
Closed Form Solutions for Linear Differential and

Difference Equations, Project Description

Mark van Hoeij

September 1, 2007 — August 31, 2010

1 Introduction

Many scientists use computer algebra systems to solve linear differential or
difference equations. These programs check if an equation can be matched
with an equation in textbooks such as [58]. A big advantage of these pro-
grams is that they take much less time than searching the library.

But what if the computer does not find a solution? Does it mean that
one has to search elsewhere to find closed form solutions? Or does it mean
that no closed form solution exists? The latter would be useful to know
because then one can stop searching.

To examine these questions take the following example.

y′′ −
8x5 + 8x3 − 42x

4x4 − 12x2 + 3
y′ +

(64 + 8n)x4 − (96 + 24n)x2 + 6n

4x4 − 12x2 + 3
y = 0

This equation has more singularities than typical textbook equations. So it
not surprising that pattern matching techniques fail here, and that current
computer algebra systems do not solve this equation. It does, however, have
closed form solutions [36]. Many equations in research [29, 30] have closed
form solutions and yet are not solved by computer algebra systems.

The goal in this project is to develop a decision procedure (a provably
complete algorithm) for the following problem: Given any linear differential
or difference equation with rational function coefficients, decide if it is solv-
able in closed form, and if so, find its closed form solutions.

Intuitively, a function is in closed form if it can be expressed in terms
of well known special functions. Of course, if two functions can be written
in terms of special functions, then so can their sum, product, composition,

1

their derivatives (shifts in the difference case), etc. Therefore, the class of
closed form functions must be closed under at least those operations.

Closure properties are of crucial importance; if even one of them is miss-
ing then it would be easy to write down equations that are solvable in
closed form, but that are not solved by the algorithm. Current algorithms
for finding special function solutions have no such closure properties, not
even addition, so they are far from complete. Computers currently only find
special function solutions of equations that are close to textbook form.

The intuitive definition of closed form is made precise as follows.

Definition of closed form.
Consider a set of functions F and a set of operations O. A function is in
(F,O)-closed form if it is written in terms of the functions in F , using the
operations in O.

For example, if F = {C(x), exp, log} and O = {field operations, al-
gebraic extensions, composition, and differentiation} then the (F,O)-closed
functions are the elementary functions [13, 76]. If one adds integration, so
O := {+, −, ·, /, algebraic extensions, ◦, ′, and

∫

dx} then the (F,O)-closed
functions are the Liouvillian functions [43, 52, 61, 83, 85].

In this project F will consist of {C(x), exp, log, Airy, Bessel, Kummer,
Whittaker, and 2F1-hypergeometric functions}. The set of operations O will
be the same as in the Liouvillian case, and (F,O)-closed form will simply be
called closed form. Note that one may add other well known special func-
tions such as sin, cos, Cylinder, Hermite, Laguerre, 0F1, 1F1, or Legendre
functions to the collection F (or remove Airy, Bessel and Kummer functions)
without changing the notion of closed form, because these functions can be
expressed in terms of other functions already listed in F .

The mathematical property that describes the special functions selected
in F is that they satisfy a rigid [59] second order differential equation. This
is not an arbitrarily chosen set of special functions; these are precisely the
special functions about which a great deal of useful information is known, see
for example Abramowitz and Stegun [6]. That is why solutions written in
terms of these special functions are so useful (for more on this see Section 1
in [67]).

An analogous definition for closed form sequences can be given in the
difference case as well (the analogue of rigid equations can be defined using
local data at infinity [65] and the PI’s notion of finite singularities [23, 44]).

Relation to prior work.
It is not the PI’s goal to gradually solve more and more equations compared

2

to prior algorithms by developing new pattern matching techniques or some
ad hoc extensions of existing methods. That would be a task that could be
pursued indefinitely. Instead, the goal is to develop a decision procedure,
which means an algorithm that is provably complete for the entire class of
closed form functions. Once this algorithm has been developed and its com-
pleteness has been proven, then the work is done. If closed form solutions
exist, they will be found, and if an equation is not solved, it means that it
provably does not have closed form solutions.

Current status and feasibility of the project.
It is easy to find and solve some equations that are not solved by current
computer algebra systems. Nor would it be hard to increase the capabil-
ities of existing algorithms by making some extensions ([92] is specifically
designed to be extendible). However, it is an entirely different matter to
design an algorithm that is complete on the entire class of closed form func-
tions. For this task, completeness proofs are a major part of the work.

The PI has a structure theorem for the Bessel case that has most of the
desired closure properties. To complete it, more work is need, particularly
for the 2F1 case. See Section 2.2 for technical details. The main technical
points are these: To prove completeness for the Bessel case one can use
asymptotic analysis as well as analytic continuation, while for the 2F1 case
one can only use the latter. Even so, it is still possible to obtain enough
information from this to prove the structure theorems needed to prove com-
pleteness. The reason this will work is that the special functions considered
are rigid [59], which means that their global behavior (their behavior under
analytic continuation) is determined by their local asymptotic behavior at
the singularities.

For the Bessel case the PI has implemented a partial algorithm with
graduate student Ruben Debeerst. To complete it, a number theoretical
problem needs to be resolved (see the item on complexity below).

The technical difference between special functions with regular singular-
ities and irregular singularities also implies that an algorithm for the 2F1

hypergeometric function will also contain many more cases, and more diffi-
cult cases, than irregular singular cases like Bessel. The Bessel case can be
completed relatively quickly. The PI estimates that developing a complete
algorithm for all cases will take 3 to 5 years.

The current status can be summarized as follows: For differential equa-
tions, there is a partial implementation for Bessel type solutions, though the
most difficult case remains to be done. The following are in the exploratory
stage: essentially all of the theoretical work (see Section 2.2), difference

3

equations, and almost all of the work (in particular 2F1) for differential
equations. The explorations and experiments indicate that the project is
feasible and that there will be more than enough work for the PI plus at
least 2 or 3 graduate students. There is a wide variety of topics for students
to work on, ranging from accessible to very challenging.

Complexity.
The algorithm should not just be complete in theory, it should also work
well in practice, even on complicated examples. This means that steps with
high complexity need to be avoided. For example, to complete the Bessel
case, the PI encountered a technical problem that could be solved by solv-
ing polynomial equations. However, doing so would have lead to a very high
complexity, so an alternative was needed. For this technical problem, the
polynomial equations will be linearized by computing subfields of an alge-
braic extension (a topic in the PI’s current NSF grant and preprint [53]).
This way a polynomial time complexity can be obtained. To obtain an ef-
ficient algorithm for the 2F1 case, the PI will have to resolve interesting
problems with techniques from algebraic number theory and algebraic ge-
ometry.

Summary.
The main goal in this project is not an improvement of an existing algorithm,
or an additional solver in a long list of solvers. Instead, the goal is to develop
a complete algorithm for a very important class of problems. Given the
enormous range of applications of linear differential and difference equations,
the knowledge that complete closed form solvers are actually within reach
is a powerful motivation [35] for the PI to work on this topic.

1.1 Value of this work to other researchers

Solving recurrence relations (i.e. difference equations) is useful for discov-
ering previously unknown relations between various areas of mathematics.
Currently available techniques include [23, 33, 62, 60, 64, 77, 78, 87, 88,
71, 70, 93]. The PI decided to test if his ideas would lead to significant
progress in finding such relations. A convenient way to do this was to use
Sloane’s online database [87]. This database contains many sequences, in-
cluding thousands that satisfy a linear recurrence. Many of these sequences
are known in the literature; the database provides references. What was
also very helpful is that the entire set of sequences in the database can be
downloaded with one click on a button.

4

An experiment.
Preliminary explorations towards a solver for recurrence relations have been
undertaken by Giles Levy, one of the PI’s graduate students. The question
was: Among those sequences in the database that satisfy a linear second
order recurrence, how many are solvable in terms of other sequences in the
database under gauge transformations (which involve +, ·, and shifts).

The purpose was to determine experimentally how often such a sequence
could be written in terms of other sequences from the literature, using only
a subset of the set O from Section 1. That turned out to be the majority.
Many new relations were found that were not known to the database, for
example,

A006605(n) =
6

13n + 9

(

A027908(n) +
n + 1

8n + 4
A027908(n + 1)

)

a formula that expresses sequence number A006605 in the database (the
number of modes of connections of 2n points) in terms of A027908 (the
coefficient of xn in (1 + x + x2)2n). Thus, the student’s current prelimi-
nary implementation is already useful to researchers who encounter linear
recurrences in their work, because there is already a good chance that this
program will discover a relation with other sequences known in the liter-
ature. The capabilities of this program will be significantly expanded for
Giles’ Ph.D work, with the end goal of being provably complete in a large
class of closed form sequences.

The PI does not have to search very far to find researchers that will
benefit from this project. For example, Philip Bowers in the PI’s depart-
ment encounters sequences and recurrence relations in his computations in
quantum mechanics. Closed form solutions of these recurrences are difficult
to find by hand, a computer program is needed.

Differential equations are very important for many researchers as well,
and a few examples will be given in the remainder of this section. W.N.
Everitt sent the PI examples for which he wanted to know closed form
solutions. The PI solved Everitt’s equations, and was consequently made a
co-author of a preprint [29].

From a computer algebra standpoint, this is not how it should be. For
example, if the computer returns a polynomial unfactored, then it should
not be necessary to ask someone else for a factorization; that polynomial
should be irreducible. Nobody ever asks the PI to factor a polynomial; a
clear sign that computers do a good job on this task. Likewise, the optimal

5

situation is that once Everitt asked the computer to solve his equations, it
should not have been necessary to ask anywhere else; because if a closed
form solution exists, the computer should find it, and if it does not find
closed form solutions, then such solutions should provably not exist. This
way the arbitrariness is taken out of the process.

It is very useful to have a complete algorithm for a very general notion of
solvable in closed form. Then one can no longer encounter solvable examples
that the computer leaves unsolved (which at the moment is common [29,
30]). The example at the beginning of Section 1 had five singularities in
C

⋃

{∞}. That is more than enough to make it very unlikely to find closed
form solutions with current computer algebra systems.

The explanation is as follows. A necessary condition for current algo-
rithms to work is that the set of singularities can be mapped by a Möbius
transformation to the set of singularities of a textbook equation. The larger
the set of singularities is, the less likely it is that this condition holds.

However, this explanation does not imply that current algorithms are
complete for equations with few singularities. To illustrate that, the PI
constructed the following example with just one singularity, an irregular
singularity at infinity:

y′′ + (2 − 10x + 4x2 − 4x4)y = 0 (1)

Current computer algebra systems can find a solution in terms of tricon-
fluent Heun functions, which are not in closed form according to the PI’s
definition. Finding a solution in terms of Heun functions is better than find-
ing no solution, but closed form solutions are preferable, see the discussion
in Section 1 in [67] (by choosing the rigid [59] special functions, the PI’s def-
inition of closed form encapsulates precisely those special functions about
which a great deal of practically useful information is known, which makes
closed form expressions much more manageable in practical computations
than other functions such as Heun functions.)

The same equation is also solvable in closed form because the solutions
can be written in terms of Airy Ai and Bi functions using field operations,
composition, and differentiation:

y1 = (2x2 + x − 1)Ai(x2 − 1) + (2x + 1)Ai′(x2 − 1)

y2 = (2x2 + x − 1)Bi(x2 − 1) + (2x + 1)Bi′(x2 − 1)

A complete closed form solver would contain a complete Airy solver and
should thus solve equation (1) in closed form.

6

Converting Heun functions to closed form is an area of research in itself,
see for example [21, 28, 57, 67]. This project would provide significant
progress for Heun functions. The techniques used thus far for converting
Heun functions to closed form are not general enough for examples such
as the one above (sums are currently not treated). When this project is
completed, closed form expressions can be found automatically whenever
they exist.

1.2 Value to society

An important benefit of producing good algorithms is that people benefit
from the work even if they are unaware of this research. Their equations
will be solved by the computer, and for this there is no need to know what
was behind this. Most of the people who benefit from the PI’s work will be
unaware of it1. In fact, in computer algebra, that is precisely how it should
be because having a complete algorithm in the computer and obtaining
certainty with a click of a button is much preferable over having to search
for a closed form solution while never knowing for sure if one exists.

Many branches of science have important impacts on society. Differential
and difference equations occur in almost every branch of science, and hav-
ing closed form solutions is very useful in practical applications for several
reasons (see the discussion in Section 1 in [67]). The PI believes that com-
puter algebra is of great value to society, and that within computer algebra,
differential and difference equations are among the areas with the highest
overall impact. So when a complete closed form solver for such equations is
within reach, then that is what the PI should be working on.

2 Feasibility and relation to prior work

There are numerous algorithms and tools [1, 3, 14, 15, 16, 17, 18, 19, 22, 23,
24, 33, 39, 43, 44, 50, 52, 61, 62, 63, 68, 72, 77, 78, 79, 83, 84, 89, 90, 92]
for solving linear differential and difference equations. Each treats a certain
type of solutions. Some of these algorithms (specifically, those that compute
exponential and Liouvillian solutions) have all closure properties but no
special functions. For other algorithms the reverse is true. However, none
of the methods behind these algorithms generalizes to cover all closed form
solutions. So the PI will follow a new approach.

1The same is also true for the PI’s existing algorithms, the PI has met many people at
conferences that have used some of the PI’s algorithms without being aware of it

7

This is not to say that currently existing algorithms are not useful; these
algorithms save many researchers, including the PI, a lot of time. The
project would take many years if it were not for the fact that some of the
required tools are already available. The most important of these tools
are: reduction of order (more details on this will be given in Subsection 2.1
below), software [37] for finding gauge transformations, hypergeometric [23]
exponential [22, 74] and Liouvillian [43, 52, 61, 83, 85] solutions, local data
at singular points (see [22] resp. [23, 44] for the for the differential resp.
difference case), subfields of algebraic extensions [53], etc.

Because of these tools, the PI estimates that complete closed form solvers
can be developed in 3 years with some additional time needed for complete-
ness proofs, see Subsection 2.2 below.

2.1 Reduction of order

Solving an equation (a differential equation or a recurrence relation) often
involves reduction of order, which means writing solutions in terms of so-
lutions of equations of lower order. For instance, a reduction of order is
possible if the operator that corresponds to the equation can be factored.

So factoring differential operators is useful for solving differential equa-
tions. Likewise, factoring difference operators is useful for solving recurrence
relations. The PI has developed algorithms for factoring differential differ-
ential operators and for computing first order factors of difference operators
(see NSF grants 9805983 and 0098034, and papers [22, 23, 39, 44]). An
efficient implementation for higher order factors in the difference case will
be available before the starting date of this project, see Section 3.

Factoring is a common way to reduce the order, but not the only way;
there exist equations that can be reduced to lower order equations even
though the corresponding operator is irreducible. In [81] Michael Singer
classifies the ways in which a differential equation can be reduced to equa-
tions of order 2. For equations of order 3, there are now efficient implemen-
tations available by the PI for all possible cases of reduction to order 2, see
[34].

Computing Liouvillian solutions [43, 52, 61, 83, 85] is equivalent to re-
ducing an equation to first order equations (defined over a field extension).
Eulerian solutions [81] correspond to a reduction to order 2. Because of these
reductions, the primary bottleneck now is to solve equations of order 2 that
do not have Liouvillian solutions. So order 2 will have the highest priority,
because that will have an immediate impact on higher order equations as
well (for more details see [34].)

8

2.2 Mathematical tools needed for this project

To prove that an algorithm for solving differential or difference equations is
complete requires structure theorems that describe precisely what type of
solutions can actually occur. Here is a structure theorem for the Bessel case.

Theorem. Let K0 be the algebraic closure of C(x). Let f1, . . . , fn ∈ K0,
ν1, . . . , νn ∈ C and r1, . . . , rm ∈ K0. Let Iν and Jν denote the Bessel I and
J functions with parameter ν. Let K be the differential field generated over
K0 by the functions exp(

∫

ri), Iνi
(fi), Jνi

(fi) and their derivatives. Let L be
a linear second order differential equation with coefficients in C(x) and no
Liouvillian solutions. If L has a non-zero solution in K then L has a basis
of solutions of the form

y1 = (a1Iν(f) + b1Iν+1(f)) e
∫

r, y2 = (a2Jν(f) + b2Jν+1(f)) e
∫

r

where r, a1, b1, a2, b2 and f2 are in C(x). Moreover, if L is defined over C(x)
for some subfield C ⊆ C then r, a1, b1, a2, b2, f

2 ∈ C(x) and ν2 ∈ C.

The proof of the above theorem is long but not excessively difficult.
However, it still needs to be extended because as stated the Bessel functions
are only composed with algebraic functions and not with arbitrary elements
of K. If a differential equation of order > 2 can be solved in terms of Bessel
functions then one can use reduction of order [81].

Because of the practical value of the algorithm, the task of designing
the algorithm will take priority over the (more difficult) theoretical work
of proving completeness. The PI intends to develop complete algorithms
within 3 years and completeness proofs within 5 years. The theoretical
work is important, because it means that if the algorithm finds no solution,
then the user can be confident that there really are no closed form solutions.

The remainder of this subsection will contain technical points. The pur-
pose is to give an indication of the theoretical work that needs to be done,
and which tools the PI intends to use.

To extend the theorem to all closure properties, observe that a com-
position of two Bessel functions will have a double exponential asymptotic
behavior and hence such a composition cannot occur as a solution of an
equation with rational function coefficients. It is more difficult to prove
that when such compositions are combined with other field operations, that
the asymptotic behavior will not cancel sufficiently to obtain a solution of
an equation with rational function coefficients. To do this, the PI will study
the monodromy action (i.e. the effect of analytic continuation). The aim is

9

to prove that any such cancelation can not persist after applying analytic
continuation on paths around the singularities of L.

For the 2F1 case one depends even more on arguments based on analytic
continuation. One way in which the 2F1 case differs from the irregular sin-
gular cases is that if one composes two 2F1’s, then the singularities of the
composition do not have an asymptotic growth beyond that what is possi-
ble for solutions of equations with rational function coefficients. In fact, a
composition of two 2F1’s can be a solution of an equation with rational func-
tion coefficients (for example, choose their parameters in the Schwartz list
[8], so that they are algebraic functions. The composition of two algebraic
functions is again algebraic, and every algebraic function satisfies a linear
differential equation.)

Suppose y is a composition of two 2F1’s neither of which is algebraic.
How can one prove (as a step towards a structure theorem) that y can not
be a solution of a linear equation L with rational function coefficients? The
idea is that L has only finitely many singularities, and that if one applies
analytic continuation to y over paths around the singularities of L, one will
encounter additional singularities of y. Then y can not be a solution of L.

The deeper mathematical reason that proving structure theorems and
designing complete algorithms is feasible is that the selected special func-
tions satisfy rigid differential equations. This means that they are globally
determined by their local asymptotic behavior. The PI needs this property
to obtain structure theorems. This same property also explains why these
functions have so many useful properties.

2.3 Can a solver be both complete and efficient?

The PI’s approach to find closed form solutions will use a quantitative clas-
sification of the asymptotic behavior at the singularities (the so-called gen-
eralized exponents [22, 39]. For the analogue in the difference case see
[23, 44, 65]). The idea is to try derive enough data about the solutions
from their asymptotic behavior so that the remaining data can be found
by solving equations. These equations must be linear to ensure the algo-
rithm will be efficient. That can be accomplished more easily for special
functions with irregular singularities because the PI’s generalized exponents
yield more data for irregular singularities than for regular singularities. The
example at the beginning of Section 1, which had an irregular singularity
at infinity, could be solved [36] in less CPU time than it took to verify the
solutions.

For Bessel functions there is a case in which the equations are non-linear

10

but can be linearized by computing subfields of an algebraic extension. That
this works depends on the structure theorem in Section 2.2 (specifically, the
fact that f 2 ∈ C(x) if L is defined over C(x).) This is one of the ways how
such theorems help to obtain an efficient algorithm. Such theorems will also
be needed to address another efficiency issue, the field problem in [23]. The
field problem is also the reason that PI has worked on theorems [55] related
to reduction of order.

Reduction of order is important to solve equations of order > 2. The
algorithm in [81] involved solving a system of non-linear equations; a com-
putationally expensive step [25]. The PI developed an algorithm [54] to
compute a point on a conic over C(x) that does not involve solving non-
linear equations, so that the reduction from order 3 to order 2 can now be
done efficiently [34].

As in [22, 23] (item 2b in Section 4), one can combine p-curvature tech-
niques with local data to detect rapidly when an equation may have closed
form solutions, and if so, which special functions will be involved.

The 2F1 case (only regular singularities) will be by far the most involved2

and will use techniques from algebraic geometry. A large portion of this
project is to make sure that solutions will computed efficiently not just in
easy cases but in complicated cases as well.

3 Current research

The PI is currently working on two projects under the support of the PI’s
current NSF grant 0511544, whose funds will be depleted by the end of the
summer of 2007. The first one is important for this proposal, while the
second fits better with the PI’s current NSF grant. For reasons explained
below, both need to be completed during the summer of 2007, before the
requested starting date of this proposal.

Finish joint project with Barkatou and Bronstein.
The PI had started a research project on factoring difference operators (see
[51]) with Manuel Bronstein before his tragic death. Manuel worked on a
similar topic with Moulay Barkatou (systems instead of operators). So it
is natural to combine this into a joint three-author paper, and to do this,
Moulay Barkatou will visit the PI for one month during the summer of 2007.

2Keep in mind that the PI’s goal involves many closure properties and that with just one
of them, e.g. composition, the problem is already non-trivial, see for example [52, 67, 91].

11

Prove new best complexity result for factoring polynomials.
The second project is the complexity of factoring polynomials with ratio-
nal coefficients. The PI’s algorithm algorithm given in [45] works well in
practice but no complexity bound was given in this paper. Then a joint
preprint [11] proved a polynomial time complexity bounds for two versions
of this algorithm. These bounds did not improve prior complexity bounds.
Most unfortunate was that the version [10] with the best performance had
the worst complexity bound in our preprint. However, for this version the
PI can now prove a complexity bound that actually matches its practical
performance. This will be the first improvement in decades in the complex-
ity bound for factoring in Q[x]. The PI plans to work out the details with
Andrew Novocin, one of the PI’s graduate students. This work must be
completed before July when the PI is scheduled to present this at an invited
lecture in Edinburgh [38].

4 Results from prior NSF support.

The following is an overview of research supported by the PI’s prior NSF
grants (for details on those grants see Subsection 4.1).

1. Recurrence relations

(a) In [44] the PI developed an efficient algorithm to compute hy-
pergeometric solutions of linear recurrence relations, that avoids
computing splitting fields which was a bottleneck in Petkovšek’s
algorithm (see [70]). More recently, this algorithm was developed
further in a joint paper [23] with T. Cluzeau. The algorithm is
much more efficient than previous algorithms which means that
much larger problems can now be handled. An implementation
by the PI of this algorithm is available.

(b) In [2] an algorithm was developed to desingularize recurrence re-
lations whenever possible.

(c) A generalization of Gosper’s algorithm to n’th order recurrences
was given in [4]. This algorithm can be used not only to prove
but also to find interesting identities.

2. Solving linear differential equations.

(a) Solving Second Order Linear Differential Equations with Klein’s
Theorem [52]. The Kovacic algorithm [61] is a famous algorithm

12

for finding Liouvillian solutions of linear second order differential
equations. With the use of Klein’s theorem, one can give more
compact solutions than those found with the Kovacic algorithm.
This makes the solutions more practical. An implementation of
this algorithm is available.

(b) A new algorithm for computing exponential solutions was devel-
oped in [22]. One of the novel ideas in this algorithm is to combine
local data in characteristic 0 (generalized exponents) with global
mod p data (the p-curvature).

(c) An algorithm was developed in [50] for writing solutions of fourth
order equations as products of solutions of second order equa-
tions.

(d) In [17] equations with doubly periodic coefficients were treated.

(e) An algorithm for computing Liouvillian solutions of third order
differential equations was developed and implemented [43].

3. Factoring polynomials.
The PI developed a new algorithm [45] for factorization of polyno-
mials with rational number coefficients, specifically, the combinatorial
problem appearing in Zassenhaus’ algorithm is solved efficiently. This
algorithm is a significant practical improvement [66]. It was soon incor-
porated into computer algebra systems such as Maple, Magma, NTL,
Pari, and MuPAD. These implementations benefit indirectly from NSF
support, because those implementations are assisted by the paper as
well as the PI’s implementation on the web, both of which were pro-
duced with NSF support.

4. Evaluating Riemann Theta functions, Riemann matrices.
The following algorithms were developed in [26] as joint work with
Bernard Deconinck: monodromy, homology, differentials, and period-
matrix (also called Riemann matrix). These algorithms allow to com-
pute numerically in the Jacobian of an algebraic curve, and represent
a significant amount of work. This work was followed up in 2004 with
a paper [27] on computing Riemann Theta functions. Two implemen-
tations (in Maple and in Java) for computing Riemann Theta func-
tions were provided as well. These functions are important for solving
differential equations such as the KdV equations, which in turn are
important for describing ocean waves (for more see NSF nugget [69]).

5. Descent for differential operators.

13

The PI has worked on several methods for reducing differential equa-
tions to differential equations of lower order. The corresponding differ-
ential operator could for example be a product of lower order operators
[39]. The PI has also used other constructions (symmetric product [50],
symmetric power, or a symmetric power after a gauge transformation)
to develop and implement algorithms for reducing the order. In these
methods, it is possible that algebraic numbers need to be introduced
to perform this reduction in order. To design efficient algorithms, it is
important to know in advance which algebraic extensions may occur.
The PI has written a joint paper [55] with M. van der Put about the
mathematics underlying this issue.

In [81] Singer gave a process for reducing third order linear differential
equations to second order equations by finding a point on a conic. In
[55] it was shown precisely which conics can occur here. The PI also
developed an algorithm [54] to find a point on such a conic, so Singer’s
reduction to second order can now be performed efficiently, without
the need for solving polynomial equations, see [34]. This reduction
could be done for recurrence relations as well.

The paper [55] also proves that second order equations are projectively
equivalent if and only if the same is true for their symmetric squares.
The PI has also developed an algorithm for computing gauge transfor-
mations. This algorithm is also useful for computing ladder operators
in physics, and is available at [37].

6. Algebraic curves.
An algorithm was developed in [47] to compute a normal form for
hyperelliptic curves. Prior to NSF support, the PI already developed
such algorithms for the elliptic case [42] as well as for parametrizing
algebraic curves [41] of genus 0. Note that a parametrization is not
unique, but only unique up to a Möbius transformation. Consequently,
these algorithms often find an answer with much larger coefficients
than necessary. An algorithm to address this issue was implemented
by the PI’s graduate student Andrew Novocin.

7. Modular GCD algorithm.
In computations involving algebraic extensions, a bottleneck in the
computation is often GCD computations. To remedy this, the PI
wrote two joint papers [48], [49] with M. Monagan on modular algo-
rithms for GCD computation, one for number fields presented with
multiple extensions, and one for function fields. These algorithms will

14

be added to computer algebra systems, so that these systems will han-
dle algebraic extensions significantly faster.

4.1 List of prior NSF grants

Title: Algorithms for Solving Linear Recurrence Equations.
NSF 9805983, 06/15/98 – 05/31/00, $41,802

Title: East Coast Computer Algebra Day 2001.
NSF 0112495, 08/15/01 – 07/31/02, $8,500

Title: Algorithms for Linear Differential Equations and Algebraic Func-
tions. NSF 0098034, 09/15/01 – 08/31/04, $152,585

Title: Simplifying Algebraic Numbers and Algebraic Functions.
NSF 0511544, 09/01/05 – 08/31/08, $89,999

Graduate students:

NSF grant 0098034 supported graduate student Andrew Novocin as a re-
search assistant. Andrew presented a talk at the ACA’2003 conference and
a poster at the ISSAC’2004 conference in Spain. Andrew plans to finish his
Ph.D thesis by the end of 2007. A second graduate student, Giles Levy,
started working with the PI in 2005. Two more students, Quan Yuan and
Cha Yong, will start working with the PI after their qualifying exams in
the summer of 2007. Support is requested for the graduate students to offer
them valuable opportunities for doing research and to attend conferences.

Supported conference:

NSF grant 0112495 supported the ECCAD’01 conference. It also supported
travel expenses of participants, mainly of the student participants.

Implementations:

The PI’s implementations are a valuable contribution to the scientific com-
munity and are used by many researchers worldwide. The PI is very grateful
for the granted support; without it these implementations could not have
been written.

Papers supported by NSF grants 0098034 and 0511544:

Journal publications: [45, 5, 22, 27, 55, 2, 23]
Refereed conference publications: [48, 49, 17, 50, 52]
Preprints submitted for publication: [54, 32, 34]
Other preprints: [47, 46, 53, 11, 29]

The PI’s papers are available at: www.math.fsu.edu/~hoeij/papers.html

15

References

[1] S.A. Abramov, Rational solutions of linear differential and difference

equations with polynomial coefficients, USSR Comput. Maths. Math.
Phys. 29, 7-12 (translated from Zh. vychisl. mat. fiz. 29, 1611-1620)
(1989).

[2] S.A. Abramov, M. Barkatou, and M. van Hoeij, Apparent Singularities

of Linear Difference Equations with Polynomial Coefficients, AAECC,
17, 117-133 (2006).

[3] S.A. Abramov and M. Bronstein, On Solutions of Linear Functional

Systems. ISSAC’2001 proceedings, 1-6 (2001).

[4] S.A. Abramov and M. van Hoeij, A method for the Integration of Solu-

tions of Ore Equations ISSAC ’97 Proceedings, 172-175 (1997).

[5] S.A. Abramov and M. van Hoeij, Set of Poles of Solutions of Lin-

ear Difference Equations with Polynomial Coefficients, Computational
Mathematics and Mathematical Physics, 43, No. 1, 57-62 (2003).

[6] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, (1972).

[7] G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia
of Mathematics and its Applications, 71, Cambridge University Press,
(1999).

[8] F. Baldassarri and B. Dwork, Differential Equations with Algebraic So-

lutions, American Journal of Mathematics, 101, 42-76 (1979).

[9] M. A. Barkatou, On Rational Solutions of Systems of Linear Differen-

tial Equations, J. Symbolic Computation, 28 547-567 (1999).

[10] K. Belabas, A relative van Hoeij algorithm over number fields, J. Sym-
bolic Computation, 37, 641-668 (2004).

[11] K. Belabas, J. Klüners, M. van Hoeij, and A. Steel Factoring polyno-

mials over global fields, preprint.

[12] M. Berry, Why are special functions special? Physics Today, 54, no.4,
11-12, (2001). http://www.physicstoday.com/pt/vol-54/iss-4/p11.html

[13] M. Bronstein Symbolic Integration Tutorial, (1998). http://www-
sop.inria.fr/cafe/Manuel.Bronstein/publications/issac98.pdf

16

[14] M. Bronstein, On Solutions of Linear Differential Equations in their

Coefficient Field, J. of Symbolic Computation, 13, 413-439 (1992).

[15] M. Bronstein, Linear Ordinary Differential Equations: breaking through

the order 2 barrier, Proceedings of ISSAC’92, 42-48, (1992).

[16] M. Bronstein and S. Lafaille, Solutions of linear ordinary differential

equations in terms of special functions, Proceedings of ISSAC’02, Lille,
ACM Press, 23-28 (2002).

[17] R. Burger, M. van Hoeij and G. Labahn, Closed Form Solutions of Lin-

ear Odes having Elliptic Function Coefficients, ISSAC’04 Proceedings,
58-64, (2004).

[18] L. Chan, E.S. Cheb-Terrab, Non Liouvillian solutions for second order

linear ODEs, Proceedings of ISSAC’04, Santander, Spain (2004).

[19] E.S. Cheb-Terrab, Computing Mathieu function solutions for linear

ODEs, http://www.scg.uwaterloo.ca/~ecterrab/odetools/
mathieu_function_solutions.html

[20] E.S. Cheb-Terrab, The Function Advisor project: an alive Computer

Algebra Handbook of Special Functions, Proceedings of the Maple Sum-
mer Workshop - Waterloo, (2002).

[21] E.S. Cheb-Terrab, Solutions for the General, Confluent and Bi-

Confluent Heun equations and their connection with Abel equations,
Journal of Physics A: Mathematical and General, 37, 9923-9949 (2004).

[22] T. Cluzeau, M. van Hoeij, A Modular Algorithm to Compute the Expo-

nential Solutions of a Linear Differential Operator, J. Symbolic Com-
putation, 38, 1043-1076 (2004).

[23] T. Cluzeau, M. van Hoeij, Computing Hypergeometric Solutions of Lin-

ear Recurrence Equations, AAECC, 17, 83-115 (2006).

[24] E. Compoint, J.A. Weil, Absolute reducibility of differential operators

and Galois groups, J. Algebra, 275, 77-105, (2004).

[25] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and Algorithms

Undergraduate Texts in Math, Springer (1992).

[26] B. Deconinck and M. van Hoeij, Computing Riemann matrices of alge-

braic curves. PhysicaD, 152, 28-46 (2001).

17

[27] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, M. Schmies. Com-

puting Riemann Theta Functions, Math. Comp., 73, 1417-1442 (2004).

[28] H. Exton, A new solution of the biconfluent Heun equation, Rendiconti
di Mathematica Serie VII, 18, 615-622 (1998).

[29] W.N. Everitt, D.J. Smith and M. van Hoeij, The Fourth-Order Type

Linear Ordinary Differential Equations, (2006).
http://arxiv.org/abs/math.CA/0603516

[30] M. Foupouagnigni, W. Koepf and A. Ronveaux, On solutions of fourth-

order differential equations satisfied by some classes of orthogonal poly-

nomials, J. Comput. Appl. Math., 162, 299-326 (2004).

[31] A.R. Forsyth, Differential Equations I–VI, Cambridge University Press,
Cambridge, England (1906).

[32] A. Galligo and M. van Hoeij, A Geometric Approach to Factoring Bi-

variate Approximate Polynomials, submitted to ISSAC’2007.

[33] P. Hendriks and M. Singer, Solving Difference Equations in Finite

Terms. J. Symbolic Computation, 27, 239-259 (1999).

[34] M. van Hoeij, Solving Third Order Linear Differential Equations

in Terms of Second Order Equations, submitted to ISSAC’2007,
www.math.fsu.edu/~hoeij/files/ReduceOrder/Paper

[35] M. van Hoeij, Why I do what I do. www.math.fsu.edu/~hoeij/why

[36] Solution to example 1, www.math.fsu.edu/~hoeij/files/ODE3

[37] M. van Hoeij, Software for computing gauge transformations (2004).
www.math.fsu.edu/~hoeij/files/Hom

[38] Journées Arithmétiques, conference in Edinburgh, July 2 – 6 (2007).
http://icms.org.uk/event.php?id=43

[39] M. van Hoeij, Factorization of Differential Operators with Rational

Functions Coefficients, J. Symbolic Computation, 24, 537-561 (1997).

[40] M. van Hoeij and J-A. Weil, An algorithm for computing invariants

of differential Galois groups. J. Pure Appl. Algebra, 117&118, 353-379
(1997).

18

[41] M. van Hoeij, Rational Parametrizations of Algebraic Curves using a

Canonical Divisor, J. Symbolic Computation, 23, 209-227 (1997).

[42] M. van Hoeij, An algorithm for computing the Weierstrass normal form,
ISSAC ’95 Proceedings, 90-95 (1995).

[43] M. van Hoeij, J.F. Ragot, F. Ulmer and J.A. Weil, Liouvillian

solutions of linear differential equations of order three and higher.
J. Symbolic Computation, 28, 589-609 (1999). Implementation:
http://www.math.fsu.edu/~hoeij/files/impr_order3 (2004).

[44] M. van Hoeij, Finite Singularities and Hypergeometric Solutions of Lin-

ear Recurrence Equations, J. Pure Appl. Algebra, 139, 109-131 (1999).

[45] M. van Hoeij, Factoring polynomials and the knapsack problem, J. of
Number Theory, 95, 167-189, (2002).

[46] M. van Hoeij, A conjecture in the problem of rational definite summa-

tion, http://arxiv.org/abs/math.CO/0210158

[47] M. van Hoeij, An algorithm for computing the Weierstrass normal form

of hyperelliptic curves, http://arxiv.org/abs/math.AG/0203130

[48] M. van Hoeij and M. Monagan, A Modular GCD algorithm over Num-

ber Fields presented with Multiple Extensions, ISSAC’02 Proceedings,
(2002).

[49] M. van Hoeij and M. Monagan, Algorithms for Polynomial GCD Com-

putation over Algebraic Function Fields. ISSAC’04 Proceedings, 297-
304, (2004).

[50] M. van Hoeij, Decomposing a 4’th order linear differential equation as

a symmetric product, Banach Center Publications, 58, 89-96, (2002).

[51] M. van Hoeij, Factorization and hypergeometric solutions of lin-

ear recurrence systems, slides for Manuel Bronstein’s conference,
www.math.fsu.edu/~hoeij/papers.html (2006).

[52] M. van Hoeij and J.A. Weil, Solving Second Order Linear Differen-

tial Equations with Klein’s Theorem, ISSAC’05 Proceedings, 340-347,
(2005).

[53] M. van Hoeij and J. Klüners, Generating Subfields, preprint (2005).
www.math.fsu.edu/~hoeij/papers.html

19

[54] M. van Hoeij, J. Cremona, Solving conics over function fields, accepted
for publication in JNTB.

[55] M. van Hoeij, M. van der Put, Descent for differential modules and

skew fields. Journal of Algebra, 296, 18-55 (2006).

[56] E. Ince, Ordinary Differential Equations, Dover Publications, New
York, (1956).

[57] A.M. Ishkhanyan and K.-A. Suominen, New solutions of Heun’s general

equation, J. Phys. A: Math. Gen. 36, (2003)

[58] Kamke E. 1959 Differentialgleichungen: Lösungsmethoden und

Lösungen. Chelsea Publishing Co, New York.

[59] Nicholas M. Katz, Rigid Local Systems, Princeton University Press,
(1995).

[60] W. Koepf, hypergeometric summation package,
http://www.mathematik.uni-kassel.de/~koepf/Publikationen

[61] J. Kovacic, An algorithm for solving second order linear homogeneous

equations, J. Symbolic Computation, 2, p. 3-43 (1986).

[62] M. Kauers, Algorithms for Nonlinear Higher Order Difference Equa-

tions, Doctoral Thesis, RISC Linz, (2005).

[63] G. Labahn, Solving Linear Differential Equations in Maple, MapleTech
2(1) 20-28, (1995).

[64] H.Q. Le, SumTools Package, http://algo.inria.fr/le/SumTools.html

[65] A.H.M. Levelt, A. Fahim. Characteristic classes for difference opera-

tors. Compos. Math. 117, No.2, 223-241 (1999).

[66] Magma Computer Algebra. Factorization. In Magma help document
http://magma.maths.usyd.edu.au/magma/htmlhelp/text560.htm

[67] R.S. Maier, On reducing the Heun equation to the hypergeometric equa-

tion, J. Differential Equations, 213, 171-203 (2005).

[68] K. A. Nguyen, M. van der Put, Solving linear differential equations,
preprint, (2006).

[69] NSF nugget, http://www.math.fsu.edu/~hoeij/papers/computingtheta

20

[70] M. Petkovšek. Hypergeometric solutions of linear recurrences with poly-

nomial coefficients. J. Symbolic Computation, 14, 243-264, (1992).

[71] M. Petkovšek, H. Wilf and D. Zeilberger, A=B, available for download
at http://www.cis.upenn.edu/~wilf/AeqB.html

[72] A. C. Person, Solving Homogeneous Linear Differential Equations

of Order 4 in Terms of Equations of Smaller Order, PhD thesis,
www.lib.ncsu.edu/theses/available/etd-08062002-104315/ (2002).

[73] M. van der Put, Galois Theory of Differential Equations, Algebraic

Groups and Lie Algebras, Journal of symbolic computation 28, 441-472
(1999).

[74] M. van der Put, M.F. Singer, Galois Theory of linear Differential Equa-

tions, Grundlehren der mathematischen Wissenschaften, 328, Springer
(2003).

[75] M. van der Put and M. Singer, Galois Theory of Difference Equations,
Lecture Notes in Mathematics, 1666, Springer-Verlag, (1997).

[76] R. H. Risch, The Problem of Integration in Finite Terms, Transactions
of the American Mathematical Society, 139, 167-189 (1969).

[77] B. Salvy and P. Zimmermann, GFUN: A Maple Package for the Manip-

ulation of Generating and Holonomic Functions in One Variable, ACM
Transactions on Mathematical Software, 20, (1994).

[78] C. Schneider, The Summation Package Sigma, http://www.risc.uni-
linz.ac.at/people/cschneid

[79] A.V. Shanin and R.V. Craster, Removing false singular points as a

method of solving ordinary differential equations, European Journal of
Applied Mathematics, 13, 617-639 (2002).

[80] M.F. Singer, Liouvillian Solutions of n-th order Homogeneous Linear

Differential Equations, American Journal of Mathematics, 103, 661-682
(1981).

[81] M.F. Singer, Solving Homogeneous Linear Differential Equations in

Terms of Second Order Linear Differential Equations, American J. of
Math., 107, 663-696, (1985).

[82] M. F. Singer, Algebraic Relations Among Solutions of Linear Differen-

tial Equations: Fano’s Theorem, Am. J. of Math., 110, 115-143, (1988).

21

[83] M.F. Singer, Liouvillian Solutions of Linear Differential Equations with

Liouvillian Coefficients, J. Symbolic Computation, 11, 251-273 (1991).

[84] M.F. Singer and F. Ulmer, Liouvillian and algebraic solutions of second

and third order linear differential equations. J. Symbolic Computation,
16, 37-73 (1993).

[85] M.F. Singer and F. Ulmer, Linear Differential Equations and Products

of Linear Forms, J. of Pure and Applied Algebra, 117, 549-564 (1997).

[86] S.Y. Slavyanov and W. Lay, Special Functions, A Unified Theory Based

on Singularities, Oxford Mathematical Monographs (2000).

[87] N. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences

[88] N. Sloane, The Email Servers and Superseeker,
http://www.research.att.com/~njas/sequences/ol.html

[89] F. Ulmer, Liouvillian solutions of third order differential equations, J.
Symb. Comp., 36, 855-889, (2003).

[90] F. Ulmer and J.A. Weil, A Note on Kovacic’s Algorithm, Journal of
Symbolic Computation, 22 179-200 (1996).

[91] Vidunas, R: Algebraic transformations of Gauss hypergeometric func-

tions, http://arxiv.org/abs/math.CA/0408269 (2004).

[92] B. Willis, An extensible differential equation solver for computer alge-

bra, SIGSAM, March (2001).

[93] D. Zeilberger, The Method of Creative Telescoping. J. Symbolic Com-
putation, 11, 195-204 (1991).

22

