
AF:Small: Solving Linear Differential Equations in

terms of Special Functions, Project Description

Mark van Hoeij

September 1, 2010 — August 31, 2013

1 Introduction

Linear differential equations with polynomial or rational function coefficients
are very common in science. Many scientists use computer algebra systems
to solve such equations. Computer algebra systems (Maple, Mathematica,
etc.) contain numerous programs to match an equation with an equation in
textbooks such as [56]. A big advantage of these programs is that they take
much less time than searching the library.

But what if the computer does not find a solution? Does it mean that
one has to search elsewhere to find closed form solutions? Or does it mean
that no closed form solution exists? The latter would be useful to know
because then one can stop searching.

At the moment, the answer to these questions is somewhat subtle. There
exist complete algorithms for certain types of solutions (e.g. Liouvillian
functions [57]). But there are also classes of well known functions for which
current solvers are incomplete. The most important such function is the
hypergeometric 2F1 function. Equations with 2F1-type solutions are very
common, particularly in combinatorics and parts of physics [14, 12]. Unfor-
tunately, current computer algebra systems often do not find such solutions,
leading users to the incorrect conclusion that closed form solutions are rare.

The PI’s longer-term research goal is to develop complete algorithms to
find all closed form solutions of (linear) differential equations and recurrence
relations. The goals in this project are:

• (top-down approach): Develop general methods to reduce a differential
equation to an equation that is easier to solve.

• (bottom-up approach): Design efficient algorithms to solve equations
that can not be further reduced with a top-down approach. In par-

1

ticular for 2F1-type solutions, the aim is to divide the problem into a
number of special cases, and to develop efficient algorithms for each
case.

The combination of these approaches should efficiently find all 2F1-type so-
lutions. Note that the top-down methods are not specific to the 2F1 hyper-
geometric function, and are useful regardless of the type of solutions being
sought.

Complexity.
It is important to develop efficient algorithms; the research is not completed
the moment that an exponential time algorithm has been found. Nowadays,
computers are not only used to solve equations, but also to find equations
(e.g. [13]). Consequently, equations with coefficients of high degree are now
common. If a complete solver is not efficient, then all that the user might
receive is a long wait followed by a message that the machine ran out of
memory. The theoretical promise of a complete solution is far more valuable
when accompanied by an efficient algorithm that can actually deliver on this
promise in practice.

1.1 Value to research, education, and society

An important benefit of producing good algorithms is that people benefit
from the work even if they are unaware of this research. Their equations
will be solved by the computer, and for this there is no need to know what
was behind it. Most of the people who benefit from the PI’s work will be
unaware of it. In fact, in computer algebra, that is precisely how it should
be; having a complete algorithm in the computer and obtaining certainty
with a click of a button is much preferable over having to search for a closed
form solution while never knowing for sure if one exists.

Computer algebra systems are an important part of the infrastructure
for research and education. Thus, the value of the algorithms to be de-
veloped in this project will increase significantly when these algorithms are
incorporated into computer algebra systems. To facilitate this, the PI will
make implementations available on the web, and will assist to incorporate
the algorithms into commercial as well as free computer algebra systems (see
also Section 6 on prior results).

Many branches of science have important impacts on society. Differential
equations occur in almost every branch of science, and having closed form
solutions is very useful in practical applications. Computer algebra systems

2

are widely used and are of great value to society. Within computer algebra,
differential equations is one of the areas with the highest overall impact.

1.2 Definitions and notations

This subsection introduces terminology that will be helpful to clarify the
relation with current and prior work in Section 2, as well as to describe the
benefits of the new approaches proposed in Sections 4 and 5.

1. Let L1 and L2 be differential equations of the same order with ratio-
nal function coefficients. We say that L1 can be reduced to L2 when
the solutions of L1 can be expressed in terms of solutions of L2. A
precise definition of the phrase “can be expressed in terms of” is given
in Singer’s paper [76]. The definition includes all of the operations
that one would normally consider as writing an expression in terms of
other expressions, except one. That one operation is composition (i.e.
change of variables). See also Item 5 below.

2. If L1 and L2 have order 2 and have no Liouvillian solutions1, then
definition in Item 1 turns out to be an equivalence relation, i.e., if L1

can be reduced to L2 then L2 can also be reduced to L1. In this case
we will say that L1 is equivalent to L2.

3. An algorithm is said to be equiv-complete if the following is true:
Whenever L1 and L2 are equivalent, if the algorithm solves L2 then it
also solves L1.

4. To design an algorithm that is complete for a certain type of functions,
it is necessary that the algorithm is equiv-complete.

5. Being equiv-complete is not a sufficient condition for a complete algo-
rithm, for that, change of variables needs to be included as well.

Given two second order equations L1 and L2 with no Liouvillian solu-
tions, there is an implementation called equiv available on the PI’s web-
site [51] that can decide if L1 and L2 are equivalent, and if so, find an
operator that maps solutions of L2 to solutions of L1.

Example: Consider the following differential equations:

L1(y) = x(x2 − 1)2y′′ − (x2 + x + 1)y = 0
1This is not a real restriction since Liouvillian solutions can be found efficiently [44, 57].

3

and
L2(y) = x(x2 − 1)y′′ + (3x2 − 1)y′ + xy = 0.

By downloading [51] and calling equiv(L2,L1), one finds the following map
that sends solutions of L2 to solutions of L1

y 7→ x
√

x2 − 1
(
(x + 1)y′ + xy

)
. (1)

To find the inverse map, just run the same program with L1, L2 inter-
changed.

2 Feasibility and relation to current and prior work

There are numerous algorithms and tools [1, 15, 16, 17, 18, 21, 22, 23, 32,
33, 35, 36, 42, 44, 57, 58, 61, 66, 70, 74, 78, 79, 83, 84, 86] for solving linear
differential equations. Each treats a certain type of solution.

Most of the solvers that are currently implemented in computer algebra
systems are not equiv-complete (and hence not complete). For the example
from Section 1.2, Maple solves L2 (an equation for elliptic integrals) but not
L1, despite the fact that the map given in equation (1) shows that L1 and
L2 are equivalent.

Differential equations with closed form solutions are common. For ex-
ample, Bousquet-Mélou and Mishna [14] examined sequences that count
certain lattice-walks, and showed that for 23 of those sequences the generat-
ing function is D-finite, which means that it satisfies a differential equation
with rational function coefficients. Bostan and Kauers [13] computed dif-
ferential equations for these generating functions, in particular for the 17
non-algebraic cases. Out of these 17 cases, they could solve only one with
current computer algebra systems. However, they all have closed form solu-
tions. The fact that current systems solve some, but not all, equations that
have closed form solutions can lead users to the incorrect conclusion that
closed form solutions are rare.

This is not to say that currently existing algorithms are not useful. These
algorithms save many researchers, including the PI, a lot of time. The pro-
posed project would take much longer if it were not for the fact that some
of the required tools are already available. For this project the most impor-
tant tools are: reduction of order [48], software [43, 51] for finding gauge
transformations, hypergeometric [22] exponential [21, 72] and Liouvillian
[35, 44, 57, 78, 80] solutions, local data at singular points, subfields of al-
gebraic extensions [45], etc. These tools make it possible to develop and
implement the proposed methods in the next 3 years.

4

2.1 Relation to the PI’s current NSF grant

The PI is currently supported by NSF grant 0728853, from September 2007
to August 2010. Three graduate students have received support from this
grant. Giles Levy (Ph.D December 2009) and Yongjae Cha (Ph.D expected
in August 2010) are working on finding closed form solutions of difference
equations, while Quan Yuan (Ph.D expected in 2011) is working on solving
differential equations. Another graduate student (Tingting Fang) recently
started working with the PI on differential equations. This means that until
now (December 2009), two thirds of the effort has been spent on difference
equations, and that starting August 2010 most of the effort will go towards
differential equations.

The project description for NSF grant 0728853 (available at [49]) de-
scribed a novel approach for finding closed form solutions of differential and
difference equations. This approach has yielded very good results. The ma-
jority of the results are on difference equations (see Section 6 for details)
because the PI worked with two graduate students on this topic. Relevant
for this proposal are the results on differential equations, described below.

For the differential case, complete algorithms have been developed and
implemented that can find all 0F1 and all 1F1-type solutions (this includes
Airy, Bessel, Cylinder, Kummer, Laguerre, Whittaker functions, etc.) The
first paper [24] includes most of these cases, except the important case where
the solution is expressed in terms of a Bessel function composed with the
square-root of a rational function. However, this case needed to be treated,
because if Bν is one of the Bessel functions, and if f is a rational function,
then Bν(

√
f) satisfies a differential equation with rational function coeffi-

cients.
It was not difficult to show that the algorithm could be completed for

the Bν(
√

f)-case by solving systems of polynomial equations (with Gröbner
basis techniques). However, that would introduce a double exponential com-
plexity, which would be a clear contradiction with the PI’s goal of developing
efficient algorithms as stated in the paragraph on complexity in Section 1.
Thus, an alternative was needed. It turned out that the non-linear polyno-
mial equations could be replaced by linear equations by first solving a num-
ber theoretical problem. This has been done with graduate student Quan
Yuan. The result is that there now is an efficient algorithm and implemen-
tation [50] for all 0F1 and all 1F1-type solutions, including the Bessel-

√
f

case.
This algorithm [50] could be generalized to higher order equations, to

efficiently find all pFq-type solutions except when p = q + 1. Unfortunately,

5

it does not generalize to the 2F1 case, which is probably the most important
case of all. This means that at the moment there is no efficient (or complete)
algorithm for the 2F1 case. The PI has used some ad-hoc techniques to
compute 2F1-type solutions for people working in combinatorics and people
working in physics. However, these techniques are neither complete nor
efficient, so it has become apparent that new approaches are needed.

To find 2F1-type solutions, the PI proposes new top-down and bottom-up
approaches, to be outlined in Section 3, with more details in Sections 4 and 5.
One graduate student (Quan Yuan) will work on the bottom-up approaches,
while the other (Tingting Fang) will work on the top-down approaches.

3 Top-down and bottom-up approaches

To obtain efficient algorithms, the PI proposes several top-down and bottom-
up approaches. To illustrate how each of these ideas can contribute to solve
differential equations in terms of special functions, a comparison will be
made with the classical topic of solving polynomial equations in terms of
radicals.

For a polynomial equation of degree n, it is well known that the equation
is solvable in terms of radicals if and only if the Galois group is solvable (and
that for n ≥ 5 there exist non-solvable groups). If the group is solvable then
Galois theory also shows how, at least in principle, one can find solutions in
terms of radicals. So there exists a complete decision procedure. However,
such a procedure can be too slow, and so other algorithms are used that
are much more efficient. Table I below compares this situation with that of
solving differential equations in terms of special functions.

Notation in Table I: P is a polynomial in Q[x]. L is a linear differential
equation with rational function coefficients. The key part to finding 2F1

type solutions, if they exist, is to first find a rational function f ∈ C(x)
(and constants a, b, c) for which L is equivalent (item 2 in Section 1.2) to
the differential equation for 2F1(a, b; c; f). Let nf denote the maximum of
the degrees of the numerator and denominator of f .

6

Table I:

Solve P in terms of radicals Solve L in terms of 2F1(a, b; c; f)
Galois theory provides a The PI has ad hoc methods but
complete decision procedure. no complete algorithm exists yet.
Factor [37] to reduce the Use [48, 42] and factorization [33]
degree if P is reducible. to reduce the order when possible.
Solving irreducible P of high For large nf the ad hoc methods
degree can be slow. become exponentially slow.
Top-down approach: Try to Top-down approach: Try to
reduce the degree by computing reduce nf by computing a
subfields [45, 59]. See Examples subfield to which L descends.
1 and 2 in Section 4.1. See Examples 1, 3, and 4.
Bottom-up approach: Bottom-up approach: Develop:
Develop fast algorithms for algorithms that use tables for
n = 1, 2, 3, . . . that use tables L with few singularities, special
of groups (see [31] for n ≤ 15). algorithms and tables to treat

difficult cases separately, and fast
algorithms for small nf .

The right-hand side of Table I is a brief summary of the ideas that the
PI plans to pursue in this proposal. The left-hand side of the table is meant
only to clarify the right-hand side (references were given in the table for
readers interested in the left-hand side.)

4 The top-down approach

Top-down methods are not specific to any type of solution, such as 2F1. The
aim is not to try to find a particular type of solution (that will be the aim
in Section 5), instead, the aim is to reduce the equation to one that is easier
to solve. Existing top-down algorithms reduce the order of the equation in
various ways; the PI has developed and implemented a differential factorizer
[33], as well as other algorithms to reduce the order [42, 48] (with NSF
support). The existence of these order-reduction algorithms motivates the
PI to work on second order equations first, because progress there will also
help solve higher-order equations.

In contrast with existing top-down algorithms, the proposed top-down
methods will not to reduce the order, instead, they will to reduce the de-

7

grees2 of the problem for the bottom-up algorithms proposed in Section 5.
At the moment, the PI’s ad-hoc techniques for 2F1-solutions are still

incomplete and have running times that are at least exponential in nf . The
goal in Section 5 will be to solve both problems, but until then, a reduction
in nf obtained by the proposed top-down techniques means an exponential
improvement in running time.

The top-down approaches have an additional benefit, in that they not
only help to solve in terms of the special functions the PI is currently con-
sidering, but will also help when new functions are added to this in the near
future.

4.1 2-descent

The first of the proposed top-down approaches, called 2-descent, will be
illustrated with 4 examples.

Example 1 Descent to an index-2 subfield, trivial case. Consider the fol-
lowing polynomial resp. differential equation.

P1(x) = x8 − 8x2 + 9 = 0, L1(y) = (x5 − x)y′′ + (6x4 + 1)y′ + 4x3y = 0

Substituting3 (change of variables) x 7→
√

t turns these equations into

P2(x) = t4 − 8t + 9 = 0, L2(y) = (t2 − 1)y′′ +
7
2
ty′ + y = 0

which have lower degree resp. lower nf .

The equations in Example 1 are easy to solve with a computer algebra
system, and the simplification x 7→

√
t was easy to find. The number field

Q[x]/(P1) contains an index-2 subfield isomorphic to Q[t]/(P2). Likewise,
C(t) = C(x2) is a subfield of C(x) with index 2, and for this reason the
reduction from an equation L1 with coefficients in C(x) to an equation L2

with coefficients in C(t) will be called 2-descent.

Example 2 Compute an index-2 subfield. Consider the equation

P1(x) = x8 − 3x6 − 10x5 − x4 − 20x3 − 12x2 + 16 = 0.

If x satisfies P1 then t := x + 2/x satisfies P2(t) = t4 + 2t + 2 = 0. This
way, a degree-8 equation P1 is reduced to a degree-4 equation P2.

2the numbers nf and nr in Section 5
3The ′ means d/dx in L1 and d/dt in L2.

8

The reduction in Example 2 was less obvious than the one in Example 1.
However, in both cases the reduction can be interpreted as the computation
of a subfield. There are complete algorithms [45, 59] to compute subfields,
and hence the type of reduction P1 → P2 from Examples 1 and 2 can
always be found whenever it exists. Moreover, computing subfields is a very
efficient way to solve P1. It is therefore reasonable to expect that finding
such a reduction (when it exists) should also be possible for linear differential
equations, and that this will improve the overall performance.

Example 3 2-descent, easy case. Consider the equation

L1(y) = (x2 − 2)x5y′′ − 4x4y′ − (x2 + 2)(x2 − 2)3y = 0.

The map x 7→ −x that lead to 2-descent in Example 1 is an example of a
Möbius transformation x 7→ (ax + b)/(cx + d). One can check if there exists
a Möbius transformation σ 6= id that fixes the singularity structure of L.
In this example one finds σ : x 7→ 2/x. The fixed field of σ is C(t) where
t := x + 2/x. That corresponds to x = (t +

√
t2 − 8)/2. Making this change

of variables leads to L2(y) = y′′ − ty = 0.

Example 3 is easy to solve because the Möbius transformation σ preserves
not only the singularity structure of L1, but also L1 itself. That means that
the change of variables x = (t +

√
t2 − 8)/2 will produce an equation L2

without the square root.
Writing an algorithm that performs the simplification illustrated in Ex-

ample 3 would be very easy if one only treated the case where L1 is invariant
under σ. However, such an algorithm would be of limited value because it
would not be equiv-complete (defined in Section 2.1). To obtain a complete
algorithm for 2-descent, one must do this: Compute, if it exists, a Möbius
transformation σ 6= id that preserves the singularity structure of L1. Then
find, if it exists, an equivalent equation L2 that is invariant under σ.

Example 4 2-descent, general case. Consider the equation L1 from the
example in Section 1.2. Its singularity structure does not change under
σ : x 7→ −x, but unlike Example 1 above, L1 itself is not invariant under σ,
which means that the equation one obtains through the change of variables
x 7→

√
t will contain

√
t and will thus not be simpler than L1. To apply

2-descent for L1, one has to find an equation L2 that is invariant under σ
and equivalent to L1. Such L2 is given in the example in Section 1.2. One
can then apply x 7→

√
t to L2 and obtain the equation x(x − 1)y′′ + (2x −

1)y′ + y/4 = 0. In this example, 2-descent reduced nf from 2 to 1.

9

The PI has done theoretical work on descent in [47] with NSF support.
The next task is to develop an efficient algorithm, which will be done jointly
with graduate student Tingting Fang.

4.2 3-descent

The first problem of descent is to find the correct subfield of C(x) to which
one can descend. If the index of that subfield is 2, then this subfield must
be the fixed field of some automorphism of C(x), i.e. the fixed field of some
Möbius transformation. So this subfield can be computed by determining
all Möbius transformations that fix the singularity structure.

Descent to an index-3 subfield is trickier because a degree-3 field exten-
sion need not be a Galois extension, in which case this index-3 subfield will
not be the fixed field of a Möbius transformation.

Let f ∈ C(x) with nf = 3, so C(f) is a subfield of C(x) of index 3. If
L1 is equivalent to a equation L2 that descends to C(f), then how would
one find this subfield C(f) when only L1 is given? To answer that, consider
the normal closure of C(x) over C(f). It has the form C(x,

√
D) where

D is a polynomial of degree ≤ 4. To find C(f) one has to find this field
C(x,

√
D), then compute an S3-group of automorphisms of this field that fix

the singularity structure, and then compute the fixed field.
If the degree of D is ≤ 2 then C(x,

√
D) is isomorphic to a rational

function field. If the degree is 3 or 4, then C(x,
√

D) is an elliptic function
field. Such a field has only finitely many automorphisms of order 3 so it
should be possible to find the above mentioned S3-group. The main question
that needs to be studied is how to compute D efficiently.

Descent techniques form a mix of algorithmic issues and beautiful classi-
cal mathematics such as elliptic curves. As such, this topic provides excellent
opportunities for graduate students. The PI plans to work with one gradu-
ate student on descent techniques and other top-down techniques that are
yet to be discovered. The PI will work with another graduate student on
bottom-up techniques, the topic of the next section.

5 Bottom-up approach

A definition is needed to describe the problems, and the PI’s approach to
handle them: A singularity p of L is called an apparent singularity if L is
equivalent (item 2 in Section 1.2) to another equation for which p becomes
a regular point. Otherwise p is called a true singularity. Let na denote the
number of apparent singularities, and nr the number of true singularities.

10

To obtain a complete algorithm, it is necessary to design the algorithms
to be equiv-complete (defined in Section 1.2). That implies that to find
solutions in terms of 2F1(a, b; c; f) one has to construct f (and the constants
a, b, c) without making use of the apparent singularities. Thus, f must be
constructed from the nr true singularities.

If L has true irregular singularities (singularities that stay irregular under
equivalence), and L has order 2, then any pFq-type solution must be of
the type 0F1 or 1F1. The PI now has complete algorithms for these cases
(supported by the PI’s current NSF grant). So from here on, we can assume
that the nr true singularities are regular singularities. Likewise, one can also
assume that there are no Liouvillian solutions (Such solutions can be found
with [57, 44].) With L having rational function coefficients, one can usually
assume that f is a rational function, except in certain very special cases
that shall be treated separately. Then let nf denote the degree of f , the
maximum of the degree of the numerator and the degree of the denominator.

At the moment, there does not exist an algorithm to determine a, b, c
and nf . Instead, the PI currently uses heuristic guesses for a, b, c and has
experimentally found formulas for nf . Proving such formulas would be a key
step towards obtaining a complete decision procedure. However, the initial
the emphasis in the bottom-up approach is efficiency; treating as many as
possible cases as quickly as possible.

One of the first things to do is to complete the PI’s ad-hoc methods to
the case where nf is small, say nf ≤ 5. This 5 may well change during the
research. The case nf = 1 is trivial because nr must be 3 in this case, and
a degree-1 rational function (a Möbius transformation) is determined by 3
points. Conversely, if nr = 3 then one can choose nf = 1 as in [74]. Each of
the cases nf = 2, 3, 4, 5 will be split into a finite number of sub-cases, with
separate algorithms for each.

5.1 Four singularities

After nf ≤ 5, the next case to consider is nr = 4. Although handling nf ≤ 5
does not fully cover the case nr = 4, it does cover most of the nr = 4 case, so
the idea is now simply this: Classify all equations with all of the following
properties: nr = 4, nf > 5, and f does not allow 2-descent or 3-descent
(This means that in the field extension C(f) ⊂ C(x) there is no subfield of
index 2 or 3.)

If nr = 4 and na = 0 then L can be solved in terms of Heun functions.
In this case, the problem of finding 2F1-type solutions can be viewed as
the problem of deciding which Heun functions can be expressed in terms

11

of 2F1-functions. This problem was treated in [65]. For our purposes this
needs to be extended to the case na > 0. Nevertheless, this and many other
results from the literature will help with the above mentioned classification
problem.

Consider a Möbius transformation σ : x 7→ (ax + b)/(cx + d), where
ad−bc 6= 0. If σ, viewed as a change of variables, sends L1 to L2, then solving
L1 is the same problem as solving L2 (after all, Möbius transformations are
invertible). Because of this, the singularity structure should be considered
only up to Möbius transformations.

Four points in P 1(C) = C
⋃
{∞} can be classified (up to Möbius trans-

formations) with the cross-ratio. So the classification problem is then: find
a complete list of cross-ratio’s for which there is a corresponding equation
with nr = 4, nf > 5, and no 2 or 3 descent. For each such cross-ratio,
store the corresponding a, b, c, f in a table. Once the table is completed,
there will be a complete solver for the nr = 4 case. For this table to be
finite, it is necessary to exclude small nf from the table (The PI proposed
to treat nf ≤ 5 separately, but this cut-off point was arbitrary and may
change during the research.)

If all singularities p1, . . . , p4 have the same exponent-difference modulo
the integers, then they can be treated as a set of unordered points, which
are classified with the j-invariant of y2 − (x− p1) · · · (x− p4).

Like the cross-ratio for nr = 4, there exist similar convenient invariants
that classify 5 or 6 points up to Möbius transformations.

5.2 What comes next

For almost every linear differential equation one might realistically encounter
in research, the combination of top-down and bottom-up approaches should
find closed form solutions whenever they exist. But what if no closed form
solution for an equation L can be found? The user would want to know if it
has been proven that no such solutions exist. Such proofs can be obtained
using the monodromy group, see [60] for an example. How to construct
such proofs algorithmically will be a topic of research after the top-down
and bottom-up approaches have been developed.

6 Results from prior NSF support.

The following is an overview of research supported by the PI’s prior NSF
grants active during 2004–2009 (for details on those grants see Subsec-
tion 6.1).

12

1. Recurrence relations

(a) Solutions of Second Order Recurrence Relations.
Giles Levy, one of the PI’s graduate students that was supported
by NSF grant 0728853, gives three new algorithms in his Ph.D
thesis (December 2009, [63]). The first algorithm decides if a re-
currence relation can be solved in terms of the sequence u(n) =
2F1(a + n, b; c; z) for some constants a, b, c, z.
Next, an algorithm for Liouvillian solutions is given. This algo-
rithm treats only order 2, but it is the fastest Liouvillian solver
for order 2. (The combinatorial problem has been reduced to a
single case.) The third algorithm checks if an equation can be
reduced to a second order equation whose solution appears in
Sloane’s On-Line Encyclopedia of Integer Sequences [82].
Each of these algorithms has the property given in Item 3 in Sec-
tion 1.2. That makes them very strong in practice. Each of the
three algorithms solves many of the equations in Sloane’s On-
Line Encyclopedia [82], including a large number of equations for
which the On-Line Encyclopedia does not (yet) have a solution.
The implementation can be downloaded from [63].

(b) The PI and graduate student Yongjae Cha have implemented
algorithms to compute data for recurrence relations that is in-
variant under the equivalence from Item 2 in Section 1.2. This
way, solvers such as those in Levy’s thesis [63] can now be de-
veloped quickly in a systematic way. Examples currently imple-
mented include Liouvillian functions [52], Bessel, and Whittaker
(in preparation). The paper for the Liouvillian case [52] won an
award at the ISSAC’2009 conference for best student co-authored
paper.

(c) In [22] the PI, joint with T. Cluzeau, developed an efficient algo-
rithm to compute hypergeometric solutions of linear recurrence
relations, that avoids computing splitting fields which was a bot-
tleneck in Petkovšek’s algorithm (see [69]). An implementation
by the PI of this algorithm is available.

(d) In [2] an algorithm was developed to desingularize recurrence re-
lations whenever possible.

2. Solving linear differential equations.

(a) In [24, 50] a complete algorithm to solve all second order equa-
tions with 0F1 and 1F1 type solutions has been developed. See

13

Section 2.1 for more details.

(b) The Kovacic algorithm [57] is a famous algorithm for finding Li-
ouvillian solutions of linear second order differential equations.
With the use of Klein’s theorem, the PI and J.A. Weil could
give a more efficient algorithm [44] that produces more compact
solutions. An implementation of this algorithm is available [57].

(c) A new algorithm for computing exponential solutions was devel-
oped in [21]. One of the novel ideas in this algorithm is to combine
local data in characteristic 0 (generalized exponents) with global
mod p data (the p-curvature).

(d) In [17] equations with doubly periodic coefficients were treated.

3. Factoring polynomials.
The PI developed a new algorithm [37] to factor polynomials with ra-
tional number coefficients, specifically, the combinatorial problem ap-
pearing in Zassenhaus’ algorithm is solved efficiently. This algorithm
is a significant practical improvement [64]. It was soon incorporated
into computer algebra systems such as Maple, Magma, NTL, Pari, and
MuPAD. These implementations benefit indirectly from NSF support,
because those implementations are assisted by the paper as well as the
PI’s implementation on the web, both of which were produced with
NSF support.

More recently, the PI and graduate student A. Novocin have proven a
new complexity result [67, 53] for this factoring algorithm, the first im-
provement in the complexity of factoring in Q[x] since the 80’s. More-
over, this complexity analysis also lead to practical improvements that
will make the algorithm faster on the most common cases (specifically,
the cases that have one large irreducible factor and zero or more small
irreducible factors).

4. Evaluating Riemann theta functions, Riemann matrices.
The following algorithms were developed in joint work with Bernard
Deconinck: monodromy, homology, differentials, periodmatrix, and
an algorithm to compute Riemann Theta functions [26]. See also NSF
nugget [68].

5. Order reduction for differential operators.
The PI has developed several algorithms for reducing differential equa-
tions to differential equations of lower order. Besides factoring [33],

14

the PI has also used other constructions (symmetric product [42], sym-
metric power, or a symmetric power after a gauge transformation [48])
to develop and implement algorithms for reducing the order. To do
these reductions efficiently required the development of an algorithm
for conics [46], as well as answers to a number of theoretical questions
[47] on descent of differential operators.

The PI has also developed an algorithm to compute gauge transfor-
mations. This algorithm is also useful for computing ladder operators
in physics, and is available at [43].

6. Modular GCD algorithm.
In computations involving algebraic extensions, a bottleneck in the
computation is often GCD computations. To remedy this, the PI wrote
two joint papers [40], [41] with M. Monagan on modular algorithms
for GCD computation, one for number fields presented with multiple
extensions, and one for function fields.

6.1 List of prior NSF grants active during 2004 – 2009

Title: Algorithms for Linear Differential Equations and Algebraic Func-
tions. NSF 0098034, 09/15/01 – 08/31/04, $152,585

Title: Simplifying Algebraic Numbers and Algebraic Functions.
NSF 0511544, 09/01/05 – 08/31/08, $89,999

Title: Closed Form Solutions for Linear Differential and Difference Equa-
tions. NSF 0728853, 09/01/07 – 08/31/10, $275,000

Supported Graduate students:
The grants listed above have supported Andrew Novocin (Ph.D April 2008,
currently a postdoc at ENS de Lyon), Giles Levy (Ph.D December 2009),
Yongjae Cha (Ph.D expected in August 2010), and Quan Yuan (Ph.D ex-
pected in 2011).

Papers supported:
Journal publications: [2, 4, 10, 21, 22, 26, 37, 46, 47]
Refereed conference publications: [17, 24, 30, 40, 41, 42, 44, 48, 52]
Preprints submitted for publication: [53, 54]
Other preprints: [27, 39, 38, 45]

The PI’s papers are available at: www.math.fsu.edu/~hoeij/papers.html

15

References

[1] S.A. Abramov, Rational solutions of linear differential and difference
equations with polynomial coefficients, USSR Comput. Maths. Math.
Phys. 29, 7-12 (translated from Zh. vychisl. mat. fiz. 29, 1611-1620)
(1989).

[2] S.A. Abramov, M. Barkatou, and M. van Hoeij, Apparent Singularities
of Linear Difference Equations with Polynomial Coefficients, AAECC,
17, 117-133 (2006).

[3] S.A. Abramov and M. van Hoeij, A method for the Integration of Solu-
tions of Ore Equations ISSAC ’97 Proceedings, 172-175 (1997).

[4] S.A. Abramov and M. van Hoeij, Set of Poles of Solutions of Lin-
ear Difference Equations with Polynomial Coefficients, Computational
Mathematics and Mathematical Physics, 43, No. 1, 57-62 (2003).

[5] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, (1972).

[6] G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia
of Mathematics and its Applications, 71, Cambridge University Press,
(1999).

[7] F. Baldassarri and B. Dwork, Differential Equations with Algebraic So-
lutions, American Journal of Mathematics, 101, 42-76 (1979).

[8] M. A. Barkatou, On Rational Solutions of Systems of Linear Differen-
tial Equations, J. Symbolic Computation, 28 547-567 (1999).

[9] K. Belabas, A relative van Hoeij algorithm over number fields, J. Sym-
bolic Computation, 37, 641-668 (2004).

[10] K. Belabas, J. Klüners, M. van Hoeij, and A. Steel Factoring polyno-
mials over global fields, Journal de Théorie des Nombres de Bordeaux,
21, 15-39 (2009).

[11] M. Berry, Why are special functions special? Physics Today, 54, no.4,
11-12, (2001). http://www.physicstoday.com/pt/vol-54/iss-4/p11.html

[12] A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N.
Zenine, Globally nilpotent differential operators and the square Ising
model, preprint arXiv:0812.4931 (2008).

16

[13] A. Bostan, M. Kauers, Automatic Classification of Restricted Lattice
Walks, preprint arXiv:0811.2899 (2008).

[14] M. Bousquet-Mélou, M. Mishna, Walks with small steps in the quarter
plane, preprint arXiv:0810.4387 (2008).

[15] M. Bronstein, On Solutions of Linear Differential Equations in their
Coefficient Field, J. of Symbolic Computation, 13, 413-439 (1992).

[16] M. Bronstein and S. Lafaille, Solutions of linear ordinary differential
equations in terms of special functions, Proceedings of ISSAC’02, Lille,
ACM Press, 23-28 (2002).

[17] R. Burger, M. van Hoeij and G. Labahn, Closed Form Solutions of Lin-
ear Odes having Elliptic Function Coefficients, ISSAC’04 Proceedings,
58-64, (2004).

[18] L. Chan, E.S. Cheb-Terrab, Non Liouvillian solutions for second order
linear ODEs, Proceedings of ISSAC’04, Santander, Spain (2004).

[19] E.S. Cheb-Terrab, Solutions for the General, Confluent and Bi-
Confluent Heun equations and their connection with Abel equations,
Journal of Physics A: Mathematical and General, 37, 9923-9949 (2004).

[20] E.S. Cheb-Terrab, A.D. Roche, Hypergeometric solutions for third order
linear ODEs, preprint arXiv:0803.3474 (2008).

[21] T. Cluzeau, M. van Hoeij, A Modular Algorithm to Compute the Expo-
nential Solutions of a Linear Differential Operator, J. Symbolic Com-
putation, 38, 1043-1076 (2004).

[22] T. Cluzeau, M. van Hoeij, Computing Hypergeometric Solutions of Lin-
ear Recurrence Equations, AAECC, 17, 83-115 (2006).

[23] E. Compoint, J.A. Weil, Absolute reducibility of differential operators
and Galois groups, J. Algebra, 275, 77-105, (2004).

[24] R. Debeerst, M. van Hoeij, W. Koepf, Solving Differential Equations in
Terms of Bessel Functions, ISSAC’08 Proceedings, 39-46, (2008).

[25] B. Deconinck and M. van Hoeij, Computing Riemann matrices of alge-
braic curves. PhysicaD, 152, 28-46 (2001).

[26] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, M. Schmies. Com-
puting Riemann Theta Functions, Math. Comp., 73, 1417-1442 (2004).

17

[27] W.N. Everitt, D.J. Smith and M. van Hoeij, The Fourth-Order Type
Linear Ordinary Differential Equations, (2006).
http://arxiv.org/abs/math.CA/0603516

[28] M. Foupouagnigni, W. Koepf and A. Ronveaux, On solutions of fourth-
order differential equations satisfied by some classes of orthogonal poly-
nomials, J. Comput. Appl. Math., 162, 299-326 (2004).

[29] A.R. Forsyth, Differential Equations I–VI, Cambridge University Press,
Cambridge, England (1906).

[30] A. Galligo and M. van Hoeij, Approximate Bivariate Factorization, a
Geometric Viewpoint, SNC’2007 Proceedings, 1-10 (2007).

[31] K. Geissler, J. Klüners, Galois Group Computation for Rational Poly-
nomials, J.Symb.Comput., 30, 653-674, (2000).

[32] P. Hendriks and M. Singer, Solving Difference Equations in Finite
Terms. J. Symbolic Computation, 27, 239-259 (1999).

[33] M. van Hoeij, Factorization of Differential Operators with Rational
Functions Coefficients, J. Symbolic Computation, 24, 537-561 (1997).

[34] M. van Hoeij and J-A. Weil, An algorithm for computing invariants
of differential Galois groups. J. Pure Appl. Algebra, 117&118, 353-379
(1997).

[35] M. van Hoeij, J.F. Ragot, F. Ulmer and J.A. Weil, Liouvillian solutions
of linear differential equations of order three and higher. J. Symbolic
Computation, 28, 589-609 (1999).

[36] M. van Hoeij, Finite Singularities and Hypergeometric Solutions of Lin-
ear Recurrence Equations, J. Pure Appl. Algebra, 139, 109-131 (1999).

[37] M. van Hoeij, Factoring polynomials and the knapsack problem, J. of
Number Theory, 95, 167-189, (2002).

[38] M. van Hoeij, A conjecture in the problem of rational definite summa-
tion, http://arxiv.org/abs/math.CO/0210158

[39] M. van Hoeij, An algorithm for computing the Weierstrass normal form
of hyperelliptic curves, http://arxiv.org/abs/math.AG/0203130

18

[40] M. van Hoeij and M. Monagan, A Modular GCD algorithm over Num-
ber Fields presented with Multiple Extensions, ISSAC’02 Proceedings,
(2002).

[41] M. van Hoeij and M. Monagan, Algorithms for Polynomial GCD Com-
putation over Algebraic Function Fields. ISSAC’04 Proceedings, 297-
304, (2004).

[42] M. van Hoeij, Decomposing a 4’th order linear differential equation as
a symmetric product, Banach Center Publications, 58, 89-96, (2002).

[43] M. van Hoeij, Software for computing gauge transformations (2004).
www.math.fsu.edu/~hoeij/files/Hom

[44] M. van Hoeij and J.A. Weil, Solving Second Order Linear Differen-
tial Equations with Klein’s Theorem, ISSAC’05 Proceedings, 340-347,
(2005). Implementation available at
www.unilim.fr/pages_perso/jacques-arthur.weil/issac05/

[45] M. van Hoeij and J. Klüners, Generating Subfields, preprint (2005).
www.math.fsu.edu/~hoeij/papers.html

[46] M. van Hoeij, J. Cremona, Solving conics over function fields, Journal
de Théorie des Nombres de Bordeaux, 18, p. 595-606 (2006).

[47] M. van Hoeij, M. van der Put, Descent for differential modules and
skew fields. Journal of Algebra, 296, 18-55 (2006).

[48] M. van Hoeij, Solving Third Order Linear Differential Equations in
Terms of Second Order Equations, ISSAC’07 Proceedings, 355-360,
(2007).

[49] M. van Hoeij, Closed Form Solutions for Linear Differential and Differ-
ence Equations, Project Description of NSF grant 0728853, Sept. 2007
– Aug. 2010.

[50] M. van Hoeij, R. Debeerst, Q. Yuan, Implementation for finding 0F1
and 1F1 type solutions, www.math.fsu.edu/~hoeij/files/0F1_1F1

[51] M van Hoeij, Implementation for finding equivalence map,
www.math.fsu.edu/~hoeij/files/equiv

[52] Y. Cha, M. van Hoeij, Liouvillian Solutions of Irreducible Linear Dif-
ference Equations, ISSAC’2009 Proceedings, 87-93 (2009).

19

[53] M. van Hoeij, A. Novocin, Gradual sub-lattice reduction and a new
complexity for factoring polynomials, accepted for LATIN 2010.

[54] S. Abramov, M. Barkatou, M. van Hoeij, M. Petkovšek, Subanalytic
Solutions of Linear Difference Equations and Multidimensional Hyper-
geometric Sequences, submitted to JSC.

[55] E. Ince, Ordinary Differential Equations, Dover Publications, New
York, (1956).

[56] Kamke E. 1959 Differentialgleichungen: Lösungsmethoden und
Lösungen. Chelsea Publishing Co, New York.

[57] J. Kovacic, An algorithm for solving second order linear homogeneous
equations, J. Symbolic Computation, 2, p. 3-43 (1986).

[58] M. Kauers, Algorithms for Nonlinear Higher Order Difference Equa-
tions, Doctoral Thesis, RISC Linz, (2005).

[59] J. Klüners, M. Pohst, On Computing Subfields, J.Symb.Comput., 24,
385-397, (1997).

[60] D. Krammer, An example of an arithmetic Fuchsian group, J. reine
angew. Math. 473, 69-85 (1996).

[61] G. Labahn, Solving Linear Differential Equations in Maple, MapleTech
2(1) 20-28, (1995).

[62] H.Q. Le, SumTools Package, http://algo.inria.fr/le/SumTools.html

[63] G. Levy, Solutions of Second Order Recurrence Relations, Ph.D thesis,
(2009). text and implementation available at
http://www.math.fsu.edu/~hoeij/glevy

[64] Magma Computer Algebra. Factorization. In Magma help document
http://magma.maths.usyd.edu.au/magma/htmlhelp/text560.htm

[65] R.S. Maier, On reducing the Heun equation to the hypergeometric equa-
tion, J. Differential Equations, 213, 171-203 (2005).

[66] K. A. Nguyen, M. van der Put, Solving linear differential equations,
preprint, (2006).

[67] A. Novocin, Factoring Univariate Polynomials over the Rationals, Ph.D
thesis, (2008).

20

[68] NSF nugget, http://www.math.fsu.edu/~hoeij/papers/computingtheta

[69] M. Petkovšek. Hypergeometric solutions of linear recurrences with poly-
nomial coefficients. J. Symbolic Computation, 14, 243-264, (1992).

[70] A. C. Person, Solving Homogeneous Linear Differential Equations
of Order 4 in Terms of Equations of Smaller Order, PhD thesis,
www.lib.ncsu.edu/theses/available/etd-08062002-104315/ (2002).

[71] M. van der Put, Galois Theory of Differential Equations, Algebraic
Groups and Lie Algebras, J. Symbolic Computation 28, 441-472 (1999).

[72] M. van der Put, M.F. Singer, Galois Theory of linear Differential Equa-
tions, Grundlehren der mathematischen Wissenschaften, 328, Springer
(2003).

[73] M. van der Put and M. Singer, Galois Theory of Difference Equations,
Lecture Notes in Mathematics, 1666, Springer-Verlag, (1997).

[74] A.V. Shanin and R.V. Craster, Removing false singular points as a
method of solving ordinary differential equations, European Journal of
Applied Mathematics, 13, 617-639 (2002).

[75] M.F. Singer, Liouvillian Solutions of n-th order Homogeneous Linear
Differential Equations, American Journal of Mathematics, 103, 661-682
(1981).

[76] M.F. Singer, Solving Homogeneous Linear Differential Equations in
Terms of Second Order Linear Differential Equations, American J. of
Math., 107, 663-696, (1985).

[77] M. F. Singer, Algebraic Relations Among Solutions of Linear Differen-
tial Equations: Fano’s Theorem, Am. J. of Math., 110, 115-143, (1988).

[78] M.F. Singer, Liouvillian Solutions of Linear Differential Equations with
Liouvillian Coefficients, J. Symbolic Computation, 11, 251-273 (1991).

[79] M.F. Singer and F. Ulmer, Liouvillian and algebraic solutions of second
and third order linear differential equations. J. Symbolic Computation,
16, 37-73 (1993).

[80] M.F. Singer and F. Ulmer, Linear Differential Equations and Products
of Linear Forms, J. of Pure and Applied Algebra, 117, 549-564 (1997).

21

[81] S.Y. Slavyanov and W. Lay, Special Functions, A Unified Theory Based
on Singularities, Oxford Mathematical Monographs (2000).

[82] N. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences

[83] F. Ulmer, Liouvillian solutions of third order differential equations, J.
Symb. Comp., 36, 855-889, (2003).

[84] F. Ulmer and J.A. Weil, A Note on Kovacic’s Algorithm, Journal of
Symbolic Computation, 22 179-200 (1996).

[85] Vidunas, R: Algebraic transformations of Gauss hypergeometric func-
tions, http://arxiv.org/abs/math.CA/0408269 (2004).

[86] B. Willis, An extensible differential equation solver for computer alge-
bra, SIGSAM, March (2001).

22

