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1 Introduction

The topic in the PI’s current grant1 is: Given a linear homogeneous linear
differential equation with polynomial coefficients, decide if it can be solved
in terms of special functions, and if so, find such solutions. Much progress
on his topic has been made by the PI and his graduate students (Sections 2
and 6). Numerous algorithms were developed that turned out to be very
effective.

The PI tested these algorithms on differential equations of order 2 and
3 coming from combinatorics, physics, and the OEIS (Online Encyclope-
dia of Integer Sequences, oeis.org). Every equation encountered that had a
Convergent Integer power Series as a solution turned out to be solvable in
terms of hypergeometric functions. That was a surprising observation, be-
cause the OEIS is large and contains examples from many different sources.
This included dozens of equations that were not expected to be solvable in
terms of hypergeometric functions. The unexpected observation leads to the
following definition and question:

Definition 1 A linear homogeneous differential equation will be called a
CIS-equation if, possibly after a Möbius transformation, it has a CIS-solution.
Here CIS is short for a non-zero Convergent Integer power Series.

For example, if a differential equation has a convergent solution
∑∞

n=0 anxn

with 1728n · an ∈ Z, then a simple transformation x 7→ 1728 · x suffices
to obtain a CIS, a Convergent Integer power Series. Such an equation will

1NSF 1017880, project description is available at www.math.fsu.edu/∼hoeij/NSF2010
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be called a CIS-equation. Of course, CIS-equations are very common in
combinatorics, as minimal equations for generating functions. But CIS-
equations are surprisingly common in other parts of science as well [8, 9, 28].
Such equations are the main focus in this proposal, in particular the following
question.

Question 1 Does every CIS-equation of order 2 or 3 have a solution ex-
pressible (defined in Section 2) in terms of hypergeometric functions?

Despite having tested this on many examples, this is not yet a conjecture,
for two reasons. The first is that the situation changes significantly for
order 4 (see Section 4). The second reason is that, despite the fact that
CIS-equations were examined that came from numerous sources, they all
ended up in the same class (defined in Section 3). This indicates that the
contexts in which these equations arise have additional properties from which
a solution in terms of hypergeometric functions could be obtained. We will
discuss this in more details in one context, namely diagonals.

In [39], Bousquet-Mélou and Mishna studied 79 integer sequences that
count various types of walks in the quarter plane. They showed that in 23 of
these 79 cases, the generating function y ∈ Z[[x]] is holonomic (i.e. y satis-
fies a linear homogeneous differential equation with polynomial coefficients).
The way that y was shown to be holonomic is by showing that it equals the
diagonal (Section 3) of a multivariate rational function. The PI found ex-
pressions [40] in terms of hypergeometric functions for all 22 non-algebraic
cases2, and an algebraic expression [3] for the 1 algebraic case. But instead
of viewing this as support for Question 1, one could also consider the possi-
bility that diagonals are more than just holonomic; they could have stronger
properties that directly lead to a hypergeometric expression, regardless of
Question 1.

There are two reasons to search for such properties. The differential
equations were generally larger than their hypergeometric-type solutions,
which indicates that y is represented more naturally by a hypergeometric-
type expression than by a differential equation. Moreover, Section 3 divides
hypergeometric functions into classes, but as mentioned, all examples turned
out to be in the same class (whether they came from diagonals, the Ising
model in physics, or the OEIS).

2Current computer algebra systems could solve almost none of these. Changing that
is one of the main motivations for this research.
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1.1 Goals and timeline

The goals in this proposal are: (1) developing new algorithms to solve dif-
ferential equations, in particular CIS-equations, (2) constructing tables and
theorems that enable the algorithm to prove the non-existence of closed form
solutions whenever it finds no solution, (3) study CIS-equations and Ques-
tion 1, (4) study properties of diagonals of multivariate rational functions,
(5) developing a solver for order 3 and (6) equations of order ≥ 4 (in par-
ticular, algorithms for Calabi-Yau equations).

For goals (1) and (2), the PI’s graduate student Vijay Kunwar is cur-
rently working on algorithms and tables, with support of NSF 1017880.
New topics in this proposal are (3), (4), (5), (6) as well as a part of (2),
in particular the use of modular curves proposed in Section 5. The PI’s
other graduate student Erdal Imamoglu will start with (3) and (4): Can
one directly compute a closed form expression for a CIS coming from con-
structions such as diagonals, without first computing the (potentially much
larger) differential equation? Why do these expressions always involve the
same class of hypergeometric functions? Topics (4), (5), (6) are planned for
the second and third year of this proposal, and will be discussed further in
Sections 3, 4, and 5.

Developing algorithms and implementations is time consuming and will
likely be the majority of the work for this proposal. The algorithms, and
the study of their completeness, touch upon intriguing theoretical questions.
These questions should be investigated, not only because it is important to
prove completeness results for the algorithms, but also because of the new
directions they might lead to. The outcome of the theoretical work is hard to
predict, but for the practical work the PI is confident that useful algorithms
will continue to emerge.

1.2 Value to research, education, and society

An important benefit of producing good algorithms and implementations is
that people benefit from the work even if they did not study it. Researchers
can use these implementations to solve their equations, without first having
to learn the math behind the algorithms.

Computer algebra systems are an important part of the infrastructure
for research and education. Thus, the value of the algorithms to be de-
veloped in this project will increase significantly when these algorithms are
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incorporated into computer algebra systems. To facilitate this, the PI will
make implementations available on the web, and will assist to incorporate
the algorithms into commercial as well as free computer algebra systems.

Many branches of science have important impacts on society. Differential
equations occur in almost every branch of science, and having closed form
solutions is very useful in practical applications. Computer algebra systems
are widely used and are of great value to society. Within computer algebra,
differential equations is one of the areas with the highest overall impact.

2 Notations and current status

A linear differential equation with rational function coefficients can be repre-
sented by a differential operator L ∈ C(x)[∂] where ∂ = d/dx. For example,
if L = a2∂

2 + a1∂ + a0 for some rational functions a2, a1, a0 ∈ C(x), then
the corresponding equation L(y) = 0 is a2y

′′ + a1y
′ + a0y = 0. We assume

that L has no Liouvillian solutions, otherwise L can be solved quickly with
Kovacic’s algorithm [60, 64].

Definition 2 If S(x) is a special function that satisfies a differential oper-
ator LS (called a base equation) of order n, then a function y is called a
linear S-expression if there exist algebraic3 functions f, r, r0, r1, . . . such that

y = exp(

∫

r dx) ·
(

r0S(f) + r1S
′(f) + · · · + rn−1S

(n−1)(f)
)

. (1)

More generally, we say that y can be expressed in terms of S if it can be
written in terms of expressions of the form (1), using sums, products, and
integrals.

The reason higher derivatives of S are not needed is because they are linear
combinations of S, S′, . . . , S(n−1).

If L ∈ C(x)[∂] has order 3 or 4, and S is a special function that satisfies
a second order equation, then the problem of solving L in terms of S can be
reduced, with an algorithm and implementation [63] developed by the PI,
to the problem of solving second order equations4. This reduction of order
motivates a focus on second order equations.

3If y is a CIS-function, then f, r, r0, r1, . . . are usually rational functions in Q(x). To
cover the remaining cases, one has to classify the non-rational f ’s that can occur, which
the PI will do by using modular curves, see Section 5.

4For non-trivial examples of a CIS whose expression (containing products of hyperge-
ometric functions) was obtained with this algorithm, see the generating functions listed
under A135395 or A136045 at oeis.org.
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If y and S satisfy second order operators, then products of (1) are not
needed, and the form reduces to

y = exp(

∫

r dx) ·
(

r0S(f) + r1S
′(f)

)

(2)

Although this form still looks technical, it is the most natural form to con-
sider, because it is closed under every known transformation sending irre-
ducible second order operators in C(x)[∂] to second order linear operators:

(i) Multiplying all solutions y by exp(
∫

r dx)
(ii) Gauge transformations y 7→ r0y + r1y

′

(iii) Compositions y(x) 7→ y(f). Here f is called the pullback function.

All three transformations (i),(ii),(iii) send expressions in terms of S to ex-
pressions in terms of S. So any solver for finding solutions in terms of S, if
it is complete, then it must be able to deal with transformations (i),(ii),(iii).
So it must be able to find any solution of the form (2).

If transformation (ii) is omitted; if one searches only for solutions in this
restricted form:

exp(

∫

r dx) · S(f) (3)

then the problem is significantly easier. One can then reconstruct f by
comparing a quotient of solutions of L with a corresponding quotient of
solutions of LS . This involves a technical issue (one first has to multiply
the quotient by a suitable constant), but this can be dealt with. Although
this approach is efficient in practice, form (3) is too restrictive in general.
Among the L’s that can be solved, only a modest subset5 can be solved in
the restricted form (3). Thus, the focus is to develop algorithms that can
handle all three transformations, including (ii).

Let L ∈ C(x)[∂] have order 2, and suppose it is S-solvable, where S
is any of the classical special functions (Airy, Bessel, Kummer, Legendre,
Whittaker, exp, log, hypergeometric functions, etc.). Then the implementa-
tion [26] of the PI’s graduate student Quan Yuan6 can solve L except in one
case, when S is a hypergeometric 2F1 function. Quan’s implementation is
very efficient so it can handle large complicated inputs. Theory contributes
greatly to this efficiency. Quan’s Ph.D thesis [26] contains a classification

5usually the ones that come from the most symmetric problems, such as the example
in subsection 2.1

6supported by NSF 1017880 and 0728853, received Ph.D in March 2012
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theorem that allows the algorithm to bypass checking many cases; includ-
ing cases that would have costed the most CPU time (the ones that involve
field extensions). This algorithm and its implementation [26] represent great
progress, it means that we have a complete algorithm, efficient in practice,
to find closed form solutions in terms of all but one of the classical special
functions.

Quan’s implementation is valuable as a differential solver. It is also a
powerful tool to find closed form expressions for holonomic divergent inte-
ger power series. That is one of the reasons that the current focus is on
convergent integer power series, where 2F1 will be needed.

2.1 A 2F1 example; king walks

Much is known about hypergeometric functions [43, 44]. Here we only men-
tion the definition and differential operator:

S(x) := 2F1

(

a, b

c

∣

∣

∣

∣

x

)

:=

∞
∑

n=0

(a)n(b)n

(c)n

xn

n!
(4)

where (a)n = a · (a + 1) · · · (a + n − 1).

LS := x(1 − x)∂2 + (c − (a + b + 1)x)∂ − ab (5)

The generalized hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; x) is de-
fined likewise, with (a)n(b)n/(c)n replaced by (a1)n · · · (ap)n/((b1)n · · · (bq)n).
Quan’s implementation [26] can solve any second order L ∈ C(x)[∂] that is

pFq-solvable with p 6= q +1. The case relevant to CIS-equations is p = q +1,
in which case the pFq function satisfies an equation of order p. Question 1
involves the functions 2F1 and 3F2.

Consider an infinite “chess board” N2 and place one piece, a king, at
the origin (0, 0). A walk of length n is a sequence of n moves, starting from
(0, 0). In each move, the king must move one step (horizontally, vertically,
or diagonally) and stay within N2. Let an denote the number of walks of
length n. The sequence a0, a1, . . . is listed as A151331 in the OEIS. It is is
one of the 79 sequences considered in [39]. The other sequences in [39] are
obtained by taking a subset of the of king-moves.

A king has 8 moves, so an ≤ 8n. So the generating function y :=
∑

anxn = 1+3x+18x2+· · · has a radius of convergence of at least (actually,
equal to) 1/8. Hence y is a CIS. Bostan and Kauers [38] computed minimal
differential operators for every holonomic case in [39]. Let L ∈ Q(x)[∂] be
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the minimal operator for y. It factors7 as as L2 ◦L1 where L2 is an operator
of order 2, and L1 = ∂ + 1/x. With the implementation ([27], see also
subsection 2.2) of the PI’s graduate student Tingting Fang (supported by
NSF 1017880), the operator L2 can be solved quickly and one finds:

y =
1

x

∫ x

0
(1 + 4t)−3 · 2F1

(

3/2, 3/2

2

∣

∣

∣

∣

16t(1 + t)

(1 + 4t)2

)

dt (6)

(the 1
x

∫

comes from L1). This example is one of the easiest and most
symmetric cases. Its solution is compact; the part inside the integral has
the restricted form (3).

Most examples from [39] are less symmetric and have large minimal
operators (computed in [38]). Their closed form expressions (listed at [40])
have form (2) but not the restricted form (3). Even though most of the
closed form expressions at [40] are substantially larger than (6), they are
generally still much smaller then their minimal operators from [38].

2.2 2-descent

Although a relatively simple expression such as (6) could also be found
with an ad-hoc search, there are several reasons why systematic methods
are needed. In more complicated cases an ad-hoc approach would become
time-consuming, and would not help prove the non-existence of closed form
solutions in case none was found.

Solving a second order equation in terms of S means finding a combi-
nation of transformations (i),(ii),(iii) that sends LS to L. With support of
NSF 1017880, Tingting Fang and the PI developed an efficient algorithm
and implementation [27] for 2-descent. This algorithm solves the equation
whenever the pullback function f in form (2) is a rational function of de-
gree 2. More generally, if f allows a decomposition f = g(h) where h has
degree 2, then Tingting’s implementation reduces the problem of solving L
to another problem where the degree of f is reduced in half (this also works
for other special functions, and for order > 2 as well). This often solves
L, especially when combined an algorithm (currently being developed with
graduate student Vijay Kunwar, supported by NSF 1017880) for solving L
once the degree of f has been reduced to 3.

7The PI’s widely used algorithm [53] for factoring differential operators is implemented
in Maple’s DEtools package, and the source code is available from the PI’s webpage
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3 Diagonals and class(es?) of hypergeometric func-
tions

Let S and S̃ be a 2F1 functions, as in equation (4), with parameters a, b, c
and ã, b̃, c̃. We say that S, S̃ are in the same class when S̃ can be written
in terms of S in the form (2). This is an equivalence relation (if f is an
algebraic function, then so is its inverse under composition). Our “classes of

2F1 functions” correspond to so-called “commensurability classes of triangle
groups”, for which we can use Takeuchi’s classification [41, Section 4].

The PI encountered many dozens of examples that turned out to be
solvable in terms of 2F1. All turned out to be in the same class! This class
corresponds to Diagram (I) in [41, Section 4], so we will denote it as class (I).
One of the members of Diagram (I) is denoted as [2, 3,∞] in [41]. This
entry represents every hypergeometric equation whose exponent-differences
are of the form 1/2 + n2, ±1/3 + n2, 0 + n3 (for some n1, n2, n3 ∈ Z). The
most frequently occurring member of this collection is the hypergeometric
function with a, b, c = 5/12, 1/12, 1. It arises in the integration of periods
of elliptic curves, which in turn is connected to many areas of mathematics
and physics [8, 9].

The question why no other classes occur in the OEIS is not the right ques-
tion, after all, one could simply add an integer sequence to the OEIS with

a generating function that is not in class (I), such as 2F1

(

1/2,3/10
1

∣

∣

∣
400x

)

.

Instead, the question is:

Question 2 Let S be a hypergeometric function in Class (I). If L is the
minimal operator of a diagonal (Definition 3 below) of a bivariate rational
function, must every irreducible factor of L order 2 be solvable in terms of
S, and every factor of order 3 be solvable in terms of S2, with a solution in
the form (1)?

Algebraic solutions of L, or more generally, Liouvillian solutions of the form
exp(

∫

r) where r is an algebraic function, are not considered here because
they are of form (1) for any S. So the question is, of all possible classes of
non-Liouvillian functions that might occur as solutions of differential oper-
ators of order < 4, is it true that only one actually does occur when the
differential equation comes from a diagonal? One can ask the same question
for other constructions as well, including:

Definition 3 Let F ∈ Q(x, t)
⋂

Q((x))((t)), which means one can write F
as A/B for some A, B ∈ Q[x, t], but also as

∑∞
j=N (

∑∞
i=Mj

aijx
i)tj for some
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N, Mj ∈ Z. The diagonal of F is
∑

i aiix
i. The non-negative part of F is

∑

i,j≥0 aijx
itj.

These constructions are known to give holonomic functions, i.e., functions
that satisfy a differential operator L ∈ C(x, t)[∂]. However, L can be surpris-
ingly large, even if it has a closed form solution of modest size. For example,
the minimal equation for the complete generating function for Gessel walks
is estimated in [3, section 3.3] to have 750 million terms. Nevertheless, the
PI computed a complete closed form expression for this generating function
that fits on 1/4 of a page in [3, appendix]. Note that the Gessel generating
function is algebraic; its minimal equation was a multivariate polynomial
instead of a differential equation. But the same phenomenon, a closed form
expression that is significantly smaller than its minimal equation, occurs in
most large examples.

Techniques such as creative telescoping to prove the correctness of a min-
imal equation can be computationally non-trivial (e.g. [3, 7, 33]). The PI
proposes to directly compute a closed form expression without first com-
puting a minimal equation. There are three reasons to expect this to be
possible: (1) The large size of many minimal equations suggests that closed
form expressions are more natural. (2) The fact that in non-Liouvillian ex-
amples one always ends up in the same class of hypergeometric functions
would be difficult to explain if there did not exist a more direct connection.
(3) Hypergeometric functions in this class correspond to integration of peri-
ods on elliptic curves; one can thus search for a link to the integration and
residue analysis used in creative telescoping.

4 Comparison to related concepts

In [34] Dwork conjectured that globally nilpotent [37] operators are solvable
in terms of hypergeometric functions. If this conjecture were true, then
Question 1 would be true as well, because every irreducible CIS-operator
is automatically globally nilpotent. Alas, a counter example to Dwork’s
conjecture was given by Krammer in [65].

Question 1 asks if Dwork’s conjecture becomes true when we restrict to
the most interesting (and in practice, most common) globally nilpotent op-
erators, namely the CIS-operators. Although CIS-operators resp. CIS func-
tions form a proper subset of globally nilpotent operators resp. G-functions
[30, 31], they share interesting properties. For example, if L ∈ Q(x)[∂] is
CIS, then so is any operator in Q(x)[∂] obtained from L through operations8

8This means that for a solver to be complete for CIS-equations, it must necessarily be
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(ii) and (iii). So CIS-operators are just as natural as the much more studied
globally nilpotent operators.

Calabi-Yau equations [28, 29] are particularly interesting CIS-equations.
Many Calabi-Yau equations of order 4 are not pFq-solvable9 (4F3, 3F2, or

2F1) so Question 1 does not extend to order 4.
The PI will investigate the following questions in the second or third

year of this proposal. How many classes (similar definition as in Section 3)
of Calabi-Yau equations are there in the database from [28]? To answer
this, it is necessary to develop a good algorithm that can find (if it exists) a
transformation (composed of (i), (ii), and (iii)) between fourth order oper-
ators. Such an algorithm would also be needed to develop a solver for 4’th
order equations. Another question is if the techniques used to construct
the Calabi-Yau equations could be used to construct a counter example to
Question 1 of order 3 (a counter example of order 2 is not likely; the PI
tested many examples of order 2).

5 Hypergeometric functions, tables, and modular
curves

The strategy proposed for NSF 1017880 to solve differential equations was to
develop algorithms to solve generic cases and to build tables to cover special
cases (when the pullback function f has high degree, or, when f is not a
rational function). Denote d as the number of non-removable singularities
(points that can not become regular points under transformations (ii) and
(iii)). It turns out that for each d, the tables needed for the proposed strategy
are indeed finite. So for a fixed d, a complete solver can be developed.

For d = 4, the rational pullback functions f that need to be tabulated
are so-called Belyi maps. The PI has done this classification jointly with
Raimundas Vidunas in [22]. This work is by far the largest classification
of Belyi maps and their corresponding dessins d’enfants, consisting of 872
Belyi maps in 366 Galois orbits. Although the table is finite, it is very

able to deal with these transformations. This is why the PI develops solvers that are not
restricted to form (3).

9The equations in [29] of order < 4 are 2F1-solvable. Page 1 of [29] mentions that it
took a long time to find a proof that the sequence An defined there is an integer sequence.
However, the differential equation given there has a 2F1 type solution that one can use to
quickly prove that the An are integers. So a lot of time could have been saved if current
computer algebra systems had been able to find the 2F1 type solution, which they could
not. Addressing this is an important goal of this proposal.
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large, which suggests that tabulating cases could become problematic for
larger d. However, over 95% of the d = 4 table consists of cases that do
not correspond to CIS-equations. Most differential equations from practical
applications will fall in remaining ≤ 5% of the table.

By restricting to CIS cases, the table becomes much smaller, and d = 5
becomes feasible. The PI is working on the d = 5 case with graduate student
Vijay Kunwar with support of NSF 1017880. The table for d = 5, restricted
to CIS cases, is smaller than the d = 4 table without restrictions. However,
to build this table it is necessary to implement new algorithms, because
unlike d = 4, for d = 5 there are many non-trivial near-Belyi maps (each
near-Belyi map is a parameterized family of pullback functions f , finding
and processing them requires new algorithms).

The PI will finish the work of building tables and solvers for d = 4, 5 with
Vijay Kunwar at the end of 2013. Completeness for d = 4, 5 also implies
that our algorithms will also cover any equation that, after a number of
rounds of 2-descent, ends up with < 6 non-removable singularities. Inputs
where the programs can neither find a closed form solution, nor construct
a non-existence proof, should become rare by then, if the following issue is
addressed as well:

So far, the work on the above mentioned tables has only involved rational
functions for the pullback function f . To fully accomplish the stated goal
of finding every closed form solution (of the form (2) when the order is 2) it
is also necessary to build a table of all algebraic functions f that can occur
as a pullback. Let S be a hypergeometric function. If L ∈ C(x)[∂] can be
solved in terms of S(f) for some algebraic function f , then it can also be
solved when f is replaced by one of its conjugates. If f̃ 6= f is one of these
conjugates, then S(f̃) must be of the form (2) for some algebraic functions
r0, r1, r. The PI found a proof that r1 must then be 0.

To build a table of algebraic pullback functions f , the idea is to find
every possible polynomial relation R such that R(f, f̃) = 0 implies that
S(f̃) can be written in form (2). For hypergeometric functions in class (I),
take say a, b, c = 5/12, 1/12, 1, the answer to this task appears to be given
by the modular curve10 X0(N).

If R is the polynomial equation of the curve X0(N) for some N = 2, 3, . . .
and if R(1728/f, 1728/f̃) = 0 then S(f̃) can be written in terms of S(f) in
the form (2). (As a side remark, this observation provides a new method
to rapidly compute an equation for X0(N).) The converse appears to be

10Modular curves are a topic that have been studied extensively, they were key to the
proof of Fermat’s last theorem
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true as well. The PI wants to prove this using techniques from number
theory and reduction modulo primes (such techniques were key to prove an
important classification theorem for the solver in Quan’s thesis [26].) Then
a table for non-rational f ’s can be constructed, at least for hypergeometric
functions in class (I).

5.1 Higher order

Much of the focus so far has been on second order equations, and one might
assume that higher order will be more difficult. But this is not necessarily
the case. Most of the work in finding a closed form solution of the form (1) re-
volves around constructing f (with a combination of algorithms and tables).
This pullback function f has to be reconstructed from so-called exponent-
differences. For order 2 one has two exponents e1, e2 at each singularity, and
hence one exponent-difference e1 − e2 which, due to transformation (ii), is
only known modulo the integers (and up to a ± sign). But for order 3, a
singularity carries more information, we have exponent-differences e1 − e2

and e2 − e3. In general this extra data makes it easier to reconstruct f . Of
course, if e1 − e2 = e2 − e3 then we do not obtain more information, but
if this happens at every singularity then it will likely correspond to a case
that can be reduced to order 2 with the PI’s algorithm [63].

In order to make good use of the extra data for order > 2 it will be
necessary to develop new algorithms. The PI will do this with graduate
student Erdal Imamoglu.

5.2 Long term goal

The PI’s long term goal is to develop algorithms that will solve essentially
every L ∈ C(x)[∂] with closed form solutions that one could realistically
encounter in research. But what if no closed form solution is found? Non-
existence proofs do exist in the literature [65], and one could consider trying
to turn those into algorithms.

But there is a more interesting strategy if one focuses on the most inter-
esting equations, CIS-equations, or more generally, globally nilpotent equa-
tions. Say L is globally nilpotent, and no solution in terms of hypergeomet-
ric functions was found. Rather than computing a non-existence proof, one
could instead search for a solution inside a larger class of functions, such as
A-hypergeometric functions [35, 36].
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6 Results from prior NSF support.

The PI was awarded two NSF grants during the past five years. In addi-
tion to supporting the PI and 19 publications, these grants have provided
valuable research opportunities for seven research graduate students in the
form of RA funding and travel support so they could present their research
at large conferences. NSF 1017880 currently supports two RA’s and will be
depleted in August.

Title: Closed Form Solutions for Linear Differential and Difference Equa-
tions. NSF 0728853, 09/01/07 – 08/31/10, $275,000

Title: AF:Small: Solving Linear Differential in terms of Special Functions.
NSF 1017880, 09/01/10 – 08/31/13, $396,085

Supported Graduate students:

The grants listed above have supported Andrew Novocin (Ph.D April 2008),
Giles Levy (Ph.D December 2009), Yongjae Cha (Ph.D December 2010),
Quan Yuan (Ph.D March 2012), Tingting Fang (Ph.D October 2012), as well
as the PI’s current graduate students Vijay Kunwar and Erdal Imamoglu.

Publications supported:

Journal publications: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Refereed conference publications: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Preprints: [20, 21, 22]
Ph.D theses: [23, 24, 25, 26, 27]

These publications are available at: www.math.fsu.edu/∼hoeij/papers.html

Overview of the results:

1. Solving linear differential equations.

The majority of the PI’s research in recent years has been on differ-
ential equations. To solve Heun equations in terms of hypergeometric
functions whenever possible, the PI and Raimundas Vidunas deter-
mined a table of all rational Belyi maps that can occur as a pullback
function between a Heun and a hypergeometric equation. The result
is the largest (by far) table of Belyi functions and dessins d’enfants.
It contains functions f up to degree 60, which is about 3 times higher
than what standard methods for computing Belyi functions can reach.
To find them it was necessary to develop new algorithms. The table
and preprint is available online at [22].
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The two other main results were mentioned in Section 2 because they
are relevant for describing this proposal, so we mention them only
briefly here. The first is 2-descent [16, 27] (a key technique to reduce a
differential equation to equations with fewer non-removable singulari-
ties, which greatly reduces the tabulation work). The other is [14, 15,
26], the combination of which fulfills one of the PI’s most important
long term goals: It solves every second order equation whose solu-
tions can be expressed in terms of Airy/Bessel/Kummer/Whittaker
functions (i.e. 0F1 and 1F1 type functions). It is implemented [26],
efficient, and proven complete.

Solving equations lead to three application papers [7, 8, 9] plus one in
progress (giving closed form solutions of all 23 equations from [38]).

2. Recurrence relations

(a) The PI and former graduate student Yongjae Cha have developed
algorithms to compute local data for recurrence relations. The
first application was to compute Liouvillian solutions. The re-
sulting paper [17] won an award at the ISSAC’2009 conference for
best student co-authored paper. But the main application is [19].
This algorithm solves a very large portion of the second order
non-Liouvillian recurrence relations in the OEIS (oeis.org). An
implementation is available at sites.google.com/site/yongjaecha.

(b) Giles Levy, one of the PI’s former graduate students, gives three
new algorithms in his Ph.D thesis (December 2009, [24]). The
first algorithm decides if a recurrence relation can be solved in
terms of the sequence u(n) = 2F1(a+n, b; c; z) for some constants
a, b, c, z.
Next, an algorithm [18] for Liouvillian solutions is given. This
algorithm treats only order 2, but it is the fastest Liouvillian
solver for order 2. The third algorithm checks if an input equation
can be reduced to an equation whose solution appears in the
OEIS. The implementations are very useful in practice, and can
be downloaded from [24].

Giles has also written an implementation that uses techniques
from [54] to factor recurrence operators. No paper has been writ-
ten on this yet, but the strategy works well in practice.

(c) The paper [2] gives results on holonomic sequences that are useful
for a number of algorithms, such as definite summation.
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3. Subfields.

The paper [6] gives a new algorithm for computing subfields of alge-
braic number fields. The algorithm improves the theoretical complex-
ity of computing subfields, and is efficient in practice as well (examples
and CPU timings are available at www.math.fsu.edu/∼hoeij/subfields).
It has been incorporated in the Magma computer algebra system.

Computation of subfields can be used to obtain smaller expressions for
algebraic expressions. The PI used this in the Appendix of [3]. The
general principle that subfields can lead to simpler expressions was
also a key for 2-descent [16], where a differential equation is reduced
to a subfield of index 2, which reduces the number of non-removable
singularities.

4. The complexity of factoring polynomials.

For 25 years there was a significant gap [1] between the best theoreti-
cal complexity and the complexity of the best practical algorithm [55].
This gap has now been closed with two recent papers. First, the PI
and his former graduate student Andrew Novocin have proven a new
complexity result [10]. Second, an implementation [12] has been writ-
ten that (a) follows [10] so that it has the best theoretical complexity,
and (b) is just as fast as the best practical implementations in the
worst case, while being faster in common cases. This speedup arises
from our complexity analysis, which showed that a short-cut strategy
called early-termination could be used to speed up the running time
for most cases, without harming the theoretical worst-case complexity.

5. Projects with other students.

The PI worked with Vivek Pal (then an undergraduate student at
Florida State University) on computing isomorphisms between number
fields. This resulted in a publication [4]. The PI also worked with
James Fullwood (a graduate student of Paolo Aluffi) on computing
Hirzebruch invariants. This lead to a joint publication [13] and a
preprint [21].

The PI has a joint project with Maarten Derickx on the gonality of
modular curves. The paper is not yet finished, but the data is available
online www.math.fsu.edu/∼hoeij/files/X1N and is already being used:
www.math.harvard.edu/∼chaoli/doc/MazurTalk2.pdf
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