Factoring polynomials and 0-1 vectors

Mark van Hoeij
Department of Mathematics
Florida State University
Tallahassee, FL. 32306-3027
hoeij@math.fsu.edu

Abstract

A summary is given of an algorithm, published in [4], that uses lattice reduction to handle the
combinatorial problem in the factoring algorithm of Zassenhaus. Contrary to Lenstra, Lenstra
and Lovész, the lattice reduction is not used to calculate coefficients of a factor but is only
used to solve the combinatorial problem, which is a problem with much smaller coefficients
and dimension. The factors are then constructed efficiently in the same way as in Zassenhaus’
algorithm.

1 Comparison of three factoring algorithms

Let f € Q[z] be a polynomial of degree N. Write f = Zﬁo a;x* with a; € Q. Suppose that f
is monic (i.e. ay = 1) and square-free (i.e. ged(f, f') = 1). Assume that the coefficients a; do
not have more than D digits.

Let p be a prime number and let €, be the field of p-adic numbers. Let f = H?:l fi
where f; € @,[r] are the monic irreducible factors of f in @,[z]. Let v be a 0-1 vector, i.e.
v=(v1...v,) € {0,1}". Let g, =[] f;*. Then

{g0lv €{0,1}"}
is the set of all monic factors of f in @,[z]. Let
V ={ve{0,1}"g, € Qlz]}
so {gy|v € V'} is the set of all monic factors of f in Q[z]. Let
B = {v € Vg, irreducible in Q[z]}.

Because @[z] has unique factorization it follows that V' is the set of all {0, 1}-linear combinations
of B.

The algorithm of Zassenhaus [1] to factor f in Q[z] works as follows. First the f; are computed
modulo a power of p using Hensel lifting. The computation time is bounded by Pz (N, D) which
is a polynomial in N and D. Then, for v € {0,1}", a method is given to decide if g, € Q[z] or
not, and if so, to calculate g, € Q[z]. If g, is not in @[], then the time ¢ to verity that is very
small, and is almost independent of N, D. For all practical purposes we can assume that this
cost ¢ is constant. Calculating g, for all v € B gives the set of all irreducible factors of f. But
no method is given to calculate the set B, other than to try all v. Denote |v| = > v;, s0 g, is
a product of |v| p-adic factors. First one tries all v with |v| = 1, then |v| = 2, etc. Whenever a
gv € Q[z] is found, the corresponding f; are removed, and n decreases. The complexity depends
on M = max{|v|,v € B}. The worst case is M = n, i.e. f is irreducible, because then all 2"

vectors v will be be tried (or 2! vectors, by skipping the complements of the v’s that were
already tried). So the total cost is at most: Pz (N, D)+ 2"~ ! where c is a very small constant.
If M = n/2 then the cost is essentially the same. If M < n/2 then the cost is lower, we can
bound the cost by Pz(N,D) + cEz(n, M) where Ez(n, M) < 2"~ depends exponentially on
M. After trying all |v| < 3, which can be done quickly, we may assume that M > 3 (if there
are still any f; left).

In most examples (even with large N) the number M will be small. Then Pz dominates the
computation time and the algorithm works fast. However, in some examples M can be large, in
which case cEz can dominate the computation time. This happens when f has few factors in
@[] but many factors in @,[z] for every p. Such polynomials have a very special Galois group;
order(c) << N for every ¢ in the Galois group. Extreme examples are the Swinnerton-Dyer
polynomials, where order(c) < 2 for all o. Other examples are resolvent polynomials, which
tend to be polynomials of high degree with small Galois groups. For these polynomials, the
computation time is dominated by cEz, and the algorithm of Zassenhaus will be exponentially
slow.

The first polynomial time algorithm was given by Lenstra, Lenstra and Lovész. In their
paper [2] they give a lattice reduction algorithm (the LLL algorithm). Many combinatorial
problems can be solved in polynomial time with LLL by encoding the solutions of the problem
as short vectors in a lattice. The LLL algorithm can find the set S of short vectors, provided
that all vectors outside of span(S) are sufficiently long in comparison.

In [2] the LLL algorithm is used in the following way. Take one factor fi; € Q,[z] of f. The
problem to be solved with LLL is: Find, if it exists, a non-zero g € @[z] of degree < N such that
f1 divides g. If such g exists, then ged(f, g) € @[z] is a non-trivial factor of f. This problem is
reduced to lattice reduction as follows. First calculate f; modulo a sufficiently high power of p
by Hensel lifting. The cost of Hensel lifting can be bounded by Pr,, (N, D) which is a polynomial
in N,D. From that, a lattice can be constructed that (if f is reducible) contains a vector U,
whose entries are the coefficients of g. Then the LLL algorithm can find this vector in a time
bounded by Pp,(N, D) which is also a polynomial in N and D. So the total computation time
is bounded by P, = Pp, + Pp,, which is a polynomial in N, D. However, P, > Pz because
one must Hensel lift up to a substantially higher power of p. Furthermore, Pr, >> Pz, in
other words, the algorithm of Zassenhaus is much faster, except when cEz >> Pz which only
happens for polynomials with special Galois groups.

So, there exists a polynomial time algorithm [2], and an exponential time algorithm [1] that
is faster most of the time (except when M is large). How can the advantages of both algorithms
be combined?

Suppose that g, € Q[z]. The algorithm in [2] would find such ¢ = g, by computing a
vector U, in an N-dimensional lattice whose entries are the coefficients of g. Suppose that g is
large (say degree five hundred and coefficients with thousands of digits). Lattice reduction is
a very general method that can be applied to solve many combinatorial problems. So it is to
be expected that if it is used to construct a large expression such as U, that it will take a long
time. To have a faster computation, we must use LLL to construct smaller vectors instead.

The vectors in B are much smaller than the vector Uy, in two ways. The entries have only
1 digit whereas the entries of U, can have many digits. And the number of entries is only n,
usually n is much smaller than N (except for Swinnerton-Dyer polynomials where n = N/2,
which is smaller but not much smaller than N).

Because of the much smaller size, LLL can calculate the elements of B much faster than the
vector U,. We need to design an input lattice for LLL in such a way, that span(B) and hence B
can be obtained from the short vectors found by LLL. To keep the LLL cost to a minimum, we
must make sure that the short vectors found by LLL do not contain any information (other than
the set B) about the coefficients of a factor g, so that the LLL cost will not depend on the size
of g. The LLL cost will then be bounded by a polynomial P(n) that depends only on n, and not
on N or D. The cost cEz(n, M) of finding the set B in Zassenhaus’ algorithm is now replaced
by P(n), and the total cost of factoring is now: Pz(N,D) + P(n). So the resulting algorithm

is faster than Zassenhaus’ algorithm whenever P(n) < cEz(n, M). It turns out in experiments
that the cut-off point is low. That means that when P(n) is not smaller than cEz(n, M), then
P(n) and cEz(n, M) are both small, so then the computation time is close to Pz (N, D) for
both algorithms. However, when n is larger, then P(n) can be much smaller than cEz(n, M).
Experiments show that polynomials with n > 400, N, D > 2000 can be handled, which is far
beyond the reach of [1, 2].

2 How to construct the lattice to find B?

To find linear conditions on v we can not use the coefficients of the polynomial g,, because
they do not depend linearly on v, gyt+y = gugy- In order to find linear conditions, a vector
Ta(g) with s entries (s will be small compared to n) will be defined, that has the following
property: Ta(g1g2) = Ta(g1) + Ta(ge) € @, for all non-zero gi1,9> € Q,[r]. This Ta(g) will be
constructed in such a way that the entries of T'4(g,) are p-adic integers for all 0-1 vectors v,
and if furthermore g, € @[z] then the entries are integers, bounded in absolute value by % p® for
some integer b.

Now Ta(gy) = > viTa(fi) is a linear combination of the T4(f;), and when g, € Q[z] then
the entries of this linear combination are integers. However, the entries of T4(f;) are not yet
suitable for use in the LLL input vectors for two reasons. First, these entries of T'4(f;) are p-adic
integers, which are not finite expressions. Second, if g, € @[z], then the entries of T4(g,) are
integers bounded by %pb, and these integers give some partial information about the coefficients
of g,. It would be inefficient to have this information in the lattice. Both problems are solved
by cutting each entry of T4 (f;) on two sides. If ¢ is such an entry, then the p-adic integer ¢ can
be written as t = Zfio t;p’ with t; integers and —£ <t; <. Choose a > b, then cut such ¢ by
replacing it with E;’;bl t;p"~t. So the powers > a and the powers < b of p in t are removed. The
first causes the expression to be finite, and the second removes unnecessary information about
the coefficients of g from the lattice. Denote the result of this cutting by Tj’a(fi). Leter,...,en
be the standard basis vectors, so g, = fi. Denote V; = (e;, T*(fi)) as the concatenation of the
vectors e; and Tf{“(fi). The number of entries is n + s which is a little more than n. Denote
E;, j e {1,...,s} as the vector with n + s entries, all 0 except for the n + j’'th entry which is
pa—b_

The n + s vectors V; and Ej; are now the input vectors for LLL. To find the set B, calculate
the short vectors in the lattice spanned by the V; and Ej;, then take the projection on the first
n entries, and then reduce those vectors to echelon form. The resulting vectors form the set B,
provided that a,b and the other parameters in the algorithm were set properly. This can be
verified; the polynomials g, for v in the calculated set B are automatically irreducible if they
are in Q[z], so to verify the correctness of B one only needs to check that g, € @[z] for all v € B.

The reason that the LLL algorithm lets us find the vectors v for which g, € Q[z] is because
for those v, the entries of Ta(g,) are integers bounded by 3p’, hence Tf{a(gv) = 0. Now
EWT,Z’&(fi) is almost the same as Tz’“(gv) = 0, except for some round-off errors (caused by
cutting the p-adic numbers) which must be of the form €; 4 esp®~°, where €1, €5 are small. The
vector Y v;V; = (v, > vin"a(fi)) is in the lattice. After reducing with the vectors E;, all entries
are small; the first n entries are all 0 or 1, and the last s entries are small as well. So Y v;V; is a
short vector. When this vector is found by LLL, v can be read off by taking the first n entries.

There is a lot of freedom in the choice of the numbers p®~® and s so one can choose the size
of the LLL input vectors. For efficiency, the size should be not too large, but the size should
also not be too small because LLL can only find the short vectors if the remaining vectors are
sufficiently long in comparison. The number s(a — b)log(p) should be O(n?), and should be
independent of N and D.

3 The ’th trace

Definition 1 The i’th trace Tr;(g) of a polynomial g is defined as the sum of the i’th powers
of the roots (counted with multiplicity) of g.

It is clear that
Tr;(f1) + Tr;(f2) = Tri(fif2)

for any two polynomials fi, fo. Suppose g = 3 ¢;z is monic of degree d. Then Tr;(g) for
1 =1,...,k can be determined from c4_; for s = 1,...,k with the Newton relations, and vice
versa.

Now choose some iy, 2, .. .,is, and for g € @,[z] let Ta(g) be a vector whose entries are the
p-adic numbers Tr;, (g),- - ., Tr;, (9) multiplied by some integer m. The integer m is chosen in
such a way that if g is a factor of f in @[z], then the entries of T'4(g) are integers. If f is monic
and has integer coefficients then m = 1.

The number s is normally chosen much smaller than n or degree(g), so Ta(g) will only
contain partial information about the coefficients of g. By computing a bound for the absolute
value of the complex roots of f, it is easy to bound Tr;(g) for any factor g € Q[z] of f, so it is
easy to calculate a number b such that the absolute values of the entries of T4(g) are bounded
by %pb.

We use T'a(g) to fix the problem that g, does not depend linearly on v. There is also another
way to fix this problem: In [3] Victor Miller uses idempotents to factor in @[z]. The main
difference with our algorithm is that our algorithm is closer to Zassenhaus’ algorithm, because
only the 0-1 vectors are computed with integer-relation-finding or LLL; the factors g themselves
are constructed like in [1]. Millers algorithm is less similar to [1] but is closer to [2] in the sense
that everything is computed with integer-relation-finding, more precisely: it calculates the 0-1
vector and the idempotent e simultaneously, and if e is a non-trivial idempotent then ged(e, f) €
Q[z] is a non-trivial factor of f. In our algorithm, besides the 0—1 vector, no information about
g is calculated with LLL, because the value of T4(g) which contains information about g is
precisely what is being cut away when all powers < b of p were removed.

References

[1] H. Zassenhaus, On Hensel Factorization, I., Journal of Number Theory 1, 291-311 (1969).

[2] A.K. Lenstra, H.W. Lenstra and L. Lovész, Factoring polynomials with rational coefficients,
Math. Ann. 261, 515-534 (1982).

[3] V. Miller, Factoring polynomials via Relation-Finding. ISTCS ’92, Springer Lecture Notes
in Computer Science 601, 115-121 (1992).

[4] M. van Hoeij, Factoring polynomials and the knapsack problem, preprint available from
http://www.math.fsu.edu/ hoeij/ accepted for Journal of Number Theory (2000).

