
Zassenhaus LLL vH Belabas BHKS vH&N

Complexity of factoring polynomials with rational
number coefficients

Mark van Hoeij
Florida State University

JA’2007 Edinburgh

July 6, 2007

Zassenhaus LLL vH Belabas BHKS vH&N

Papers discussed in this talk

[Zassenhaus 1969]. Algorithm that is usually very fast, but
can take exponential time for certain types of polynomial.

[LLL 1982]. Lattice reduction (LLL algorithm) = key tool for
solving combinatorial problems.

[LLL 1982]. First polynomial-time factoring algorithm, though
Zassenhaus is usually faster.

[vH 2002]. New algorithm, outperforms prior algorithms on all
tests, but no complexity bound is given.

[Belabas 2004] Gave the best-tuned version of [vH 2002].

[Belabas, vH, Klüners, Steel 2004] (in the JA’2007 notes).
Gave poly-time bound for the slowest version of [vH 2002],
however, gave a worse bound for the best tuned version!

[vH and Andrew Novocin, 2007] An asymptotically sharp
bound for the fastest version.

Zassenhaus LLL vH Belabas BHKS vH&N

Zassenhaus’ algorithm

Let f ∈ Z[x] separable and monic. Goal: the factors of f in Z[x].

Idea 1: If g ∈ Z[x] divides f then the coefficients of g are smaller
than some bound L that we can compute.

Idea 2: If g ∈ Z[x] divides f then g can be reconstructed when
g mod pa is known for some pa > 2L.

Idea 3: Factor f = f1 · · · fr over Zp (the p-adic integers). There
are only finitely many monic factors of f in Zp[x]. Each is of the
form

gv :=
∏

f vi
i

for some 0–1 vector v = (v1, . . . , vr).

Idea 4: f1, . . . , fr (and hence gv) are not known exactly, but are
only known mod pa. That’s enough using idea 2.

Zassenhaus LLL vH Belabas BHKS vH&N

Features of Zassenhaus’ algorithm

Let L = bound for coefficients of factors in Z[x].
Let f1, . . . , fr ∈ Zp[x] be the p-adic factors.
Compute the p-adic factors mod pa for some pa > 2L
(first compute the fi mod p, and then mod pa by Hensel lifting).

1 Given some 0–1 vector v ∈ {0, 1}r then one can rapidly
decide if gv :=

∏
f vi
i is in Z[x] or not.

2 A factor in Z[x] can be computed efficiently if its 0–1 vector v
is known: Take the fi with vi = 1 and multiply them mod pa.

If f is irreducible we end up trying 2r (actually 2r−1) cases. Then
the CPU time will be roughly:

Cost(factoring f mod p) + Cost(Hensel lifting) + 2r ·tiny.

Zassenhaus LLL vH Belabas BHKS vH&N

Complexity of Zassenhaus’ algorithm

Cost(factoring f mod p) + Cost(Hensel lifting) + 2r ·tiny

1 Cost(factoring mod p) depends polynomially on the degree N.

2 Cost(Hensel lifting) depends polynomially on N, log(‖ f ‖∞)
where ‖ f ‖∞ = largest absolute value of coefficients of f .

3 With some tricks, testing one v ∈ {0, 1}r usually takes only a
tiny amount of CPU time, regardless N and log(‖ f ‖∞)

Given some polynomial f ∈ Z[x] of degree N, the algorithm tries
several primes p, and then chooses the one for which f has the
fewest p-adic factors f1 · · · fr .

Usually r << N and Zassenhaus’ algorithm is fast, with Hensel
lifting dominating the CPU time. But for polynomials that have
large r at each p the algorithm suddenly takes exponential time.

Zassenhaus LLL vH Belabas BHKS vH&N

Timings on an example

Cost 6 Polynomial(N, log(‖ f ‖∞)) + 2r ·tiny

Suppose for example f has degree N ≈ 200, and each coefficient
has about 200 digits.

For the best implementations of Zassenhaus’ algorithm, as long as
r < 20 then the precise value of r has little impact on the CPU
time, it will take about a second either way. Make examples with
larger r , and the CPU time suddenly starts to go up exponentially.

Zassenhaus’ algorithm is usually much faster than [LLL 1982]
(for such N,H one second instead of a day, if r < 20).

However, if say r = 64 then [LLL 1982] is much faster
(a day instead of an estimated 100,000 years for Zassenhaus).

Zassenhaus LLL vH Belabas BHKS vH&N

The goal

Suppose f has degree N ≈ 200, with ≈ 200 digit coefficients, and
say r = 64 p-adic factors f = f1 · · · f64.

For such a polynomials [LLL 1982] takes about 1 day.

Although that is much better than Zassenhaus, keep in mind that
if we somehow knew which subset(s) of f1, . . . , f64 to take, then
Zassenhaus would only take 1 second which is much better than
1 day!

Thus, the only thing that stands in the way to reduce CPU time
from 1 day to 1 second are objects with only 64 bits of data
(namely the v ∈ {0, 1}r that encode the right subsets of f1, . . . , fr).

The goal in [vH 2002] is a quick way to compute this data.

Zassenhaus LLL vH Belabas BHKS vH&N

LLL

In [LLL 1982] Lenstra, Lenstra and Lovász gave a lattice reduction
algorithm (the LLL algorithm), as well as a polynomial time
factoring algorithm for Q[x] based on the LLL algorithm.

Suppose L ⊆ Zn is a Z-module.

The input of the LLL algorithm is an arbitrary basis of L.

The output is a new basis b1, . . . , bm of the same lattice L, but
this basis has some very useful properties.

Zassenhaus LLL vH Belabas BHKS vH&N

LLL separates short from long vectors if gap is big enough

Let n = dim(L) and let B be some positive number. Let LB be the
sublattice of L spanned by the B-short vectors

LB := SPAN{v ∈ L : ‖ v ‖6 B}

Suppose furthermore that all vectors outside of LB are sufficiently
much longer than B, i.e. suppose

Big Gap Condition : ‖ v ‖> 2
n
2 B for all v ∈ L \ LB .

Then LLL allows us to compute a basis for LB

(compute an LLL basis b1, . . . , bn for L, and as long as the
Gram-Schmidt length of the last vector is > B remove it).

If the Big Gap Condition does not hold, then instead of a basis of
LB we would get a basis of some lattice L′ for which LB ⊆ L′ ⊆ L.

Zassenhaus LLL vH Belabas BHKS vH&N

Factoring with LLL

Suppose f ∈ Z[x] has a non-trivial factor
g = c0 + c1x + · · · ∈ Z[x]. How to find g with LLL?

Idea: Construct a lattice L with these properties:

1 w := (c0, c1, . . .) ∈ L.

2 Big Gap Condition: All vectors 6∈ SPAN({w}) are sufficiently
much longer than than w .

Then compute an LLL reduced basis b1, . . . , bm of L, and find
w = ±b1. Read off g from w .

This way one can find a factor g (or prove f is irreducible) in
polynomial time, see [LLL 1982].

Zassenhaus LLL vH Belabas BHKS vH&N

Back to the example

Suppose f has degree N ≈ 200, with ≈ 200 digit coefficients, and
say r = 64 p-adic factors f = f1 · · · f64.

To construct an irreducible factor g ∈ Z[x] (worst case: g = f if f
is irreducible) with [LLL 1982] means finding w = vector(g) with
lattice reduction. This vector could contain as much as
200 · log2 10200 ≈ 132, 000 bits of data, and LLL could take a day.

However, if we had r = 64 bits of data, v = (v1, . . . , vr) ∈ {0, 1}r

then we could compute the corresponding factor

g =
∏

f vi
i

in 1 second.

Main idea in [vH 2002]: Use LLL to compute (v1, . . . , vr) in a
way that avoids computing any bits of information about the
coefficients of g .

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

Let f = f1 · · · fr ∈ Zp[x]. The map

v 7→ gv =
∏

f vi
i

that sends a 0–1 vector v = (v1, . . . , vr) to the corresponding
factor of f turns additions into multiplications. For lattice
reduction we need something that is linear, so we have to turn
multiplications back into additions. One way to do that is using
the following map:

g 7→ Tr1(g)

where Tr1(g) is the sum of the roots (with multiplicity) of g . So
we get an additive map

φ : v 7→ Tr1(gv) =
∑

viTr1(fi)

from Zr to the p-adic integers Zp.

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

So lets take ti := Tr1(fi) ∈ Zp for i = 1, . . . , r and look at this map

φ : v = (v1, . . . , vr) 7→ Tr1(gv) = v1t1 + · · ·+ vr tr

from Zr to Zp.

If gv ∈ Z[x] then Tr1(gv) is a integer bounded by some b
(assume for now that f is monic. For b we can take N times a
bound for the absolute values of the complex roots of f).
Set

t̃i := (ti mod pa) ∈ Z

Then

Tr1(gv) = v1t̃1 + · · ·+ vr t̃r + small multiple of pa

for any of our target v ’s (the v ’s for which gv ∈ Z[x]).

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

For any of our target v ’s (i.e. gv ∈ Z[x]) we have:

Tr1(gv) = v1t̃1 + · · ·+ vr t̃r + small multiple of pa.

Now Tr1(gv) is a coefficient of the factor gv , but for efficiency we
want to compute (v1, . . . , vr) without computing any coefficients
of factors of f . So we take

si :=
t̃i
b
∈ Q

(the implementation rounds this to an integer for efficiency, but
we’ll skip that for simplicity).
Now let L be the lattice generated by:

(1, 0, . . . , 0, s1), (0, 1, . . . , 0, s2), . . . (0, 0, . . . , 1, sr)

and

(0, 0, . . . , 0,
pa

b
).

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

Any target v = (v1, . . . , vr) corresponds to a vector

v ′ = (v1, . . . , vr , Tr1(gv)/b) ∈ L.

All entries of v ′ are bounded by 1, so

‖ v ′ ‖6 B :=
√

r + 1 (B is a bit higher if we rounded)

So if let LB be the span of all vectors in L of length 6 B, and we
let π be the projection on the first r coordinates, then all our
target v ’s are in π(LB).

If the Big Gap Condition holds, then we can compute LB with LLL.
But we make no effort to ensure this condition, so we get some
lattice L′ such that

LB ⊆ L′.

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

Denote W as the span of our target v ’s (the 0–1 vectors
corresponding to the irreducible factors of f in Q[x] form the
reduced echelon basis of W).

Solving combinatorial problem ⇐⇒ computing W .

Now
W ⊆ π(LB) ⊆ π(L′)

W is the lattice we want, and L′ is the lattice we can get from LLL.

Given L′ we can quickly test whether π(L′) equals W or not.

(check if the reduced echelon basis of π(L′) consists of 0–1
vectors, and if so, check like in Zassenhaus if those 0–1 vectors
correspond to factors in Z[x] or not).

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

If π(L′) equals W then we are done, and the resulting factors are
irreducible regardless how many p-adic digits were used.

Prior factoring algorithms need some lower bound on the p-adic
precision in order to prove that the factors are irreducible. Our
algorithm does not need such a bound, because of the following

Our algorithm only terminates if it finds dim(π(L′)) factors in
Z[x], whose product equals f .

Any set of > dim(W) factors with product f are
automatically irreducible.

π(L′) ⊇ W is true for any p-adic precision.

(if we didn’t use any digits at all we’d get L′ = Zr . Using
more digits brings L′ closer to W , but L′ ⊇ W will always
hold, and termination only happens when L′ = W).

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

Since no bounds on the p-adic accuracy are needed to prove that
the output is irreducible, we can be very flexible with how many
p-adic digits to use. However, we only find the factors when
L′ = W , so in order for the algorithm to terminate, we do need
that L′ eventually becomes W .

So what if π(L′) 6= W ? We can gradually add more and more
p-adic digits, but that may not be enough. Additional data may be
needed. For instance, instead of Tr1 (= sum of roots) we can also
use Tr2 (= sum of squares of roots), Tr3 (= sum of cubes) etc.

One can prove that L′ will eventually become W if we keep using
more and more “traces” Tri and p-adic digits, see [vH 2002].

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

If we had an oracle that told us exactly how many p-adic digits to
use, and which traces Tri to use, in order to reach L′ = W in just
one lattice reduction, and if we used this oracle, it would

Be very helpful for determining a complexity bound for the
algorithm (no bound is given in [vH 2002], only a termination
proof).

But it would not speed up the algorithm. In fact, it can even
slow it down in certain types of examples. Gradually going
from Zr to W with a number of calls to LLL is not slower,
and sometimes faster, than getting there with one LLL call.
Understanding why this is so is the key to the new complexity
result [vH and Novocin, 2007].

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij, 2002

Suppose we have W ⊆ L ⊆ Zr . The idea was to append some data
to the vectors in L such that the target vectors will still have
length 6 B while most other vectors get longer. If they get
sufficiently much longer than B then LLL can separate them from
the B-short vectors so that we get an L′ ⊆ L of lower dimension,
bringing us closer to our target W .

However, even if we get L′ = L after running LLL, we may still
have made progress, because we’re working a basis of L, and the
result of running LLL can be that we now have a better basis of
the same L, which will save time during the next LLL call.

So undershooting (not finding W after an LLL call) is better than
overshooting (using way more digits than were needed to find W).

Zassenhaus LLL vH Belabas BHKS vH&N

Belabas 2004

Strategy B in [Belabas 2004] organizes the adding of p-adic digits
in such a way that each next call benefits maximally from the
LLL-work done in the previous call.

This way the number of calls to LLL has very little impact on the
total CPU time, because whichever work was done in one call will
save the same amount of work for the remaining calls.

The advantage of this is the following:

It allows him to add only few p-adic digits at a time without
hurting the running time (adding few digits at a time means
that more LLL calls will have occurred before the required
number of digits was reached).

The advantage of adding few p-adic digits at a time is that he
can never overshoot the required number of digits by much.
This way he prevents spending much more time than needed.

Zassenhaus LLL vH Belabas BHKS vH&N

Belabas, vH, Klüners, Steel (arXiv ’04 and JA’07 notes)

At the time, no complexity bound for the [vH 2002] algorithm was
known. Now [LLL 1982] does have a bound, but to mimic this
proof, we need to take a resultant, and for that, we need a
polynomial instead of numbers Tri (g).
Now Tri is not the only thing that sends ∗ to +, the logarithmic
derivative g 7→ g ′/g does this too. The main idea of the paper
was that all we have to do to get a polynomial (so we can take a
resultant and get a complexity bound) is to multiply that by f .

So we switched from traces Tri (g) (sum of i ’th power of roots)
to coefficients of the polynomial

f · g ′

g

and this was the key idea for getting a polynomial time complexity
result for a version of [vH 2002].

Zassenhaus LLL vH Belabas BHKS vH&N

Belabas, vH, Klüners, Steel (arXiv ’04 and JA’07 notes)

About this version of [vH 2002] for which we proved a polynomial
time complexity.

Belabas’ version works great in practice, but makes it a lot harder
to bound the complexity because there is no reasonable bound on
the number of LLL calls. So to get a complexity bound, we moved
to the opposite direction: use enough p-adic digits and enough
coefficients(f · f ′i /fi) so that 1 call to LLL will provably be enough.

In other words: we’re way overshooting!

This means that the version for which we got the poly-time
complexity result is way slower than any of the implemented
versions of [vH 2002].

Zassenhaus LLL vH Belabas BHKS vH&N

Belabas, vH, Klüners, Steel (arXiv ’04 and JA’07 notes)

This meant that we now had a polynomial-time complexity result
for a version that nobody will ever use because it is much slower
than the implemented versions.

Much effort was made to get a complexity result for a fast version
of the algorithm (i.e. one that is actually used).

A good choice is version [Belabas 2004] because it is well defined
(Belabas spelled out precisely which p-adic digits to add for each
LLL call).

The cost of each individual call to LLL in [Belabas 2004] is very
low (bounded by a polynomial depending solely on r , completely
independent of both degree and coefficient size!)

However, ...

Zassenhaus LLL vH Belabas BHKS vH&N

Belabas, vH, Klüners, Steel (arXiv ’04 and JA’07 notes)

The bound we got for the number of LLL calls for the fast version
[Belabas 2004] is huge.

So the bound we get in [BHKS] for the fast version is much worse
than the bound for the slow version
(Theorem 4.6 only says “polynomially bounded” but does not spell
out this polynomial in order to avoid embarrassment).

It is very unsatisfactory that the faster version should have a worse
bound. The problem is that the key advantage of the fast version
did not contribute at all to the complexity bound in [BHKS].

(A key advantage of [Belabas 2004] was that it is designed in such
a way that the number of LLL calls does not matter much, which
makes it easy to avoid overshooting)

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij and Novocin, 2007

The product “bound for number of LLL calls” times “bound for
each LLL call” can not give a good bound because

the number of calls in [Belabas 2004] can indeed be large

the bound for each LLL call can not be improved
(The cost of each LLL call is determined by the number of
LLL switches it makes. The switch-complexity, i.e. the bound
for the number of LLL switches, is O(r3), which is sharp.)

[vH&N 2007] proves a bound with the following property:

The bound for all of these LLL calls combined is the same as the
bound for each of the individual calls.

The switch-complexity for all LLL calls combined is the same
O(r3) as it is for any of the individual LLL calls.

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij and Novocin, 2007

And this describes the observed behavior of the algorithm perfectly.

There is an example in [Belabas 2004] that takes 62 LLL calls,
with the bulk of the CPU time spent on just a handful of them. So
experimentally, the cost for an individual LLL call is of the same
magnitude as the cost for the total. The complexity result in
[vH&N 2007] explains this observation perfectly.

Zassenhaus LLL vH Belabas BHKS vH&N

This O(r3) is independent both of the degree and the coefficient
size of f . How could a complexity bound possibly be independent
of those?

Here we are not yet bounding the cost of factoring f , at the
moment we are only bounding the number of LLL switches
used to solve the combinatorial problem, because this is what
dominated the worst-case complexity.

The cost for the other steps in factoring (like Hensel lifting)
do of course depend on degree and coefficient size.

Digits are fed gradually to LLL, so the LLL input never has
vectors whose length depends on the coefficient size of f .

We will give a lattice problem and show that it can be solved
at a switch-complexity that is independent of coefficient-size.

Applying this to the combinatorial problem shows its
independence of coefficient size (text completed this week).

Independence of degree is being written down right now by
my student Andrew Novocin, this should soon be added to
preprint [vH&N 2007].

Zassenhaus LLL vH Belabas BHKS vH&N

Rough sketch of Lattice Reduction Algorithms

Let b1, . . . , br ∈ L be a basis of L and denote b∗1, . . . , b
∗
r ∈ Rm as

the Gram-Schmidt orthogonalization over R of b1, . . . , br .

Let li = log4/3(‖ b∗i ‖2), and µi ,j =
bi ·b∗j
b∗j ·b

∗
j
.

Input: A basis b1, . . . , br of a lattice L.
Output: A LLL-reduced basis of L.

1 (Gram-Schmidt over Z). By subtracting suitable Z-linear
combinations of b1, . . . , bi−1 from bi make sure that
|µi ,j | ≤ 1/2 for all j < i .

2 (LLL Switch). If there is a k such that interchanging bk−1 and
bk will decrease lk−1 by at least 1 then do so.

3 (Repeat). If there was no such k in Step 2, then the algorithm
stops. Otherwise go back to Step 1.

Zassenhaus LLL vH Belabas BHKS vH&N

What LLL does

Let b1, . . . , br be the current sequence of vectors.

Let li = log4/3(‖ b∗i ‖2) be the logarithmic Gram-Schmidt lengths
of our vectors.

What each LLL switch does is to move some of this G-S length
from bi ’s to later vectors in the sequence.

l1 =⇒ l2 =⇒ l3 =⇒ · · · =⇒ lr

b∗1 b∗2 b∗3 · · · b∗r

b1 ↔ b2 ↔ b3 ↔ · · · ↔ br

A random basis b1, . . . , br has big l1 and small lr . Each LLL switch
brings us closer to a good basis (small l1 and big lr).

(in our application, if ‖ b∗r ‖>
√

r + 1 then W ⊆ π(L′) where
L′ := Zb1 + · · ·Zbr−1 and we get one step closer to finding W).

Zassenhaus LLL vH Belabas BHKS vH&N

Solving the combinatorial problem in factoring

Take this matrix, which is matrix A from [BHKS] with the last N
columns scaled down a factor c := n · B(f).

pa/c
·

pa/c
1 ∗ · · · ∗

. . .
...

. . .
...

1 ∗ · · · ∗


Let b1, . . . be an LLL reduced basis for the rows of this matrix.

As long as the G.S. length of the last one is greater than
B :=

√
r + 1, remove it. Let b1, . . . , bs = remaining vectors.

Then [BHKS] Theorem 4.3 shows that W = π(Zb1 + · · ·Zbs)
where π = projection on Zr .

Zassenhaus LLL vH Belabas BHKS vH&N

Solving the combinatorial problem in factoring

The entries of this r + N by r + N matrix depend on the
coefficient size. Our task is to show that we can compute
W = π(Zb1 + · · ·Zbs) with a number of LLL-switches O(r3) that
is independent of both N and the coefficient size.

Lets start with a basis for Zr (certainly W ⊆ Zr so we’re still OK).
That’s the left lower corner of our matrix. Now add one row and
column: 

pa/c
1 ∗

. . .
...

1 ∗


LLL this matrix will lead to L′ := Zb1 + · · ·Zbs with W ⊆ π(L′).
If W = π(L′) then done, if W (π(L′) we have to then we have to
look at the next row/column.

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij and Novocin, 2007


pa/c

1 ∗
. . .

...
1 ∗


Entries in the last column could be huge. So we do this

1 Scale down last column a factor 2rd where d is big enough
that this makes the last column of size O(1).

2 Repeat d times:

Scale up last column a factor 2r .
LLL (the vectors are the rows of the matrix)
Remove (if any) last vector(s) with G.S. length > B =

√
r + 1.

Output = LLL reduced b1, . . . , bs with W ⊆ π(Zb1 + · · ·Zbs).
We now have to show that the switch-complexity of this strategy is
independent of d (the number of LLL calls).

Zassenhaus LLL vH Belabas BHKS vH&N

van Hoeij and Novocin, 2007

We start with r + 1 vectors, and at any given time we have
b1, . . . , bs remaining vectors and r + 1− s removed vectors. Again
l1, . . . , ls are the logarithmic Gram-Schmidt lengths. We now
assign a value to the current configuration as:

µ(b1, . . . , bs) = 0·l1+1·l2+· · ·+(s−1)·ls+(r+1−s)·r ·log4/3(2
3rB2)

The key to the proof is now that

µ = 0 at the beginning.

No step in the algorithm decreases µ.

Each LLL switch increases µ by at least 1, regardless in which
LLL call that switch was made.

µ can never become more than
(r + 1− 0) · r · 10r = 10(r + 1)r2

Details on the blackboard.

	Zassenhaus
	LLL
	vH
	Belabas
	BHKS
	vH&N

