
Complexity results for factoring univariate

polynomials over the rationals (version 0.3)

Mark van Hoeij & Andrew Novocin
Department of Mathematics

Florida State University
Tallahassee, FL 32306-4510, USA

{hoeij,anovocin}@math.fsu.edu

July 18, 2007

1 Introduction

In [6] Zassenhaus gave an algorithm for factoring polynomials f ∈ Q[x]. In
this algorithm one has to solve a combinatorial problem of size r, where r is the
number of local factors of f at some suitably chosen prime p. This combinatorial
problem consists of selecting the right subsets of the set of local factors. In the
worst case, the algorithm [6] ends up trying 2r−1 such subsets (if a subset
has been tried then one can skip its complement) so this algorithm has an
exponential worst case complexity.

Let N be the degree of the polynomial f . Most of the time the number
r is much smaller than N , which explains why Zassenhaus’ algorithm is often
fast despite its exponential worst case complexity. To observe this exponential
complexity on a computer, take polynomials of high degree for which the Galois
group contains only elements of low order (worst case are the Swinnerton-Dyer
polynomials, whose Galois groups have only elements of order 1 and 2, conse-
quently, these polynomials have r as high as N/2).

In [4] Lenstra, Lenstra and Lovász introduced a lattice reduction algorithm,
which we shall refer to as the LLL algorithm. The paper [4] also gave a fac-
toring algorithm which avoids the above mentioned combinatorial problem by
constructing factors of f using LLL. The result was the first polynomial time
algorithm for factoring polynomials in Q[x]. Schönhage [5] gave a sharper com-
plexity result for a similar approach.

The paper [3] gave a factoring algorithm that uses LLL as well. What was
new is that LLL was not used to construct the factors (constructing factors
is a problem whose size depends both on the degree as well as on the size
of the coefficients). Instead, LLL was only used to solve the combinatorial
problem (a problem whose size depends only on r, because subsets of a set with

1

r elements can be represented by elements of {0, 1}r). Since the problem to
be solved by LLL has smaller size for the algorithm in [3], it is reasonable to
expect that it will run faster than prior factoring algorithms. This expectation
is confirmed experimentally, however, actually proving that the algorithm has
a better complexity has stubbornly resisted efforts so far.

In [3], the data that is fed to the LLL algorithm (in order to solve the
combinatorial problem) consists of p-adic digits of the so-called traces (power
sums). This raises the question how many p-adic digits, and of how many
traces, need to be fed to LLL in order to successfully solve the combinatorial
problem. If one uses too few traces or p-adic digits then one may make only
partial progress instead of fully solving the combinatorial problem. If one uses
too many, one can end up solving the combinatorial problem using much more
CPU time than would have been necessary. From a practical point of view, the
latter (using too many traces/digits) is worse because the wasted time can not
be recovered, while the former (using too few traces/digits) can be remedied by
gradually adding more traces and/or digits.

In fact, even if one knew the exact number of p-adic digits and traces that
need to be used in order to solve the combinatorial problem with one call to
LLL, then as explained in [3, section 2.3 item 3] it could still be faster to use
fewer traces/digits for the first call to LLL despite the resulting increase in the
number of calls to LLL. Thus, [3, section 2.3 item 2] proposed to add only few
traces at a time, while [3, section 2.3 item 3] suggested to use O(r2) bits of data
in the first call to LLL (a p-adic digit counts as log2(p) bits).

The trade-off is that adding many traces/digits at a time will reduce the
number of calls to LLL while increasing the cost of each call. Adding few
traces/digits at a time reduces the cost of each LLL call, but the number of
calls goes up. There are two extreme positions to make concerning this trade-
off.

A. Minimize the number of calls to LLL. (In the version described in Theo-
rem 4.3 in [2] this number is brought down to 1.)

B. Minimize the complexity of each individual call. (In the version described
by Belabas [1], the cost of each LLL call is bounded by a polynomial that
depends only on r, that is, a polynomial that is independent of both N
and the coefficient size of f .)

The strategy proposed by Belabas in [1] takes side [B] to the extreme. It uses
just one trace at a time, and adds only O(r) bits of data at a time. While this
leads to a good complexity bound for each LLL call, one that depends solely on
r, it becomes difficult to bound the number of LLL calls if one takes side [B].
We expect the number of LLL calls in Belabas’ implementation to be O(r) for
typical examples, however, it should be possible to construct examples where
this number is significantly higher.

What was new about Belabas’ strategy is the order in which the p-adic digits
are used; this is done in such a way that each call to LLL will maximally benefit
from the preceding LLL calls. This way the fact that the number of LLL calls

2

may be large does not hurt the practical performance of the algorithm. Indeed,
the number of LLL calls appears to have little effect on the running times of
Belabas’ implementation; section 2.5.1 in [1] mentions that reducing the value
of the parameter BitsPerFactor by a factor 2 (which should double the number
of LLL calls) has only a minor impact on the computation timings.

However, having an unknown (and potentially large) number of LLL calls
certainly complicates the problem of bounding the complexity. Thus, to get
a complexity bound, the paper [2] took side [A]. In Theorem 4.3 in [2] it was
shown that the combinatorial problem would be solved with a single LLL call
if one applies LLL to a certain lattice (called the all-coefficients lattice in [2]).
However, this lattice is as big as the one used in [4] and thus one ends up with
the same complexity. The paper [2] also showed (Theorem 4.6 in [2]) how to
bound the complexity for [B] (i.e. for Belabas’ version, called “one coefficient at
a time” in [2]). Although this bound was not spelled out explicitly (Theorem 4.6
in [2] only says “polynomially bounded”), if one follows the steps of the proof
one sees that the complexity result for [B] in [2] is much worse than the bound
for [A], which is ironic, because [B] runs very much faster than [A].

Our goal in this paper is to address this unsatisfactory situation where ver-
sion [B] has a worse complexity bound than [A] despite being much faster. Our
starting point is the paper [2], the reader is assumed to be familiar with sec-
tions 1 through 4 in [2]. Our goal will be to give a complexity result for [B]
that matches its actual performance. Our complexity result explains some key
features of [B] that were observed in Belabas’ implementation. For instance,
it explains why doubling the number of LLL calls (by halving the parameter
BitsPerFactor) has so little effect on the CPU time. Vice versa, these features
hint to our complexity result.

1.1 Overview of Lattice Reduction

The purpose of this subsection is to list notations and known facts (from [4])
that will be needed throughout the paper. A lattice L is a discrete subset of
R
m that is also a Z-module. Let b1, . . . , br ∈ L be a basis of L and denote

b∗1, . . . , b
∗
r ∈ Rm as the Gram-Schmidt orthogonalization over R of b1, . . . , br.

Let li = log4/3(‖ b∗i ‖
2), and denote µi,j = bi·b∗j

b∗j ·b∗j
. Note that bi, b∗i , li, µi,j will

change throughout the algorithm sketched below.

Definition 1. b1, . . . , br is LLL-reduced if ‖ b∗i ‖
2 ≤ 2‖ b∗i+1 ‖

2 for 1 ≤ i < r.
(The definition in [4] is slightly stronger, for convenience we only listed what is
needed for this paper. See also Remark 2 at the end of this section.)

efficiency improvements.

Algorithm 1 (Rough sketch of Lattice Reduction Algorithms).
Input: A basis b1, . . . , br of a lattice L.
Output: An LLL-reduced basis of L.

1. (Gram-Schmidt over Z). By subtracting suitable Z-linear combinations of
b1, . . . , bj−1 from bj make sure that |µi,j | ≤ 1/2 for all j < i.

3

2. (LLL Switch). If there is a k such that interchanging bk−1 and bk will
decrease lk−1 by at least 1 then do so.

3. (Repeat). If there was no such k in Step 2, then the algorithm stops.
Otherwise go back to Step 1.

That the above algorithm terminates, and that the output is LLL-reduced
was shown in [4]. Step 1 has no effect on the li. In step 2 the only li that
change are lk−1 and lk. independent of the choice of basis. To illustrate step 2
in more detail, suppose that c1, . . . , cr is a basis of L obtained from b1, . . . , br
by applying step 2. So ck = bk−1 and ck−1 = bk, and cj = bj for the remaining
j’s.

Since b1, . . . , br and c1, . . . , cr are bases of the same L, they have the same
determinant (the product of ‖ b∗i ‖ for i = 1, . . . , r) and hence

‖ c∗k−1 ‖
2‖ c∗k ‖

2 = ‖ b∗k−1 ‖
2‖ b∗k ‖

2
. (1)

Step 2 is only taken if it decreases lk−1 by at least 1, so ‖ c∗k−1 ‖
2 ≤ 3

4‖ bk−1 ‖2.
The vector b∗k is obtained from bk by reducing it modulo Rb1 + . . .+Rbk−1 while
c∗k−1 is obtained from bk by reducing it modulo Rb1 + . . . + Rbk−2. Hence b∗k
can not be longer than c∗k−1. Combining this we find

‖ b∗k ‖
2 ≤ ‖ c∗k−1 ‖

2 ≤ 3
4
‖ b∗k−1 ‖

2 (2)

which by equation (1) is equivalent to

‖ b∗k−1 ‖
2 ≥ ‖ c∗k ‖

2 ≥ 4
3
‖ b∗k ‖

2
.

The equations imply:

Observation 1. An LLL switch can not increase max(l1, . . . , lr), nor can it
decrease min(l1, . . . , lr).

In summary, an LLL switch reduces lk−1 by at least 1, and increases lk by
the same amount (because of equation (1)). This way each LLL switch moves
G-S length towards the later vectors, while the sum of the logarithmic G-S
lengths l1 + · · · + lr stays the same. Moreover, during the Lattice Reduction
Algorithm, the highest G-S length can not increase, and the lowest G-S length
can not decrease.

Consider the sum
∑
i(r−i)li. Each LLL switch reduces this sum by at least 1.

Hence, if lold was the value of this sum at the beginning of the computation, and
lnew was the value at the end, then there can not have been more than lold− lnew

LLL switches during the computation. The same idea was used in the proof of
the complexity result given in [4, Proposition (1.26)]. Another useful fact is the
following:

Fact 1. If ‖ b∗r ‖
2
> B then any vector in L with squared length ≤ B is a

Z-linear combination of b1, . . . , br−1.

4

In other words, b1, . . . , br is a basis of some lattice L, and if the last vector
has sufficiently large G-S length, then, in applications (including ours) where
one is only interested in elements of L of squared length ≤ B, one can remove
the last basis element.

Fact 1 follows from the proof of (1.11) in [4], and is true regardless of whether
b1, . . . , br is LLL-reduced or not. However, if one chooses an arbitrary basis
b1, . . . , br of some lattice L, then it is unlikely that the last vector has large
G-S length (after all, ‖ b∗r ‖ is the length of br reduced over R modulo all of
b1, . . . , br−1). The effect of LLL reduction (Algorithm 1) is to move G-S length
towards later vectors. So LLL reduction is very useful because if enough of this
G-S length arrives at the last vector, then it can be discarded, which brings us
one step closer to our target.

Remarks:

1. There are a number of lattice reduction algorithms that are variations of
the LLL algorithm sketched above. We would like to present our complex-
ity result in a way that is independent of which variation is used.

Each of these variations uses (at least asymptotically) the same number of
LLL switches. The differences in complexity come from differences in the
cost per LLL switch. So we will express our complexity result in terms of
the number of LLL switches. This way our result will be compatible with
each variation on the LLL algorithm.

2. Schönhage [5] gives a slightly different definition of reduced, called semi-
reduced. This allows him to apply a divide-and-conquer strategy called
block-wise reduction that reduces the asymptotic cost per LLL switch.
With minor modifications, the results in this paper carry through if one
replaces ‘reduced’ by Schönhage’s ‘semi-reduced’.

2 Partial Reductions

This section presents a type of partial lattice reduction that we will apply to
factoring polynomials.

Definition 2. Given a lattice L in Rm and a positive real number B, we call
S = b1, . . . , bk a B-reduced sequence for L if S is LLL-reduced, ‖ b∗k ‖

2 ≤ B,
and for every v ∈ L with ‖ v ‖2 ≤ B we have v ∈ SPANZ(S).

Algorithm 2 (B-Reduce).
Input: V = b1, . . . , br a basis of a lattice L.
Output: A B-reduced sequence for L.
Algorithm: The same as algorithm 1, except that whenever the last vector has
squared G-S length > B at any point during the computation, it is removed.

Correctness of the algorithm is based on Fact 1 in subsection 1.1. Now
consider the following problem. Let π : Rm+1 → R

m be projection onto the

5

first m coordinates, and S = b1, . . . , br ∈ Rm+1 with π(b1), . . . , π(br) already
B-reduced. We would like to B-reduce S in a way that takes advantage of the
fact that the first m entries are already B-reduced.

We could just apply algorithm 2 to S, but then the worst-case complexity
would be the same as algorithm 1. Specifically, if we applied algorithm 2 to
S, then the switch-complexity may depend on the size of the last entries of the
vectors of S. Here the switch-complexity is defined as the number of LLL-
switches (step 2 of algorithm 1) that occur during the computation.

We will give a variant of algorithm 2 with a better switch-complexity, one
that only depends on B and r and not the size of the last entries (This does not
imply that the complexity itself is independent of the size of last entries because
we still work with numbers of that size. But a lower switch-complexity does
imply a lower overall complexity because both algorithms have to work with
numbers of that size.) The algorithm uses an idea obtained from strategy B
in [1].

Algorithm 3 (Gradual B-Reduce).
Input: S = b1, . . . , br ∈ Rm+1 with π(b1), . . . , π(br) already B-reduced.
Output: A B-reduced sequence.
Algorithm:

1. Let d be the smallest nonnegative integer for which | b1,m+1

2rd
| ≤ 2r, where

bi,m+1 is the last entry of bi.

2. Scale down the last entry of each vector bi,m+1 := bi,m+1

2rd
(for i = 1, . . . , r)

and set s := r.

3. Repeat the following d times:

(a) If 1 < max(|b1,m+1|, . . . , |bs,m+1|) (where s is the number of remain-
ing vectors) then run algorithm 2 and let s be the number of remaining
vectors.

(b) (Gradually scale back up). Let bi,m+1 := 2r bi,m+1 (for i = 1, . . . , s).

4. Run algorithm 2 and stop.

In order to see why this algorithm also returns a B-reduced basis we need
the following:

Lemma 1. Let σ : Rm+1 → R
m+1 scale up the last entry by some factor δ > 1.

Let S = b1, . . . , br and σ(S) the image of S. Then ‖ b∗i ‖≤‖ σ(bi)
∗ ‖.

The Lemma implies that removing a vector (during the call to algorithm 2 in
step 3a) before the last entry was scaled back up to original scaling (by repeated
calls to step 3b) will not cause removal of a vector whose original squared G-S
length (as it was before step 2) had been ≤ B.

Proof. Let Vi = {bi − (ai−1bi−1 + · · ·+ a1b1) | a1, . . . , ai−1 ∈ R}, then b∗i is just
the shortest vector in Vi. Now the claim is that the shortest vector in Vi is

6

not longer than the shortest vector in σ(Vi). So let w be the shortest vector
in σ(Vi). There is some v ∈ Vi with σ(v) = w. Let w = (c1, . . . , cm), then
v = (c1, . . . , cm/δ). Now ‖ b∗i ‖≤‖ v ‖≤‖ w ‖=‖ σ(bi)

∗ ‖.

Lemma 2. In algorithm 3 every vector has squared G-S length ≤ 23rB at any
time during steps 3 and 4. In particular, this holds for every removed vector at
the time of its removal.

Proof. Since running B-reduce cannot increase G-S lengths (by Observation 1)
we need to decide how large a vector can possibly be just after scaling up by 2r.
But just before the scaling we know that b1, . . . , bs is B-reduced which implies
that ‖ b∗1 ‖

2 ≤ 2‖ b∗2 ‖
2 ≤ · · · ≤ 2s−1‖ b∗s ‖

2 ≤ 2s−1B, since the last vector is
no larger than B and the definition of a reduced basis. So just after scaling
the largest G-S length can have squared length no greater than (22r)(2s−1B) ≤
23rB.

Definition 3 (Value). Suppose b1, . . . , bs is the current set of vectors at some
point in the algorithm. We will define

µ(b1, . . . , bs) = 0 · l1 + 1 · l2 + · · ·+ (s− 1) · ls + r(r − s) log4/3(23rB)

which we call the value at that point in the algorithm. It is a weighted sum
(with weights 0, 1, . . . , s − 1 and r) of the logarithmic G-S lengths, where the
r − s removed vectors are counted as if they had squared G-S lengths 23rB.

Theorem 1. Gradual B-reduce has switch-complexity O(r3 + r2 log(B)) if we
assume that the Gram-Schmidt lengths of π(b2), . . . , π(br) are at least 1.

Proof. The assumption on the Gram-Schmidt lengths implies that the value of
µ at the end of step 2 is nonnegative. Substituting s = 0 gives the highest
possible value for µ after step 2 (see lemma 2). Hence µ ≤ r2 log4/3(23rB) =
O(r2(r + log(B)) will hold at any time during steps 3 and 4. Because each
LLL-switch increases µ by at least 1, we can prove the theorem by showing that
the value µ never decreases during steps 3 and 4.

Removing a vector can only increase µ by Lemma 2. The only steps that
change G-S lengths are scalings and LLL-switches. Lemma 1 shows that scaling
up (step 3b) can only increase G-S lengths and hence can not decrease µ.

3 Partial Reduction of a Special Matrix

We want to bound the switch-complexity of B-reducing the rows of the following
type of matrix:

dN
. . .

d1

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗


where the lower left hand corner is an r × r

7

identity matrix, ∗ represents any number, and di2 > 2((r+1)2−(r+1))/2B(r+1). In
addition we require |di| > 1 and that di has the largest absolute value in its
column.

Algorithm 4. Matrix Reduce
Begin with the vectors S = b1, . . . , br which are the rows of the r × r identity
matrix in the bottom left corner, throughout the algorithm we will let s denote
the current number of vectors in S and c denote the number of removed vectors.
Then perform the following:

1. Add a row and a column. By this we mean expand the corner of the matrix
we will deal with, which includes adjoining a new entry for each current
row-vector and then adding the next row-vector (properly truncated). Note
that the new vector is added as the first entry in S (this will simplify the
proof of lemma 5 below).

2. Call Algorithm 3 on S.

3. Unless the matrix has been exhausted go back to step 1.

If b1, . . . , bs is the current collection of vectors and c is the number of vectors
which have been removed, then we define the Value of the current vectors as:

µ(b1, . . . , bs) = 0 · l1 + 1 · l2 + · · ·+ (s− 1) · ls + (r + 1)c log4/3(23(r+1)B)

Lemma 3. In step 2 at least one vector gets removed so that s is never more
than r + 1 in Algorithm 4.

Proof. If no vector gets removed then the determinant squared must be the
same both before and after step 2. But before step 2 the determinant squared is
≥ B(r+1)2((r+1)2−(r+1))/2 (because of the di). After step 2 we have ‖ b∗s ‖

2 ≤ B
and ‖ b∗i ‖

2 ≤ 2s−i‖ b∗s ‖
2 which imply that our determinant squared must be

≤ Bs2(s2−s)/2. Since the first time step 2 is called we have s = r + 1 we know
that at least one vector must have been removed. But now by repeating this
logic we have s ≤ r + 1 for every other time step 2 is called. Therefore every
time step 2 is called at least one vector is removed. ‖2. Also the product of
the G-S lengths is the determinant of S. So if we were to keep all vectors
when adding a column we would need that ‖ b∗s ‖

2 ≤ B. These facts imply that
the determinant squared of the starting lattice must be below Bs2(s2−s)/2 but
di

2 > B(r+1)2((r+1)2−(r+1))/2 for all i, so that the determinant of any of the
lower left hand corners we take is large enough to guarantee at least one vector
is removed.

Corollary 1. No removed vector (at the time of its removal) can have li larger
than log4/3(23(r+1)B), and when lattice reduction (Algorithm 1) is called no
remaining vector has li larger than log4/3(23(r+1)B).

The proof is the same as the proof for Lemma 2.

8

Lemma 4. The G-S lengths of any vector in Algorithm 4 are always ≥ 1. In
other words li ≥ 0.

Proof. The initial vectors have G-S length ≥ 1 (di ≥ 1 above). So the lemma
follows from Observation 1.

Lemma 5. Value µ never decreases in Algorithm 4.

Proof. We have already shown that Algorithm 3 will not decrease value. It
remains to show that step 1 will not decrease value.

Step 1 adds the vector (0, . . . , 0, di) to the beginning of b1, . . . bs. This way
the G-S lengths of b1, . . . , bs are not changed by the addition of an extra entry.
They will only have their weights increased by one in µ, which can only increase
µ (because of lemma 4). The length of (0, . . . , 0, di) has no impact on µ since it
is counted with weight 0.

Lemma 6. Each LLL switch increases Value µ by at least 1.

This is the same as in the previous section.

Lemma 7. µ is always ≤ N(r + 1)(log4/3(23(r+1)B), so that µ = O(Nr(r +
log(B))).

Proof. As seen in the previous section when Gradual B-Reducing no li can
become larger than log4/3(23(r+1)B). Thus a remaining vector contributes less
to value than a removed vector. In this application however we do allow a large
G-S length but only when the new vector is added in step 1. However by adding
this vector as the first vector in our set it contributes nothing to value and when
algorithm 3 is called its size is immediately scaled back down. Thus the value
is always less than it would be if all vectors were removed.

This implies that the number of LLL switches is bounded by
N(r + 1)(log4/3(23(r+1)B) = O(Nr(r + log(B))), since each switch ensures an
increase of at least 1.

4 New Bounds for Factoring in Q[x]

Now we simply observe that factoring over Q can be accomplished by B-reducing
a matrix with the same format as our special matrix in the previous section.
over Q.

Notation: Let f ∈ Q[x] be a polynomial of degree N , and p a prime such
that f ≡ f1 · · · fr mod p is the factorization of f in Fp[x]. Let f ≡ f̃1 · · · f̃r be
the factorization of f mod pa for some positive integer a.

In [2] we see that solving the factorization of f over Q can be accomplished
by finding a B-reduction of the rows of the following matrix, for a B value of
r + 1 (by scaling the final entries so that our target vectors have final entries
below 1/

√
N rather than 1) and a sufficiently large value for a:

9



pa

. . .

pa

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗


where the ∗ represent coefficients of the log-

arithmic derivative (multiplied by f) for each of the local factors.
We will make some minor changes to produce a matrix that looks like:

pa−bN

. . .

pa−b1

1 ∗ · · · ∗
. . .

...
. . .

...
1 ∗ · · · ∗


where pbi represents a bound on the

ith coefficient of the logarithmic derivative (up by
√
N), and we have Hensel

lifted high enough to ensure that pa−bi > 2((r+1)2−(r+1))/2B(r+1)
√
n for all i.

A B-reduction of this matrix will also solve the recombination problem by a
similar argument. Thus the switch complexity of factoring over Q is bounded
by N(r + 1)(log4/3(23(r+1)B) = O(Nr2) (our previous scaling makes B only
depend on r).

5 Conclusion and Future Improvements

This new switch-complexity of O(Nr2) is an improvement over [5] which has
switch complexity O(N3) if the coefficients are small (more if they are big).
Note that our switch complexity is independent of coefficient size.

We tried to create an algorithm that would allow us to bound the LLL
switches while not deviating too far from the fastest current implementations
like [1]. One major deviance that we will fix in future versions is that we used
precise computations over Q when scaling down the last entries. In practice
these numbers are rounded for efficiency reasons to the nearest element of 2−dZ
for some d. This could allow our value µ to decrease, and we have to find a
value for d that will not hurt the complexity.

We are currently writing down a proof that the switch complexity can be
bounded by O(r3), independent of both degree and coefficient size. This should
be included in the next version of this preprint. information and a proof that
only O(r) traces/coefficients are ever needed. We will work on these proofs for
a later version of this paper. Examples indicate that O(r3) is asymptotically
sharp.

10

References

[1] K. Belabas A relative van Hoeij algorithm over number fields, J. Symbolic
Computation, 37 (2004), pp. 641–668.

[2] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel, Factoring polynomials
over global fields, preprint arXiv:math/0409510v1 (2004).

[3] M. van Hoeij, Factoring polynomials and the knapsack problem, J. Number
Theory, 95 (2002), pp. 167–189.

[4] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials
with rational coefficients, Math. Ann. 261 (1982), pp. 515–534.

[5] A. Schönhage, Factorization of univariate integer polynomials by Dio-
phantine approximation and an improved basis reduction algorithm, Proc.
ICALP 84, Springer Lec. Notes Comp. Sci. 172, (1984), pp. 436–447.

[6] H. Zassenhaus, On Hensel factorization I, Journal of Number Theory
(1969), pp. 291–311.

11

