decrease I, we can do one of the following:
decrease ai, increase bi, or decrease s. To increase I we can: choose bi as
small as the bound on the i’th entry of TA(g) allows, use larger s, or use
larger ai (but still ai ≤ a). In very rare cases, we need to increase a,
meaning more Hensel lifting, in order to be able to make I large enough.
If we use strategy 2 for the choice of matrix A, where we aim to find W
in a single lattice reduction using a matrix that combines several Tri’s in
each row, then a reasonable value for I is about 0.12n2. This gives a good

18 M. VAN HOEIJ

chance to be ready in one step, and in the cases that one is not ready after
one lattice reduction it is likely that not much information needs to be
added in the second step.

If we use strategy 1 for the choice of matrix A, where we try to reduce
the number of elements of BL more gradually, processing only part of the
information (few Tri’s) at the same time, then we can often (but not always)
make do with a smaller value for I, leading to faster lattice reductions.
Suppose we can reduce the number of elements of BL from 100 down to 5
in one step with strategy 2, but only from 100 down to 65 with strategy 1
using only Tr1..2 and say a quarter of the computation time due to the
smaller value for I. Then the latter is better because in the next lattice
reduction we only have 65 + s vectors which takes much less time than
reducing 100 vectors. However, if of the original 100 vectors there are still
> 90 left in step 7 then that is not good progress and we should use higher
values for I. In fact, if I is too small then it is likely that no progress
is made (L remains the same). The lattice always contains at least one
M -short vector (corresponding to the trivial factor g = f). If LLL does
not find any short vectors, then that is a clear signal that the value of I
that was used was too small.

It can make sense, when increasing s (i.e. when adding rows to matrix A)
or when replacing rows of A, to add a row that already appeared in A, in
the following way. When row i equals a new row i′ that is being added,
then take ai′ , bi′ in such a way that the intervals (bi′ , ai′) and (bi, ai) do not
overlap. This could also be used as a test to see if all vectors in BL actually
meet the condition coming from row i like they are supposed to, and if they
do not, then the same row can be added to A but using a different (without
overlap) two-sided cut of the p-adic numbers.

It is possible to have the same amount of information I while using shorter
input vectors in the following way: replace the i’th entry of each TA(fj) by
two entries, one using ai, ãi instead of ai, bi and one using ãi, bi instead of
ai, bi, where ãi is an integer between ai and bi. Judging from the complexity
estimates for lattice reduction this seems better because the input vectors
are shorter, but our implementation does not make use of it because it
appears to make no noticeable difference in practice; it seems as if all that
counts is n and I.

The initial choice for I in our algorithm depends just on n. So the cost
of the first lattice reduction does not depend on N nor on the size of the
coefficients of f . The cost of the second lattice reduction depends on the
number of vectors remaining after the first lattice reduction, which depends
on f .

4. If the polynomial f is not monic, so cN 6= 1, we need to make two
changes to the algorithm. If g ∈ Q[x] is a monic rational factor of f then

THE KNAPSACK FACTORIZATION ALGORITHM 19

the coefficients of g are no longer automatically integers. As a consequence,
Tri(g) is no longer in ZZ, which is something that the algorithm uses. How-
ever, ciNTri(g) ∈ ZZ, so in the non-monic case Tri needs to be replaced by
ciNTri.

The second change is in step 10a. This change is identical to the difference
between the monic and non-monic case in the Berlekamp-Zassenhaus algo-
rithm. To find gk, take Ca(cN

∏
fvii) instead of Ca(

∏
fvii), and divide it

by the gcd of its coefficients.

5. We could also consider computing the factors fj in R[x] or C[x] in-
stead of ZZp[x]. Then compute the Tri(fj), cut away the integer part, and
construct a knapsack problem in a similar way. Perhaps this is the algo-
rithm one was looking for in section 6 in [9]. The disadvantage is that
over R there are always many (at least N/2) factors fj , which is generally
(except for Swinnerton-Dyer polynomials) much more than over ZZp.

6. One could try to use a higher value for y in the LLL algorithm [6],
so that LLL performs a stronger lattice reduction, and then use a smaller
value for I. One can also use PSLQ [2] instead of LLL to solve knapsack
problems. We chose for LLL (with integer arithmetic) because it worked
faster in our Maple experiments, however, no careful analysis has been done
to compare the two.

3. EXPERIMENTS AND COMPLEXITY
3.1. Implementations

The algorithm was first implemented by the author in Maple. The source
code and a number of examples are available from
http://www.math.fsu.edu/~hoeij/knapsack.html The factorization of
x128 − x112 + x80 − x64 + x48 − x16 + 1 in Maple7 (which contains this
implementation) is 500 times faster than in Maple6. An implementation in
Magma http://www.maths.usyd.edu.au:8000/u/magma/
was done by Allan Steel. An implementation for NTL was done by Guil-
laume Hanrot and Paul Zimmermann and is available from
http://www.loria.fr/~zimmerma/free/ There is also an implementa-
tion in Pari-GP available from http://www.parigp-home.de

3.2. Some experiments
Experiments done with the Maple implementation on a Pentium 266 (the

polynomials can be obtained from the website in section 3.1) show that
the algorithm can factor polynomials that could not be factored before.
This is experimental proof that the algorithm is a significant improvement,
especially if one considers that the implementations in Magma, NTL and

20 M. VAN HOEIJ

Pari-GP are even faster (due to faster Hensel lifting and lattice reduction,
it is clear that compiled C-code runs faster than interpreted Maple code).

Examples of polynomials that previously could not be factored by any
available system are the polynomial P7 from Paul Zimmermann’s web-
site, and the 6-set resolvent polynomial (degree N = 924 with n = 84
modular factors) for a polynomial with Galois group M12. This means that
computationally testing and proving that the Galois group of a polynomial
of degree 12 is M12 can now be done with the most trivial method (factoring
k-set resolvents), a method that was previously considered not to be feasible
for this group.

Allan Steel reported that his Magma implementation factored polynomi-
als with more than 400 modular factors, and this number may grow even
higher because of recent improvements in lattice reduction [5]. Belabas,
Hanrot, and Zimmermann reported the following progress on their imple-
mentations: The polynomial P8 from Zimmermann’s website, two years
ago it was impossible to factor P8, with [1] the CPU time for the searching
phase was reduced to one hour, and with the method presented here it is
reduced to less than one second; the searching phase now takes less time
than Hensel lifting.

In the remainder of this section a relatively small example will be given
with degree N = 190 and n = 38 modular factors. The timings are given
on a relatively slow machine (Pentium 266 laptop). On the same machine,
the Pari-GP implementation runs this example about 15 times faster. Let
h ∈ ZZ[x] be the monic irreducible polynomial

h = x20 − 5x18 + 864x15 − 375x14 − 2160x13 + 1875x12 + 10800x11

+186624x10 − 54000x9 + 46875x8 + 270000x7 − 234375x6

−2700000x5− 1953125x2 + 9765625.

Suppose αi, i = 1, 2, . . . , 20 are the roots of h. One can calculate the monic
square-free polynomial f ∈ ZZ[x] that has the following roots: αi + αj ,
1 ≤ i < j ≤ 20. The degree of f is 20 · 19/2 = 190 and the coefficients have
up to 89 digits. The Galois group G of h acts on the roots of f as well.
The number of orbits equals the number of irreducible factors of f and the
lengths of these orbits are the degrees of the irreducible factors of f . So
the factorization of f yields some information on G.

The Galois group G acts on the roots α1, . . . , α20 of h as A6 acts on the
20 subsets with 3 elements of {1, 2, 3, 4, 5, 6}. Knowing this, it can quickly
be determined that f has 3 factors, one of degree 10 and two of degree 90.
Of course we can not use this information in the factorization algorithm
when we want to do the converse, factoring f in order to obtain information
on the Galois group of h.

THE KNAPSACK FACTORIZATION ALGORITHM 21

Since G ' A6 has no elements of order > 5 there can not be irre-
ducible p-adic factors of degree > 5. Therefore, at any prime p there are
at least 190/5 = 38 p-adic factors. Maple’s implementation of Berlekamp-
Zassenhaus does the following with f . First a number of primes are tried to
see which has the fewest (i.e. 38) p-adic factors. It can choose for example
p = 19. Using various primes it also constructs a set of possible degrees of
rational factors, although in this particular example this does not help be-
cause this set is {0, 5, 10, . . . , 190}. Then, by Hensel lifting, it calculates the
p-adic factors f1, . . . , f38 up to accuracy a, where a is a positive integer that
depends on the bound it computes for the coefficients of rational factors of
f . Because f has large coefficients, this bound and hence pa are large as
well (a = 27 and pa has 164 digits, so the modular factors Ca(fi) have up to
164 digits as well). So the Hensel lifting takes some time, about 50 seconds
on a Pentium 266. After that it tries to find rational factors by computing
products of s p-adic factors. First s = 1, then s = 2, s = 3, etc. At s = 1
there are 38 cases to check, and no rational factor is found. For s = 2 there
are 38 · 37/2 cases to check. This is still not a large number of cases so
s = 1 and s = 2 take little time. It takes less than 2 seconds (after Hensel
lifting) to find the rational factor of degree 10 (which consists of 2 p-adic
factors of degree 5). Then these two p-adic factors can be removed from
the list, leaving 36 p-adic factors, which means there remain 236−1 cases
to check. On a Pentium 266, Maple would take years to do this (although
this computation time can be reduced a lot by avoiding many unnecessary
multiplications of modular factors, c.f. [1, 4]). This example illustrates the
strength as well as the weakness of the Berlekamp-Zassenhaus method, it
can quickly find rational factors that consist of few p-adic factors (which is
the reason for doing step 1 in section 2.2), but it is exponentially slow in
finding rational factors that consist of many p-adic factors.

On this example our implementation takes 152 seconds to factor f , of
which 50 seconds is spent on Hensel lifting, 8 seconds on searching factors
consisting of < 4 p-adic factors with Berlekamp-Zassenhaus, and most of
the remaining time is spent on lattice reductions. The first lattice reduction
uses Tr1..2, takes about 70 seconds, and after that 16 vectors remain. The
second lattice reduction uses Tr3..4, takes about 22 seconds, and 2 vectors
remain. To construct the factors corresponding to these two vectors takes
about 2 seconds. One of the factors of degree 90 has coefficients of up to
38 digits, the other has coefficients up to 46 digits. Note that to find these
coefficients by computing a short vector in a lattice as in [6], the remaining
vectors would need to be even larger, so the input vectors would need to
be very large making the lattice reduction very costly.

3.3. A heuristic complexity estimate

22 M. VAN HOEIJ

If for each lattice reduction, the number I is always bounded by a poly-
nomial in n, then each lattice reduction costs polynomial time.

If for each lattice reduction, the number P , which is the probability that
progress (i.e. dim(L′) < dim(L)) is made, is greater than some positive
constant ε, then the expected number of lattice reductions is < n/ε so it is
O(n).

If both are true then the expected cost of all lattice reductions combined
is bounded by a polynomial in n. This polynomial is independent of N as
well as the size of the coefficients of f , which is a twofold improvement over
all previous lattice based factorizers.

Remark: the probability P depends on I. A higher value of I means a
higher value of P (thus fewer lattice reductions). For practical performance
one should choose values of I aimed at having P large (say 0.7 < P < 0.95)
but not very large (P > 0.99), because if P is very large it implies that in
most cases, the same lattice result could have been obtained with a cheaper
(i.e. smaller I) lattice reduction. In the proof of lemma 2.10 the probability
of progress is P = 1, however, the proof did not provide any bound for I
because no bound for a′1 was determined.

First if: With the above remark in mind, the implementation for strat-
egy 2 starts with I = cn2 with c = 0.12. With strategy 1 a smaller value for
I is chosen. In case there is little or no progress, the value of I is increased
but it remains O(n2).

Second if: It is experimentally true that if I = cn2 for the right constant
c, then P is large and thus the expected number of lattice reductions is
at most O(n). In practise the number of lattice reductions will be much
smaller than O(n), especially if we would switch to strategy 2 where the
expected number is just above 1. To explain why cn2 works, we will give a
heuristical argument (not a proof) that for some c1 > 0, c2 > 0 and ε > 0,
P > ε when I = cn2 where c = max(c1, c2).

There exists a constant c1 such that if I ≥ c1n
2 then |D|1/l > 2n/2M

(notations as in the proof of lemma 2.10) which implied r < l. The proof
of the lemma then showed that if

B(L, a1) ⊆ Soli(L) (12)

then progress will be made, and that this holds whenever a1 ≥ a′1. Let
DM̃ = {v ∈ L|v 6∈ Soli(L), |Cv| ≤ M̃}. The number of elements is
|DM̃ | = exp(O(n2)). If |U(v, a1)| > M̃ for all v ∈ DM̃ then (12) follows,
and we will argue that this is likely whenever I ≥ c2n

2 for some constant c2.
Now U(v, a1) is an element of the interval (−q/2, q/2] where q = pa1−b1 =
exp(I).

If we assume (this is the part that makes our estimate heuristic, i.e.
unproven) that there is a constant c′ ≥ 1 such that for each integer z in

THE KNAPSACK FACTORIZATION ALGORITHM 23

this interval, the probability that U(v, a1) = z is ≤ c′/q, then the prob-
ability that |U(v, a1)| ≤ M̃ is at most c′(2M̃ + 1)/q. The probability
that |U(v, a1)| ≤ M̃ for any v ∈ DM̃ is then ≤ P ′ where P ′ is defined
as |DM̃ |c′(2M̃ + 1)/exp(I). Choose δ > 0. Then there exists a constant
c2 such that P ′ < δ whenever I ≥ c2n

2. If we take δ < 1 − ε then
P ≥ 1 − P ′ > ε > 0. The denominator of P ′ indicates that a choice of I,
aimed at having P far away from 1 (say P = 0.5) is not optimal because
then P could be increased significantly with a relatively small increase of
I.

REFERENCES
1. J. Abbott, V. Shoup and P. Zimmermann, Factorization in ZZ[x]: The Searching

Phase, ISSAC’2000 Proceedings, 1–7 (2000).

2. H. R. P. Ferguson, D. H. Bailey and S. Arno, Analysis of PSLQ, An Integer Relation
Finding Algorithm, manuscript, (1995).
http://www.cecm.sfu.ca/organics/papers/bailey/

3. M. van Hoeij, Factorization of Differential Operators with Rational Functions Co-
efficients, J. Symb. Comput., 24, 537–561 (1997).

4. E. Kaltofen, Polynomial factorization. In: Computer Algebra, 2nd ed,, editors B.
Buchberger et all, Springer Verlag, 95–113 (1982).

5. H. Koy and C.P. Schnorr, Segment LLL-Reduction of Lattice Bases, Cryptography
and Lattices Conference (CaLC) (2001).

6. A.K. Lenstra, H.W. Lenstra and L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261, 515–534 (1982).

7. M. Mignotte, An inequality about factors of polynomials, Math. of Computation, 28,
1153–1157 (1974).

8. V. Miller, Factoring Polynomials via Relation-Finding, ISTCS ’92, Springer Lecture
Notes in Computer Science 601, 115–121 (1992).

9. T. Sasaki, T. Saito and T. Hilano, A unified method for multivariate polynomial
factorization, Japan J. Industrial and Applied Math 10, 1, 21–39 (1993).

10. A. Schönhage, Factorization of univariate integer polynomials by diophantine ap-
proximation and an improved basis reduction algorithm. Lecture Notes in Computer
Science 172, 436–447, Springer-Verlag (1984).

11. C.P. Schnorr and M. Euchner, Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems, Mathematical Programming, 66, 181–191
(1994).

12. A. Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. Technical
Report 249, Departement Informatik, ETH Zurich, (1996).

13. B. de Weger, Solving exponential diophantine equations using lattice basis reduction
algorithms, Journal of Number Theory 26, 325–367 (1987).

14. H. Zassenhaus, On Hensel Factorization, I., Journal of Number Theory 1, 291–311
(1969).

