# Solving Third Order Linear Differential Equations in Terms of Second Order Equations 

Mark van Hoeij (Florida State University)

ISSAC'2007
Talk presented by:
George Labahn (University of Waterloo)

## Notations.

Notation: $\partial=\frac{\mathrm{d}}{\mathrm{d} x}$. Differential operator:

$$
L=\partial^{3}+c_{2} \partial^{2}+c_{1} \partial+c_{0}
$$

where the $c_{i}=c_{i}(x)$ are rational functions.

$$
L(y)=y^{\prime \prime \prime}+c_{2} y^{\prime \prime}+c_{1} y^{\prime}+c_{0} y
$$

Solution space of $L$ :

$$
V(L)=\{y \mid L(y)=0\} .
$$

Dimension $=$ order $L=3$.

Goal: Find closed form expressions for solutions of $L(y)=0$, by trying to reduce this equation to equation(s) of lower order.

## Singer's Theorem

Suppose $L$ has rational function coefficients and order 3 .

Suppose that $L$ can be solved in terms of solutions of lower order equations (again linear with rational functions as coefficients).

Then [Singer 1985] at least one of the following is true:
(1) $L$ is reducible ( $L$ can be factored).
(2) $L$ is a symmetric square.

- $L$ is gauge equivalent to a symmetric square.
(Note: $\exists$ generalizations to higher order by M. Singer, A. Person, K. Nguyen, M. van der Put)


## Goal: reduce order whenever possible.

Cases 1 and 2 are already handled by existing implementations.

Goal: Handle case 3 as well.

This way, reduction of order 3 to lower order will be done whenever it is possible. Is $L$ the symmetric square of a second order operator?

Let $L=\partial^{3}+c_{2} \partial^{2}+c_{1} \partial+c_{0}$.
$L$ is a symmetric square if there exist functions $y_{1}, y_{2}$ such that $y_{1}^{2}, y_{1} y_{2}, y_{2}^{2}$ is a basis of $V(L)$.

In this case $y_{1}, y_{2}$ are solutions of some operator:

$$
L_{2}=\partial^{2}+a_{1} \partial+a_{0}
$$

Testing if $L$ is a symmetric square (and finding $L_{2}$ ) is easy:
Take

$$
a_{1}:=\frac{c_{2}}{3}, \quad a_{0}:=\frac{c_{1}-a_{1}^{\prime}-2 a_{1}^{2}}{4}
$$

and test if $4 a_{0} a_{1}+2 a_{0}^{\prime}$ equals $c_{0}$. (19'th century).

## Reduction of Order, Case 2: Factorization.

Let $L=\partial^{3}+c_{2} \partial^{2}+c_{1} \partial+c_{0}$.
$L$ is reducible if there exist operators $L_{1}, L_{2} \in \mathbb{C}(x)[\partial]$ of order less than 3 such that

$$
L=L_{1} \cdot L_{2}
$$

where multiplication $=$ composition of operators.

If $L$ is reducible then we can reduce the order, and there are algorithms + implementations to do this.

Remains to do: a practical way to handle Case 3.

## Reduction of Order, Case 3.

Let $L \in \mathbb{C}(x)[\partial]$ have order 3. If $L(y)=0$ can be reduced to lower order, then according to [Singer 1985] one of three cases must hold. Two out of those three cases are already implemented.

Thus, if a reduction of order is possible, and currently available software does not already perform this reduction then we must be in Case 3. Then:
$L$ is gauge equivalent to the symmetric square of a second order operator.
(Definitions will come later, first an example.)

## Example.

$$
L=\partial^{3}+\frac{x-2}{(x-1) x} \partial^{2}-\frac{4 x^{2}+3 x+2}{9(x-1) x^{2}} \partial+\frac{2}{9(x-1) x}
$$

This example was constructed in such a way that it has solutions that can be expressed in terms of Bessel functions.

Hence: a reduction to order 2 is possible.

However, currently available software does not find a reduction of order, so we must be in Case 3 by Singer's theorem.

## Example, continued.

The example $L$ is irreducible and not a symmetric square. But it is solvable in terms of lower order equations.

Hence $L$ must be gauge equivalent to the symmetric square of some second order $L_{2}$ by [Singer 1985].

To solve $L$ we want to find such $L_{2}$ and then solve $L_{2}$.

Find such $L_{2}$ :

- Solved in theory in [Singer 1985], but this algorithm would be too slow for almost all examples; it involves solving large systems of polynomial equations (e.g. with Gröbner basis).
- Our contribution in ISSAC'2007: An efficient algorithm (does not require solving systems of non-linear equations).


## Gauge transformations.

Two operators $L, \tilde{L}$ of the same order are called gauge equivalent if there exists an operator $G$ that maps the solutions of $L$ onto the solutions of $\tilde{L}$.

Given $L, \tilde{L}$ such gauge transformation $G$ can be found (if it exists) using the Homomorphisms command in Maple 10.

Let $L$ and $G$ be linear differential operators.
$V(L)=$ solution space of $L$.
Apply operator $G$ to $V(L)$. The result $G(V(L))$ is the solution space of an operator we denote as $L^{G}$.

If $L$ is gauge equivalent to $\tilde{L}$ then $\tilde{L}=L^{G}$ for some $G$.

## Gauge transformations, an example.

Take

$$
L_{a}=\partial^{2}-x \quad \quad L_{b}=\partial^{2}-\frac{1}{x} \partial-x
$$

$L_{a}$ corresponds to the Airy equation $y^{\prime \prime}-x y=0$.
$L_{a}$ and $L_{b}$ are gauge equivalent because $L_{b}=L_{a}^{G}$ where

$$
G=\partial \quad(=\text { differentiation })
$$

This means that by applying $G$ to the solutions of $L_{a}$ we get the solutions of $L_{b}$.

The inverse of this gauge transformation is $\frac{1}{x} \partial$. It sends solutions of $L_{b}$ back to solutions of $L_{a}$.

## Notation and Problem Statement.

Denote $\operatorname{Sym}^{2}(L)$ as the symmetric square of $L$. Then $y^{2}$ is a solution of $\operatorname{Sym}^{2}(L)$ for every $y \in V(L)$.

To solve $L$ from the example we need to find a gauge transformation that turns $L$ into a symmetric square.

Thus, we search for $G \in \mathbb{C}(x)[\partial]$ for which there exists $L_{2}$ with

$$
L^{G}=\operatorname{Sym}^{2}\left(L_{2}\right) .
$$

Input: L.

To find: (if it exists) a gauge transformation $G \in \mathbb{C}(x)[\partial]$ such that

$$
L^{G}=\operatorname{Sym}^{2}\left(L_{2}\right)
$$

for some $L_{2}$.

- If we had $G$, then it's easy to compute $L^{G}$, and then it's trivial to compute $L_{2}$.
- If we had $L_{2}$, then we can compute $\operatorname{Sym}^{2}\left(L_{2}\right)$ to get $L^{G}$, from which we can compute $G$ with Maple 10.

However, we have neither $L_{2}$ nor $G$, we only have $L$.

# How to find a gauge transformation $G$ that takes $L$ to the 

 symmetric square of some $L_{2}$ if we don't know $L_{2}$ ?Goal: Find some $G=g_{2} \partial^{2}+g_{1} \partial+g_{0}$ for which $L^{G}$ is a symmetric square.

This means $L^{G}$ has solutions $z_{1}, z_{2}, z_{3}$ of the form

$$
z_{1}=y_{1}^{2}, \quad z_{2}=y_{1} y_{2}, \quad z_{3}=y_{2}^{2}
$$

for some functions $y_{1}, y_{2}$. Then

$$
z_{1} z_{3}-z_{2}^{2}=0
$$

This suggests that there should be some quadratic relation for $g_{0}, g_{1}, g_{2}$ (the solutions $z_{i}$ of $L^{G}$ depend linearly on $g_{0}, g_{1}, g_{2}$ ).

## How to find $G$ ?

Indeed, according to [Singer 1985], if $L$ can be solved in terms of second order equations, then in the non-trivial case, the operator $\operatorname{Sym}^{2}(L)$ has a first order factor $\partial-r$, and there exist some quadratic relation $R$ such that:
$L^{G}$ is a symmetric square $\Longleftrightarrow R\left(g_{0}, g_{1}, g_{2}\right)=0$
(here $G=g_{2} \partial^{2}+g_{1} \partial+g_{0}$ )

To solve $L(y)=0$, we need:
(1) A formula for $R$ in terms of $L$ and $r$.
(2) An algorithm to solve quadratic relations $R=0$ over $\mathbb{C}(x)$.
(3) Compute $L^{G}$ and write it as $\operatorname{Sym}^{2}\left(L_{2}\right)$ for some $L_{2}$.
(1) Solve $L_{2}$.

## Our contribution.

The formula for $R$ in [Singer 1985] is not very explicit and contains two unknown constants which makes solving $R=0$ very costly.

We give a more explicit formula for $R$ that is less work to calculate, and which moreover contains no unknown constants.

This way $R=0$ can be solved efficiently, and the algorithm becomes practical.
(How to find this formula will be discussed later, first an example.)

## Example.

$$
L=\partial^{3}+\frac{x-2}{(x-1) x} \partial^{2}-\frac{4 x^{2}+3 x+2}{9(x-1) x^{2}} \partial+\frac{2}{9(x-1) x}
$$

$\operatorname{Sym}^{2}(L)$ has order 6 , and has $\partial-1 /\left(x+\frac{1}{4}\right)$ as a factor. Substituting this into the formula for $R$ from [ISSAC'2007] gives:
$R\left(g_{0}, g_{1}, g_{2}\right)=81 x^{3}(1+4 x)^{4} g_{0}^{2}+72 x^{2}(x-2)(1+4 x)^{2} g_{0} g_{2}-$ $36 x^{2}(x-2)(1+4 x)^{2} g_{1}^{2}+72 x(1+4 x)\left(4 x^{2}-12 x-1\right) g_{1} g_{2}+$ $\left(256 x^{4}-368 x^{3}+2544 x^{2}+484 x+16\right) g_{2}^{2}=0$.

Such quadratic relations can be solved with [Schicho, ISSAC'1998] or [vH + Cremona, 2006] (implementations in Maple and Magma are available for download).

## Example, continued.

Solving $R=0$ requires making arbitrary choices, so each time you run it you may get a different solution ( $g_{0}, g_{1}, g_{2}$ ).

Each solution $g_{0}, g_{1}, g_{2}$ gives an operator

$$
G=g_{2} \partial^{2}+g_{1} \partial+g_{0} .
$$

One such solution gives

$$
G=9 \partial^{2}+\frac{3(x+2)}{x} \partial-\frac{2}{x}
$$

Then one can compute
$L^{G}=\partial^{3}+\frac{3(x-2)}{x(x-1)} \partial^{2}-\frac{2\left(2 x^{3}-8 x^{2}+10 x-31\right)}{9 x^{2}(x-1)^{2}} \partial-\frac{2\left(x^{4}-5 x^{3}+11 x^{2}+16 x+4\right)}{9 x^{3}(x-1)^{3}}$
which is a symmetric square.

## Example, continued.

We can write $L^{G}$ as the symmetric square of

$$
L_{2}=\partial^{2}+\frac{(x-2)}{x(x-1)} \partial-\frac{4 x^{3}-7 x^{2}-16 x-8}{36 x^{2}(x-1)^{2}}
$$

Every solution $y$ of $L_{2}$ gives a solution $y^{2}$ of $L^{G}$, and by applying the inverse gauge transformation we get a solution of $L$.

Take for example

$$
y=\frac{\sqrt{x-1} B_{I}\left(\frac{1}{3}, \frac{2}{3} \sqrt{x}\right)}{\sqrt{x}}
$$

where $B_{I}$ is the Bessel I function.

## Example, continued.

Now $y^{2}$ is a solution of $L^{G}$. The inverse of gauge transformation $G$ can be represented as

$$
\frac{9 x^{3}}{x-1} \partial^{2}+\frac{3 x^{2}(5 x-11)}{(x-1)^{2}} \partial-\frac{x\left(4 x^{3}-9 x^{2}-16+3 x\right)}{(x-1)^{3}}
$$

Applying this operator to $y^{2}$ we find the following solution of $L$

$$
\sqrt{x} b_{1} b_{2}-x b_{1}^{2}+x b_{2}^{2}
$$

where

$$
b_{1}=B_{I}\left(\frac{1}{3}, \frac{2}{3} \sqrt{x}\right) \quad \text { and } \quad b_{2}=B_{I}\left(-\frac{2}{3}, \frac{2}{3} \sqrt{x}\right) .
$$

## How to find a formula for $R$.

The gauge transformation $G$ maps the solution space of $L$ to the solution space of $L^{G}$

$$
G: V(L) \rightarrow V\left(L^{G}\right) .
$$

This induces a map:

$$
G_{2}: V\left(\operatorname{Sym}^{2}(L)\right) \rightarrow V\left(\operatorname{Sym}^{2}\left(L^{G}\right)\right)
$$

Goal: $L^{G}=\operatorname{Sym}^{2}\left(L_{2}\right)$ for some $L_{2}$. Then $\operatorname{Sym}^{2}\left(L^{G}\right)=\operatorname{Sym}^{4}\left(L_{2}\right)$ has order 5. In the non-trivial case (if $L$ is not a symmetric square) then $\operatorname{Sym}^{2}(L)$ has order 6 . So $G_{2}$ has a 1-dimensional kernel. Then

$$
G_{2}(Y)=0
$$

where $Y$ is an exponential solution of $\operatorname{Sym}^{2}(L)$.

## How to find a formula for $R$.

The coefficients of $G_{2}$ depend quadratically on the coefficients $g_{0}, g_{1}, g_{2}$ of $G$. A general formula for $G_{2}$ expressed in terms the coefficients of $L$ and $G$ can be computed with a computer algebra system.

This general $G_{2}$ can then be inserted into the implementation.

Finding the quadratic relation $R\left(g_{0}, g_{1}, g_{2}\right)=0$ then becomes easy to implement: Just substitute the coefficients of $L$ into $G_{2}(Y)$ where $Y$ is as in the previous slide.
(This already leads to a practical implementation. In the paper additional effort is made to make the formula as small as possible, so that it can easily be typed into future implementations.)

## Current Status.

The reduction of order 3 to order 2 is implemented, and the code is available. One issue remains:

Solving quadratic relation $R\left(g_{0}, g_{1}, g_{2}\right)=0$
$\Longrightarrow$ solution is not unique
$\Longrightarrow$ gauge transformation $G=g_{2} \partial^{2}+g_{1} \partial+g_{0}$ not unique
$\Longrightarrow L^{G}$ is not unique
$\Longrightarrow L_{2}$ is not unique

So for the same third order $L$ one can end up with different $L_{2}$ 's. If one of them is solvable in closed form, then so is the other.

However, it frequently happens that current computer algebra systems solve one of those $L_{2}$ 's but not the other.

## What comes next.

So at the moment, whether or not we find closed form solutions for $L$ depends on which $L_{2}$ our program happened to find, which depends on chance. To fix this, the next research goal will be:

Next Goal: (will be supported by NSF 0728853): Solve any second order operator $L_{2} \in \mathbb{C}(x)[\partial]$ that has closed form solutions.

Thank you for your attention.

