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ABSTRACT
This paper presents a simplified version of a method by
Michael Singer for reducing a third order linear ode to a
second order linear ode whenever possible. An implementa-
tion is available as well.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis

General Terms
Algorithms

Keywords
Linear Differential Equations, Reduction of Order

1. INTRODUCTION
Let k be a differential field of characteristic 0, and let k[∂]

be the ring of differential operators with coefficients in k (see
Section 1.1 for more details on the notations). Let L ∈ k[∂]
and let L(y) = 0 be the corresponding linear ode (ordinary
differential equation). In [19] Michael Singer described in
which situations L(y) = 0 has so-called eulerian solutions
(defined in [19, Sect. 2]), which by [19, Thm. 4.3] is equiv-
alent to having a non-zero solution that can be written in
terms of solutions of linear ode’s of second order (with co-
efficients in k, the algebraic closure of k). If L has order 3,
we consider these three (not mutually exclusive) cases:

(1). L is the symmetric square of an operator L2 of order 2.

(2). L is reducible in k[∂].

(3). L is gauge equivalent to a symmetric square in k[∂].
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Cases (1),(3) resp. (2) are part (d) resp. (a),(b),(c) in [19,
Thm. 4.3]. If none of (1),(2),(3) holds then L is not solvable
in terms of second order linear ode’s in the sense of [19].

A similar problem is to decide when L allows a non-zero
solution that can be written in terms of solutions of second
order linear ode’s whose coefficients are now restricted to k.
For this restricted situation, replace cases (2),(3) by

(k2). L is reducible in k[∂].

(k3). L is gauge equivalent to a symmetric square in k[∂].

Detecting case (1) and finding the corresponding operator
L2 is easy (see [19, Lemma 3.4] or Section 1.1). Case (1)
remains the same if we restrict to coefficients in k, because
if L is the symmetric square of a monic operator L2 ∈ k[∂],
then [19, Lemma 3.4] shows that L2 is in k[∂]. Formulas
for testing if an n’th order operator equals the (n − 1)’th
symmetric power of a second order operator are known as
well, see for example [3], [15, Prop. 3.2], or [6, Capitel 5].

For case (k2) one has to compute a first order right or
left factor of L in k[∂] if it exists. If k =

�
(x) then there

are several algorithms to do this (e.g. [17, Sect. 4.1] or
[4] or the references therein) and several computer algebra
systems have implementations to find such factors. If L is
reducible in k[∂] (case (2)) but irreducible in k[∂] then there
are Liouvillian solutions, for which there exist algorithms,
see for example [17, Sect. 4.3], [21], [23], or [13]. The latter
algorithm, with a number of unpublished improvements, was
implemented by Manuel Bronstein.

The symmetric square of a third order operator L has or-
der 5 in case (1), and order 6 otherwise (Section 1.1 contains
a proof, but it also follows from the proof of [23, Lemma 3.1]
or from classical results [6, Capitel 4]). Assume now that
cases (1),(2) do not hold and denote L6 as the symmetric
square of L. Singer showed that then case (3) holds iff L6

has a first-order right-hand factor ∂ − r, where r is either in
k, or algebraic of degree 3 over k. Moreover, case (k3) holds
iff: (i) L6 has a first order right-hand factor in k[∂], and
(ii) a certain conic (equation (4.2.1) in [19]) has a non-zero
solution over k.

If k =
�
(x) (or more generally, a C1-field) then condi-

tion (ii) can be omitted because for such k, every conic over
k is solvable over k. For other fields k, such as

�
(x, ex) or

�
(x), to show that condition (ii) is actually necessary, one

needs to show that conics without solutions over k can oc-
cur in this context (i.e. in equation [19, (4.2.1)] for some
L ∈ k[∂] that satisfies condition (i)). Such examples were
first constructed in [11], where it was shown explicitly that
up to birational equivalence every conic over k does occur



in this context. This also implies that to implement the re-
duction from order 3 to order 2, one can not avoid solving
equation [19, (4.2.1)] or some conic equivalent to it. For
this reason the author implemented an algorithm [10] for
solving conics over k =

�
(x), and more generally, any field

F (t1, . . . , tr) for which a conic-solver over F is available. A
similar algorithm for k = � (x) was given earlier by Josef
Schicho in [18].

An alternative approach to perform the reduction from
order 3 to order 2 in case (3) was given in the proof of [11,
Prop. 3.1], and in [14]. Here the conic is constructed in a
different way, but like in [19], the reduction from order 3 to
order 2 over k is only possible when this conic has a point
defined over k. So this conic must be birationally equivalent
to equation [19, (4.2.1)]. However, this does not imply that
the two approaches are computationally equivalent, and in-
deed, examples (see [7]) show that the two conics do not
have the same coefficients. In most examples tried so far,
the coefficients in the [11] approach were larger. Therefore
we will follow the method given in [19], with some algorith-
mic improvements explained below.

The expression I0 in [19, Prop. 4.2] is an exponential so-
lution of L6 which means that it corresponds to a first order
right-hand factor ∂ − r of L6 (here r = I ′

0/I0 is in k in
case (3) and in k in case (k3)). It is one of the coefficients
of the conic [19, (4.2.1)]. Like [19] we will compute this I0.
The main difference is how the other coefficients of the conic
are computed. In [19] two of those coefficients (denoted I1

and I2) are computed by solving two other 6’th order op-

erators (denoted L©s 2
a and L©s 2

b in [19, Sect. 6]). Instead,
we will give a formula for the conic that requires only the
computation of I0.

Thus, we only need to compute an exponential solution
of one 6’th order ode instead of three, and then get the re-
maining coefficients for free1. This means less work for the
algorithm, and makes the algorithm much easier to imple-
ment because a number of technical problems (the second
half of section 6 in [19]) are avoided this way (for instance,
solving those two other 6’th order operators only determines
I1 and I2 up to constant factors. Those constants are im-
portant but are not known a priori, causing complications
we avoid.)

Comparison to prior work:

The main problem in this paper is to reduce 3’rd order equa-
tions to 2’nd order equations whenever possible. This prob-
lem has already been solved theoretically in [19]. The main
application is to solve 3’rd order equations, but it can also be
useful for 4’th order equations; it was shown in [5, 16] that
order 3 → 2 reduction can be used to solve similar problems
for order 4 (this will be illustrated in Section 3). Despite
these applications, the algorithm in [19] has not been imple-
mented for two reasons. First, as already mentioned, there
were a number of technical problems that made the algo-
rithm difficult to implement. Second, since those problems
were treated by solving systems of polynomial equations, it
is likely that the resulting algorithm would have been too
slow to be practical. Both issues are addressed in this paper,
resulting in an algorithm that is both practical and easy to
implement (see [7]). So the progress made here is not math-
ematical but algorithmic in nature.

1Similar progress was made by Bronstein [2] for the problem
of factoring differential operators.

1.1 Preliminaries and Notations
This section will list notations and some facts about dif-

ferential operators that will be needed in this paper. Proofs
and more details can be found in [17] or [19].

Let k be a differential field of characteristic 0. A differen-
tial operator over k is an operator of the form L = an∂n +
· · ·+ a1∂ + a0 that acts as L(y) = any(n) + · · ·+ a1y

′ + a0y.
If an 6= 0 then the order of L is ord(L) = n. The set of
differential operators over k forms a non-commutative ring
k[∂], where multiplication is composition of operators.

The field of constants Ck is the set of elements of k with
derivative 0. If Ck is algebraically closed, then there exists
a differential field Ω, whose field of constants is again Ck,
with the following property: For every L ∈ k[∂]−{0}, the set
V (L) := {y ∈ Ω|L(y) = 0} is a Ck-vector space of dimension
ord(L). Such Ω is called a universal extension, and V (L) is
called the solution space of L.

An exponential solution of L over k is a non-zero u ∈ V (L)
for which u′/u ∈ k. This corresponds to a first order right-
hand ∂ − r of L where r = u′/u. We will denote a non-zero
solution u of ∂ − r as exp( � r).

Given L1, L2 ∈ k[∂], the smallest order monic operator
L ∈ k[∂] for which y1y2 ∈ V (L) for every y1 ∈ V (L1) and
y2 ∈ V (L2) will be denoted as L = L1 ©s L2. This operator
L is called the symmetric product in [19]. The operator L©s m

is called the m’th symmetric power of L, it is the symmetric
product of m copies of L.

For any r ∈ k, the map Sr given by � ai∂
i 7→ � ai(∂−r)i

is an automorphism of the ring k[∂]. If L is monic then
Sr(L) = L©s (∂ − r).

If

L = ∂3 + a2∂
2 + a1∂ + a0 ∈ k[∂]

then we can test if L is a symmetric square (case (1)) by
following the proof of [19, Lemma 3.4], and one finds that

L = L©s 2
2 for some second order operator L2 if and only if

a′′
2 + 6a0 − 3a′

1 + 2a2(a
′
2 − a1 + 2a2

2/9) = 0 (1)

in which case L2 must be in k[∂] because of the explicit
formula (same as [19, (3.4.2)]):

L2 = ∂2 +
a2

3
∂ − 1

4

�
a′
2

3
− a1 +

2

9
a2
2 � . (2)

In general, the coefficients of L©s m can be found by solving
linear equations over k, see [19, Sect. 3] or [1]. For L©s 2 =
An∂n+. . .+A0 we get a homogeneous system of 6 equations
in n + 1 unknowns A0, . . . , An. If n = 6 then such system
always has a non-zero solution. If n = 5 this system will
only have a non-zero solution if its determinant vanishes, a
condition that a computation shows to be equivalent with
equation (1) and hence with case (1). So if we are not in
case (1) then L©s 2 has order 6.

If we are in case (1) then L = L©s 2
2 with L2 ∈ k[∂] given

above. Then L©s 2 = L©s 4
2 has order 5 by [19, Lemma 3.2(b)].

Thus, case (1) is very easy to detect (just check equa-
tion (1)) in which case the reduction from order 3 to order
2 is easy. From now on we will assume that L is not a sym-
metric square, or equivalently, that L©s 2 has order 6. The
goal is now to find some gauge transformation R that sends
L to another third order operator LR with ord(L©s 2

R ) = 5.
Then LR must be the symmetric square of some L2, so we
can solve LR (and hence L by computing the inverse gauge
transformation) in terms of solutions of L2.



1.2 Gauge transformations
Let L, R ∈ k[∂]−{0}, and apply operator R to the solution

space of L. The result R(V (L)) is the solution space of an-
other operator, that we denote as LR, whose coefficients can
be found by solving linear equations, see [19, Lemma 6.4].

Two operators L, L̃ ∈ k[∂] are called gauge equivalent if
there exists an R ∈ k[∂] that bijectively maps the solutions

of L to the solutions of L̃. In this case L̃ = LR, and R is
called a gauge transformation from L to L̃.

If R ∈ k[∂] is a gauge transformation from L to L̃, i.e.,

if R : V (L) → V (L̃) is bijection, then R maps no non-zero
solutions of L to 0, which means that the greatest common
right divisor (see [17, Sect. 2.1] for details) of R and L in k[∂]

is 1. Then we can find R̃, T ∈ k[∂] with R̃R + TL = 1 with

the extended Euclidean algorithm. The operator R̃R acts
as the identity on V (L) since it is congruent to 1 modulo L.

Hence R̃ is the inverse gauge transformation, i.e., the map
R̃ : V (L̃) → V (L) is the inverse of R : V (L) → V (L̃).

As an example, let L = ∂2 − x (the Airy equation), and

L̃ = ∂2 − 1
x
∂ − x. These operators are gauge equivalent

because L̃ = LR where R = ∂. This means that by applying
R to the solutions of L we get the solutions of L̃. The inverse
gauge transformation is 1

x
∂, it maps V (L̃) back to V (L).

2. REDUCING ORDER 3 TO ORDER 2
Assumptions: k is a differential field of characteristic 0,
L3 ∈ k[∂] has order 3, and its solutions can be written in
terms of solutions of second order linear ode’s in the sense of
[19]. We will also assume that we are not in case (1) or (2)
since there already are algorithms for those cases.

2.1 Computing a first order factor
The assumptions imply that we are in case (3), and that

L©s 2
3 has a first order right-hand factor ∂−r where r is either

in k, or k(r) is an algebraic extension of k of degree 3, see
[19, Thm. 4.3(d)]. However, if [k(r) : k] = 3 then L3 must
have Liouvillian solutions by [22, Thm. 4.7(i)(a)] and this
implies case (2), contrary to our assumptions above, so only
the case r ∈ k remains.

The same reasoning applies if we replace k by the coef-
ficient field k′ ⊆ k of L3 (the smallest differential field for
which L3 ∈ k′[∂]) and thus we only need to search for right-

hand factors ∂ − r of L©s 2
3 with r ∈ k′. This saves compu-

tation time, because if for example k′ = C(x) for some field
of constants C, then to find r we only need the algorithm in
[4, Sect. 5.4] and not the more complicated algorithm in [4,
Sect. 6 and 7].

Another algorithmic improvement is the following. If the
coefficient of ∂2 in L3 is 0 (applying Sa2/3 will accomplish
this if this coefficient was a2) then it follows from [22] that
the cube of the exponential solution exp( � r) will be in k (the
cubes of the characters are trivial for each of the groups in
[22, Thm. 4.7(i)]). This means that if we use for example [4]
to compute r, then we only need the exponents in 1

3 � , and
no other (generalized) exponents (see also [4, Sect. 7.2]).

Let L := L3 ©s (∂+r/2). Then L©s 2 has a first order right-
hand factor (∂−r)©s (∂ +r/2)©s 2 = ∂, in other words, 1 is a
solution of L©s 2. Solving L is equivalent to solving L3 since
their solution spaces differ only a factor exp( � r/2) from
each other. We will proceed with L instead of L3 because
that will lead to shorter formulas in Section 2.2.

2.2 Computing the conic
Write L = ∂3 + a2∂

2 + a1∂ + a0 ∈ k[∂]. Given a non-zero
R = b0 + b1∂ + b2∂

2 ∈ k[∂] the linear map

R : V (L) → V (LR)

induces a linear map

R2 : V (L©s 2) → V (L©s 2
R ).

Now V (L©s 2) has dimension 6 because L is not a symmet-
ric square. We want LR to be a symmetric square, so the
dimension of V (L©s 2

R ) should be 5. That is equivalent to R2

having a 1-dimensional kernel, which in turn corresponds to
an exponential solution (see [17, Lemma 4.8 part 3]). In
Section 2.1 we replaced L3 by L to make this exponential
solution have value 1, so R2(1) = 0. Now R depends linearly
on the unknowns b0, b1, b2 and hence R2 depends quadrati-
cally on b0, b1, b2. One can verify (see below) that R2(1) = 0
reduces to

b2
0 + cb2

1 − 2cb0b2 + c′b1b2 + (c′′/2 + a1c + a2c
′/2)b2

2 = 0 (3)

where

c :=
a′′
0 + 7a′

0a2/3 + a0(4a2
2/9 + 4a1 − a′

2/3)

a′′
2 + 6a0 − 3a′

1 + 2a2(a′
2 − a1 + 2a2

2/9)
(4)

There are multiple equivalent ways to represent formulas (3)
and (4) because there exists a differential relation between
a0, a1, a2 (namely: L©s 2(1) = 0). For instance, c′ can be re-
placed by 2(a0 −a2c)/3 because they are equivalent modulo
the differential relation for a0, a1, a2. Note that the denom-
inator of (4) is not 0, otherwise we would be in case (1), see
equation (1) in Section 1.1.

That R2(1) = 0 is equivalent (modulo the a0, a1, a2 rela-
tion) to (3) is easy to verify with a computer computation,
but formulas (3),(4) can also be found by hand, as follows.
Write

R(y)2 = (b0y + b1y
′ + b2y

′′)2 = (5)

Y1b
2
0 + 2Y2b0b1 + Y3b

2
1 + 2Y4b0b2 + 2Y5b1b2 + Y6b

2
2

where

(Y1, . . . , Y6) := (y2, yy′, (y′)2, yy′′, y′y′′, (y′′)2).

With L(y) = 0 we have y′′′ = −a2y
′′ − a1y

′ − a0y which
implies

Y ′ =

������
�

0 2 0 0 0 0
0 0 1 1 0 0
0 0 0 0 2 0

−a0 −a1 0 −a2 1 0
0 −a0 −a1 0 −a2 1
0 0 0 −2a0 −2a1 −2a2

�������
� Y

where Y is the transpose of (Y1, . . . , Y6). Setting Y1 = y2

to 1 (the exponential solution of L©s 2), and denoting Y3 by
c, then from rows 1, 2, 3, 5 in the above matrix we quickly
find Y2 = yy′ = Y ′

1/2 = 0, Y3 + Y4 = Y ′
2 = 0 so Y4 = −c,

Y5 = Y ′
3/2 = c′/2, and Y ′

5 = −a0Y2 − a1Y3 − a2Y5 + Y6

so Y6 = c′′/2 + a1c + a2c
′/2. Substituting these into (5)

gives (3).
From row 4 we get c′ = −Y ′

4 = a0Y1 +a1Y2 +a2Y4 −Y5 =
a0 − a2c − c′/2 which gives the relation c′ = 2(a0 − a2c)/3
mentioned before. Row 6 expresses Y ′

6 in terms of Y1, . . . , Y6,
spelling this out gives a linear differential equation for c of



order 3. Since c′ can be written in terms of c, the same
must also be true for c′′ and c′′′ (write c′′ = (c′)′ = (2(a0 −
a2c)/3)

′ = 2(a′
0 − a′

2c − a2c
′)/3, and replace c′ by 2(a0 −

a2c)/3. Then repeat for c′′′ = (c′′)′). This way we can
eliminate the derivatives of c from the row 6 equation. What
remains is a linear equation in c that gives us (4).

2.3 An example
Let k =

�
(x) and

L3 = ∂3 − 1

x(x − 1)
∂2 − 4(4x2 − 2x + 1)

x2
∂ +

12

x(x − 1)

This example was constructed to have Bessel type solutions
(see [7] how to make such examples) so it is solvable in terms
of solutions of second order ode’s. Then at least one of
cases (1),(2),(3) holds by [19].

L is irreducible in k[∂] and is not a symmetric square.
There are no Liouvillian solutions (Bessel functions are not
Liouvillian) so L is irreducible in k[∂] as well. So only
case (3) remains.

Let L6 = L©s 2
3 and compute its exponential solutions. We

find the solution u = 1, so r = u′/u = 0 and L = L3 in
this example. Let ai be the coefficient of ∂i in L. Then
equations (4) and (3) become c = −12 and

b2
0 − 12b2

1 + 24b0b2 + 0b1b2 +
48(4x2 − 2x + 1)

x2
b2
2 = 0.

To solve this equation, we can use [24], or complete the
square by substituting b0 7→ b0 + cb2 and b1 7→ b1− c′b2/(2c)
in (3) and then use [10]. Completing the square is simplified
by the absence of a b0b1 term in equation (3) (the coefficient
2Y2 of this term vanishes because in Section 2.1 we rescaled
the exponential solution to Y1 = 1, and Y ′

1 = 2Y2). In the
example we get

b2
0 − 12b2

1 +
48(x − 1)2

x2
b2
2 = 0.

This equation can easily be solved by hand in this particular
example, but in general one needs an algorithm to solve such
equations. Our implementation [7] uses [10] and finds

(b0, b1, b2) = (0,−2(x − 1), x).

Reversing the substitution, we get

(b0, b1, b2) = (−12x,−2(x − 1), x).

Now let R = b2∂
2 + b1∂ + b0, make R monic, and we get

R = ∂2 − 2(x − 1)

x
∂ − 12.

This maps V (L) to V (LR) for some operator

LR = ∂3 + A2∂
2 + A1∂ + A0

where

A2 =
−3

(x − 1)x

and A0, A1 are large expressions we will omit. If s ∈ k
with s 6= 0 then we can replace R by sR, and multiply all
solutions of LR by s, by replacing LR with

S s′

s

(LR) = ∂3 + (A2 − 3
s′

s
)∂2 + · · ·

We aim to minimize the coefficient of ∂2 by finding some

s ∈ k for which A2−3 s′

s
is as small as possible. For k =

�
(x)

this can be done as follows. Apply the integration algorithm
on 1

3
A2, then take the logarithmic terms cilog(fi), and then

let s be the product of f
[ci]
i taken over those i for which

ci ∈
�
. Here [ci] denotes ci rounded to the nearest integer.

In our example this leads to s = x/(x − 1), so we get

R =
x

x − 1
∂2 − 2∂ − 12

x

x − 1
.

Now recompute LR for this new R and we find

LR = ∂3 − 8(2x − 1)

x
∂ − 4

x2
.

We compute the inverse gauge transformation (Section 1.2)
and find

R̃ = − 1

24
∂ − 1

12

x − 1

x

which maps V (LR) to V (L). Applying formula (2) to LR

yields

L2 = ∂2 − 4x − 2

x
.

Our implementation [7] follows the above steps to compute

L2 and R̃. In the example, L2 has the following basis of
solutions

y1 = x (I0(2x) − I1(2x)) , y2 = x (K0(2x) + K1(2x))

where Iα and Kα are the Bessel I and K functions. Then
y2
1 , y1y2, y

2
2 is a basis of V (LR), so

R̃(y2
1), R̃(y1y2), R̃(y2

2)

is a basis of V (L). We find

R̃(y2
1) =

x

12
· (I0(2x) − I1(2x)) · (xI0(2x) − (x + 1)I1(2x))

and similar expressions for the other two solutions of L.

2.4 The algorithm
Algorithm: ReduceOrder 3 → 2

Input: The field k, a monic third order L3 ∈ k[∂] which is
assumed to be irreducible in k[∂], and a boolean B.

Output: L2, R̃ in k[∂] (or in k[∂] if B = true) where R̃

bijectively maps V (L©s 2
2 ) to V (L) if such L2, R̃ exist.

1. L6 := L©s 2
3

2. If ord(L6) = 5 then let R̃ := 1 and L2 as in equa-

tion (2). Then return L2, R̃ and stop.

3. Find r ∈ k for which ∂−r is a right-hand factor of L6.
If such r does not exist, return “Order reduction not
possible” and stop.

4. L := S−r/2(L3), see Section 1.1 for notations.

5. Find, if it exists, a non-zero solution (b0, b1, b2) over k
of (3) where a0, a1, a2 are the coefficients of L.

6. If no such solution exists, then do the following:
If B = true (field extensions are allowed) then set
(b0, b1, b2) := (

√−c, 1, 0) where c is as in (4), other-
wise return “Order reduction not possible” and stop.



7. Let R := Sr/2(b0 + b1∂ + b2∂
2).

8. Compute (L3)R, see Section 1.2. If possible, try as in
Section 2.3 to find some s ∈ k such that replacing R by
sR and updating (L3)R accordingly leads to a smaller
expression (L3)R.

9. Use (2) to find L2 for which L©s 2
2 = (L3)R.

10. Compute R̃, the inverse transformation of R, by solv-
ing (e.g. with the extended Euclidean algorithm) the

equation R̃R + TL3 = 1.

11. Return L2, R̃ and stop.

An implementation of this algorithm can be found on [7].
In step 6, the expression (

√
−c, 1, 0) is always a solution

of (3), however, if at all possible we want to perform the
reduction without introducing field extensions that could
complicate the problem of solving L2. After all, to get ex-
plicit solutions for L3 we still need to solve L2.

The gauge transformation b0 + b1∂ + b2∂
2 in step 7 sends

L to a symmetric square. Then the gauge transformation
Sr/2(b0 + b1∂ + b2∂

2) must send L3 to a symmetric square
because L3 = Sr/2(L) and Sr/2 is an automorphism of the
ring of differential operators.

Selecting a different point on conic (3) will lead to a dif-
ferent output. Two different L2’s, say L2a and L2b, in the
output of the same L3 must be projectively equivalent (see
Theorem 4.7 in [11]) which means that L2a is gauge equiva-
lent to St(L2b) for some t. That implies that the solutions of
each one can be expressed in terms of solutions of the other.
Even so, it is still possible that a computer algebra system
like Maple or Mathematica would solve one of L2a, L2b but
not the other. In fact, in our experiments that turned out
to be very common. Because of this, there is a strong incen-
tive to try to find the “easiest” output L2. For this reason
our implementation computes not one point in step 5 but
several points (see also Sections 2.2 and 6 in [10]). It then
chooses the smallest one because that significantly increases
the likelihood that L2 can be solved with current computer
algebra systems.

Potential improvements:

Before calling the above algorithm, it makes sense to com-
pute local data (the p-curvature and the generalized expo-
nents, see [4]) and check if this data is compatible with case
(3). This way one can avoid unnecessary calls to this algo-
rithm. The generalized exponents can be re-used to speed
up step 3 using [12].

3. EXAMPLES OF ORDER 4
It was shown in [5, 16] that order 3 → 2 reduction can be

used to solve similar problems for order 4. We will illustrate
that with two examples. Given some irreducible L4 ∈ k[∂]
of order 4, consider the following questions:

q1 Does there exist some second order L2 ∈ k[∂] such that

L4 = L©s 3
2 ?

q2 Do there exist second order operators La, Lb ∈ k[∂]
such that L4 = La ©s Lb?

q3 Does there exist some second order L2 ∈ k[∂] such that

L4 is gauge equivalent to L©s 3
2 ?

q4 Do there exist second order operators La, Lb ∈ k[∂]
such that L4 is gauge equivalent to La ©s Lb?

Questions q1 resp. q2 are solved in [3] resp. [9], while q3
and q4 are illustrated below.

3.1 An example for q3
Let k =

�
(x) and

L4 = ∂4 − 2

x
∂3 − 10x∂2 − 24∂ +

68 + 9x3

x
∈ k[∂].

This L4 is irreducible in k[∂] (use a differential factorization
algorithm, e.g. [5, Appendix A], [17, Sect. 4.2] or [8]). With
[3] resp. [9] one can show quickly that we are not in case q1
resp. q2.

The method in [16, Chap. 4, Prop. 7] is to compute L©s 2,
and then to find a third order right-hand factor, if one exists.
One finds

L3 = ∂3 − 3x2

x3 − 7
∂2 − x(4x3 − 49)

x3 − 7
∂ +

2(5x3 − 56)

x3 − 7
.

Note that this step is computationally expensive because
L©s 2

4 is large (it has order 10) and because computing factors
of order 3 takes more time than computing factors of order 1.
Next is to apply the algorithm ReduceOrder 3 → 2. We find

L2 = ∂2 − x

(the Airy equation) so L2 and L3 (and L4 as we shall see)
can be solved in terms of Airy functions. Then compute a
gauge transformation from L©s 3

2 to L4 (in Maple this can be
done with DEtools[Homomorphisms]). We find

R = x∂2 + ∂ − x2.

So R(y) = xy′′ +y′−x2y is a solution of L4 for any solution

y of L©s 3
2 . Hence

R(yi
1y

3−i
2 ), i ∈ {0, 1, 2, 3}

is a basis of solutions of L4, where y1, y2 are the Airy func-
tions (y1, y2 is a basis of V (L2)).

3.2 An example for q4
Let k =

�
(x) and

L4 = ∂4 +
3 − 2x2

8x2
∂2 +

3

4x3
∂ − 567

256x4
.

L4 is irreducible, and cases q1, q2, q3 do not hold.
The method in [16, Chap. 4, Prop. 10] or [14, Prop. 6.1]

means computing a first order factor of L©s 2
4 (which is less

expensive than computing a third order factor as was done
in Section 3.1). After this, a quadratic equation in 4 un-
knowns needs to be determined and solved. The latter is
not implemented, so at the moment it is easier to follow a
strategy by Compoint and Weil which goes as follows. Let
L6 be the second exterior power of L4 and determine its two
right-hand factors of order 3 (DFactorLCLM in Maple). We
find

L3,a = ∂3 − 2

x
∂2 − x2 − 7

4x2
∂ − 7

4x3

and

L3,b = ∂3 − 2

x
∂2 − x2 − 12

4x2
∂ − 3

x3
.



Next is to apply algorithm ReduceOrder 3 → 2 on these two
inputs. We find

L2,a = ∂2 − x2 + 21

16x2
, L2,b = ∂2 − x2 + 12

16x2
.

Now let Lab := L2,a ©s L2,b. Then Lab ©s (∂ − r) should be
gauge equivalent to L4 for some r ∈ k. In this example Lab

itself is already gauge equivalent to L4; Maple finds a gauge
transformation

R = 4x2∂3 + 9x∂2 − (x2 +
21

4
)∂ +

75

16x
− 9x

4
.

Then, for any solution ya for L2,a and yb for L2,b the expres-
sion R(yayb) is a solution of L4, and a basis of solutions of

L4 is obtained this way. For example, if ya = x1/2I5/4(x/4)

and yb = x1/2I1(x/4), where Iα is the Bessel I function, one
finds this solution R(yayb) =

9x2

32 � I0(x/4)I1/4(x/4) − I1(x/4)I5/4(x/4) � ∈ V (L4).

4. FUTURE WORK
Methods for order higher than 3 can be found in [19, 20,

16, 14, 5]. Section 3 illustrates two of these methods on
explicit examples of order 4, but improvements might be
possible. For instance, in Section 3.1 one computes a 3’rd
order factor of an operator of order 10, a time consuming
step. However, the second exterior power of L4 has order 6
and a factor of order 1 that would take much less time to
compute. This raises the question if this could be used to
give a more efficient method. Whether Section 3.2 is optimal
or not is not yet clear either.

The paper [14] gives numerous explicit constructions that
can be implemented (software for solving systems, such as
the ISOLDE package by Barkatou and Pflügel, is useful
here). Some of these cases need a generalization of the conic
solver.

It makes sense to treat the lower order cases first, because
for high order it becomes harder to obtain an efficient im-
plementation, and high order might also be less common in
practice. So for future work, the next natural step would
be to see if the order 4 cases can be improved, and to im-
plement some of the higher order cases found in the above
mentioned references.
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